Comparative Phytochemical Analysis of Aronia melanocarpa L. Fruit Juices on Bulgarian Market
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Content and Composition
2.1.1. Polar Compounds
2.1.2. Polyphenolic Content
3. Discussion
3.1. Amino Acids
3.2. Organic Acids
3.3. Saccharides, Sugar Acids and Alcohols
3.4. Fatty Acids and Esters
3.5. Phenolic Compounds
4. Materials and Methods
4.1. Plant Material
4.2. Phytochemical Analysis
4.2.1. Extraction
4.2.2. GC-MS Analysis of Fraction A
4.2.3. LC-MS/MS Analysis of Fractions B and C
4.2.4. Qualitative and Quantitative Analyses
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochmian, I.; Grajkowski, J.; Smolik, M. Comparison of some morphological features, quality and chemical content of four cultivars of chokeberry fruits (Aronia melanocarpa). Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Pukalskas, A.; Venskutonis, P.R. Chokeberry pomace valorization into food ingredients by enzyme-assisted extraction: Process optimization and product characterization. Food Bioprod. Process. 2017, 105, 36–50. [Google Scholar] [CrossRef]
- Bolling, B.W.; Taheri, R.; Pei, R.; Kranz, S.; Yu, M.; Durocher, S.N.; Brand, M.H. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability. Food Chem. 2015, 187, 189–196. [Google Scholar] [CrossRef]
- Kokotkiewicz, A.; Jaremicz, Z.; Luczkiewicz, M. Aronia plants: A review of traditional use, biological activities, and perspectives for modern medicine. J. Med. Food 2010, 13, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Kapci, B.; Neradova, E.; Čizkova, H.; Voldrich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant potential of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- Vagiri, M.; Jensen, M. Influence of juice processing factors on quality of black chokeberry pomace as a future resource for colour extraction. Food Chem. 2017, 217, 409–417. [Google Scholar] [CrossRef]
- Carle, R.; Schweiggert, R.M. Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color; Woodhead Publishing Ltd.: Sawston, UK, 2016; ISBN 9780081003923. [Google Scholar]
- Valcheva-Kuzmanova, S.V.; Belcheva, A. Current knowledge of Aronia melanocarpa as a medicinal plant. Folia Med. 2006, 48, 11–17. [Google Scholar]
- Wawer, I. The Power of Nature: Aronia Melanocarpa, 1st ed.; Nature’s Print Ltd.: London, UK, 2006. [Google Scholar]
- Domarew, C.A.; Holt, R.R.; Goodman-Snitkoff, G. A Study of Russian Phytomedicine and Commonly Used Herbal Remedies. J. Herb. Pharmacother. 2002, 2, 31–48. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black Chokeberry Aronia melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef] [Green Version]
- Taheri, R.; Connolly, B.A.; Brand, M.H.; Bolling, B.W. Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. J. Agric. Food Chem. 2013, 61, 8581–8588. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Ŝeruga, M.; Krivak, P. The influence of interactions among phenolic compounds on the antiradical activity of chokeberries (Aronia melanocarpa). Int. J. Food Sci. Nutr. 2011, 62, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Wojdylo, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Kardum, N.; Takić, M.; Šavikin, K.; Zec, M.; Zdunić, G.; Spasić, S.; Konić-Ristić, A. Effects of polyphenol-rich chokeberry juice on cellular antioxidant enzymes and membrane lipid status in healthy women. J. Funct. Foods 2014, 9, 89–97. [Google Scholar] [CrossRef]
- Kardum, N.; Petrović-Oggiano, G.; Takic, M.; Glibetić, N.; Zec, M.; Debeljak-Martacic, J.; Konić-Ristić, A. Effects of glucomannan-enriched, aronia juice-based supplement on cellular antioxidant enzymes and membrane lipid status in subjects with abdominal obesity. Sci. World J. 2014, 2014, 869250. [Google Scholar] [CrossRef] [Green Version]
- Ruginə, D.; Diaconeasa, Z.; Coman, C.; Bunea, A.; Socaciu, C.; Pintea, A. Chokeberry anthocyanin extract as pancreatic β-cell protectors in two models of induced oxidative stress. Oxid. Med. Cell. Longev. 2015, 2015, 429075. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Park, Y.; Wegner, C.J.; Bolling, B.W.; Lee, J. Polyphenol-rich black chokeberry (Aronia melanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in Caco-2 cells. J. Nutr. Biochem. 2013, 24, 1564–1570. [Google Scholar] [CrossRef]
- Martin, D.A.; Taheri, R.; Brand, M.H.; Draghi, A.; Sylvester, F.A.; Bolling, B.W. Anti-inflammatory activity of aronia berry extracts in murine splenocytes. J. Funct. Foods 2014, 8, 68–75. [Google Scholar] [CrossRef]
- Skoczyńska, A.; Jedrychowska, I.; Poreba, R.; Affelska-Jercha, A.; Turczyn, B.; Wojakowska, A.; Andrzejak, R. Influence of chokeberry juice on arterial blood pressure and lipid parameters in men with mild hypercholesterolemia. Pharmacol. Rep. 2007, 59, 177–182. [Google Scholar]
- Daskalova, E.; Delchev, S.; Vladimirova-Kitova, L.; Kitov, S.; Denev, P. Black chokeberry (Aronia melanocarpa) functional beverages increase hdl-cholesterol levels in aging rats. Foods 2021, 10, 1641. [Google Scholar] [CrossRef]
- Sikora, J.; Broncel, M.; Mikiciuk-Olasik, E. Aronia melanocarpa elliot reduces the activity of angiotensin I-converting enzyme—In vitro and EX vivo studies. Oxid. Med. Cell. Longev. 2014, 2014, 739721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valcheva-Kuzmanova, S.; Borisova, P.; Galunska, B.; Krasnaliev, I.; Belcheva, A. Hepatoprotective effect of the natural fruit juice from Aronia melanocarpa on carbon tetrachloride-induced acute liver damage in rats. Exp. Toxicol. Pathol. 2004, 56, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Valcheva-Kuzmanova, S.; Marazova, K.; Krasnaliev, I.; Galunska, B.; Borisova, P.; Belcheva, A. Effect of Aronia melanocarpa fruit juice on indomethacin-induced gastric mucosal damage and oxidative stress in rats. Exp. Toxicol. Pathol. 2005, 56, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Simeonov, S.B.; Botushanov, N.P.; Karahanian, E.B.; Pavlova, M.B.; Husianitis, H.K.; Troev, D.M. Effects of Aronia melanocarpa juice as part of the dietary regimen in patients with diabetes mellitus. Folia Med. 2002, 44, 20–23. [Google Scholar]
- Qin, B.; Anderson, R.A. An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet. Br. J. Nutr. 2012, 108, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Sharif, T.; Alhosin, M.; Auger, C.; Minker, C.; Kim, J.H.; Etienne-Selloum, N.; Bories, P.; Gronemeyer, H.; Lobstein, A.; Bronner, C.; et al. Aronia melanocarpa juice induces a redox-sensitive p73-related caspase 3-dependent apoptosis in human leukemia cells. PLoS ONE 2012, 7, e32526. [Google Scholar] [CrossRef] [Green Version]
- Handeland, M.; Grude, N.; Torp, T.; Slimestad, R. Black chokeberry juice (Aronia melanocarpa) reduces incidences of urinary tract infection among nursing home residents in the long term-a pilot study. Nutr. Res. 2014, 34, 518–525. [Google Scholar] [CrossRef]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa products and by-products for health and nutrition: A review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Sidor, A.; Drożdżyńska, A.; Gramza-Michałowska, A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors—An overview. Trends Food Sci. Technol. 2019, 89, 45–60. [Google Scholar] [CrossRef]
- Kader, A.; Barrett, D. Classification, Composition of Fruits, and Postharvest Maintenance of Quality. In Processing Fruits; Barrett, D.M., Somogyi, L., Ramaswamy, H.S., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 3–22. [Google Scholar]
- Šnebergrová, J.; Cížková, H.; Neradová, E.; Kapci, B.; Rajchl, A.; Voldrich, M. Variability of characteristic components of aronia. Czech J. Food Sci. 2014, 32, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Ochmian, I.; Oszmiański, J.; Skupień, K. Chemical composition, phenolics, and firmness of small black fruits. J. Appl. Bot. Food Qual. 2009, 83, 64–69. [Google Scholar]
- Skupień, K.; Oszmiański, J. The effect of mineral fertilization on nutritive value and biological activity of chokeberry fruit. Agric. Food Sci. 2007, 16, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Červenka, L. Moisture adsorption characteristics of black currant (Ribes nigrum L.), black elderberry (Sambucus nigra L.) and Chokeberry (Aronia melanocarpa, [MINCHX.] ELL.) samples at different temperatures. J. Food Process Eng. 2011, 34, 1419–1434. [Google Scholar] [CrossRef]
- Pieszka, M.; Gogol, P.; Pietras, M.; Pieszka, M. Valuable components of dried pomaces of chokeberry, black currant, strawberry, apple and carrot as a source of natural antioxidants and nutraceuticals in the animal diet. Ann. Anim. Sci. 2015, 15, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Djuric, M.; Brkovic, D.; Miloševic, D.; Pavlovic, M.; Curčic, S. Chemical characterisation of the fruit of black chokeberry grown on different types of soil. Rev. Chim. 2015, 66, 178–181. [Google Scholar]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. J. Chem. 2018, 2018, 9574587. [Google Scholar] [CrossRef] [Green Version]
- Sosnowska, D.; Podsędek, A.; Kucharska, A.Z.; Redzynia, M.; Opęchowska, M.; Koziołkiewicz, M. Comparison of in vitro anti-lipase and antioxidant activities, and composition of commercial chokeberry juices. Eur. Food Res. Technol. 2016, 242, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Sójka, M.; Kołodziejczyk, K.; Milala, J. Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Ind. Crops Prod. 2013, 51, 77–86. [Google Scholar] [CrossRef]
- Zlatanov, M.D. Lipid composition of Bulgarian chokeberry, black currant and rose hip seed oils. J. Sci. Food Agric. 1999, 79, 1620–1624. [Google Scholar] [CrossRef]
- Best, M.M.; Duncan, C.H.; van Loon, E.J.; Wathen, J.D. Lowering of serum cholesterol by the administration of a plant sterol. Circulation 1954, 10, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Kassis, A.N.; Vanstone, C.A.; AbuMweis, S.S.; Jones, P.J.H. Efficacy of plant sterols is not influenced by dietary cholesterol intake in hypercholesterolemic individuals. Metabolism 2008, 57, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.K.; Bruce, V.M.; McDonald, B.E. Dietary α-linolenic acid is as effective as oleic acid and linoleic acid in lowering blood cholesterol in normolipidemic men. Am. J. Clin. Nutr. 1991, 53, 1230–1234. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobek, L.; Šeruga, M.; Medvidović-Kosanović, M.; Novak, I. Antioxidant activity and polyphenols of Aronia in comparison to other berry species. Agric. Conspec. Sci. 2007, 72, 301–306. [Google Scholar]
- Mayer-Miebach, E.; Adamiuk, M.; Behsnilian, D. Stability of chokeberry bioactive polyphenols during juice processing and stabilization of a polyphenol-rich material from the by-product. Agriculture 2012, 2, 244–258. [Google Scholar] [CrossRef] [Green Version]
- Kobus, Z.; Nadulski, R.; Wilczyński, K.; Kozak, M.; Guz, T.; Rydzak, L. Effect of the black chokeberry (Aronia melanocarpa (Michx.) Elliott) juice acquisition method on the content of polyphenols and antioxidant activity. PLoS ONE 2019, 14, e0219585. [Google Scholar] [CrossRef] [Green Version]
- Gralec, M.; Wawer, I.; Zawada, K. Aronia melanocarpa berries: Phenolics composition and antioxidant properties changes during fruit development and ripening. Emir. J. Food Agric. 2019, 31, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Tolić, M.T.; Jurčević, I.L.; Krbavčić, I.P.; Marković, K.; Vahčić, N. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef]
- Tolić, M.T.; Krbavčić, I.P.; Vujević, P.; Milinović, B.; Jurčević, I.L.; Vahčić, N. Effects of Weather Conditions on Phenolic Content and Antioxidant Capacity in Juice of Chokeberries (Aronia melanocarpa L.). Polish J. Food Nutr. Sci. 2017, 67, 67–74. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef]
- Hellström, J.K.; Shikov, A.N.; Makarova, M.N.; Pihlanto, A.M.; Pozharitskaya, O.N.; Ryhänen, E.L.; Kivijärvi, P.; Makarov, V.G.; Mattila, P.H. Blood pressure-lowering properties of chokeberry (Aronia mitchurinii, var. Viking). J. Funct. Foods 2010, 2, 163–169. [Google Scholar] [CrossRef]
- Gumienna, M.; Lasik, M.; Czarnecki, Z. Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitro digestion. Int. J. Food Sci. Nutr. 2011, 62, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit. Rev. Food Sci. Nutr. 1989, 28, 315–347. [Google Scholar] [CrossRef] [PubMed]
- Dudonné, S.; Dubé, P.; Anhê, F.F.; Pilon, G.; Marette, A.; Lemire, M.; Harris, C.; Dewailly, E.; Desjardins, Y. Comprehensive analysis of phenolic compounds and abscisic acid profiles of twelve native Canadian berries. J. Food Compos. Anal. 2015, 44, 214–224. [Google Scholar] [CrossRef]
- Slimestad, R.; Torskangerpoll, K.; Nateland, H.S.; Johannessen, T.; Giske, N.H. Flavonoids from black chokeberries, Aronia melanocarpa. J. Food Compos. Anal. 2005, 18, 61–68. [Google Scholar] [CrossRef]
- Tian, Y.; Liimatainen, J.; Alanne, A.L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. HPLC-MS n identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem. 2012, 135, 2138–2146. [Google Scholar] [CrossRef]
- Tasinov, O.; Dincheva, I.; Badjakov, I.; Kiselova-Kaneva, Y.; Galunska, B.; Nogueiras, R.; Ivanova, D. Phytochemical Composition, Anti-Inflammatory and ER Stress-Reducing Potential of Sambucus ebulus L. Fruit Extract. Plants 2021, 10, 2446. [Google Scholar] [CrossRef]
- Kiselova-Kaneva, Y.; Galunska, B.; Nikolova, M.; Dincheva, I.; Badjakov, I. High resolution LC-MS/MS characterization of polyphenolic composition and evaluation of antioxidant activity of Sambucus ebulus fruit tea traditionally used in Bulgaria as a functional food. Food Chem. 2022, 367, 130759. [Google Scholar] [CrossRef]
Compound | AM Juice 1 Content, µg/mL | AM Juice 2 Content, µg/mL | AM Juice 3 Content, µg/mL |
---|---|---|---|
Amino Acids | |||
L-Valine | 3.24 ± 0.06 | 3.41 ± 0.05 | 3.62 ± 0.08 |
L-Leucine | 8.63 ± 0.17 | 9.10 ± 0.14 | 9.46 ± 0.15 |
L-Isoleucine | 9.08 ± 0.18 | 9.57 ± 0.15 | 9.96 ± 0.15 |
L-Threonine | 4.16 ± 0.08 | 4.39 ± 0.07 | 4.56 ± 0.07 |
L-Phenylalanine | 10.98 ± 0.22 | 11.57 ± 0.18 | 12.04 ± 0.19 |
L-Lysine | 4.68 ± 0.09 | 4.93 ± 0.08 | 5.13 ± 0.08 |
L-Proline | 21.43 ± 0.42 | 22.59 ± 0.35 | 23.50 ± 0.36 |
Glycine | 4.05 ± 0.08 | 4.27 ± 0.07 | 4.44 ± 0.07 |
Serine | 2.77 ± 0.06 | 2.92 ± 0.05 | 3.04 ± 0.05 |
L-Aspartic acid | 17.49 ± 0.34 | 18.42 ± 0.28 | 19.17 ± 0.29 |
L-Asparagine | 6.63 ± 0.13 | 6.98 ± 0.11 | 7.27 ± 0.11 |
L-Glutamic acid | 1.44 ± 0.03 | 1.52 ± 0.02 | 1.58 ± 0.02 |
L-Tyrosine | 2.85 ± 0.06 | 3.00 ± 0.05 | 3.12 ± 0.05 |
Total essential AAs | 40.78 ± 0.79 | 42.97 ± 0.67 | 44.76 ± 0.61 |
Total non-essential AAs | 56.66 ± 1.12 | 59.71 ± 0.92 | 62.12 ± 0.96 |
Total AAs | 97.44 ± 1.90 | 102.67 ± 1.58 | 106.88 ± 1.56 |
Organic Acids | |||
Succinic acid | 13.54 ± 0.27 | 14.26 ± 0.22 | 14.84 ± 0.23 |
Fumaric acid | 7.08 ± 0.14 | 7.46 ± 0.11 | 7.76 ± 0.12 |
Malic acid | 9.88 ± 0.20 | 10.41 ± 0.16 | 10.83 ± 0.17 |
Pyroglutamic acid (5-oxoproline) | 36.03 ± 0.71 | 37.96 ± 0.59 | 39.50 ± 0.61 |
4-Aminobutyric acid | 6.10 ± 0.12 | 6.42 ± 0.10 | 6.68 ± 0.11 |
2-Hydroxyglutaric acid | 4.36 ± 0.09 | 4.59 ± 0.07 | 4.78 ± 0.07 |
2-Ketoglutaric acid | 8.60 ± 0.17 | 9.06 ± 0.14 | 9.42 ± 0.15 |
Phenylpyruvic acid | 2.33 ± 0.05 | 2.46 ± 0.04 | 2.56 ± 0.04 |
2,3-Dihydroxybutanedioic acid | 11.23 ± 0.23 | 11.84 ± 0.19 | 12.32 ± 0.19 |
Isocitric acid | 19.41 ± 0.38 | 20.45 ± 0.31 | 21.28 ± 0.33 |
Total organic acids | 118.55 ± 2.34 | 124.91 ± 1.93 | 129.96 ± 2.01 |
Sugar Alcohols | |||
Glycerol | 38.69 ± 0.76 | 40.78 ± 0.63 | 42.42 ± 0.66 |
Digalactosylglycerol | 7.48 ± 0.15 | 7.88 ± 0.12 | 8.20 ± 0.13 |
Threitol | 8.20 ± 0.17 | 8.65 ± 0.13 | 8.99 ± 0.14 |
Erythreol | 2.23 ± 0.05 | 2.35 ± 0.04 | 2.45 ± 0.04 |
Xylitol | 4.50 ± 0.09 | 4.75 ± 0.08 | 4.94 ± 0.08 |
Arabinitol | 37.12 ± 0.73 | 39.11 ± 0.61 | 40.69 ± 0.63 |
L-Glycerol-3-phosphate | 18.99 ± 0.37 | 20.00 ± 0.31 | 20.82 ± 0.33 |
Manitol | 3.19 ± 0.06 | 3.36 ± 0.05 | 3.50 ± 0.06 |
Sorbitol | 52.77 ± 1.04 | 55.61 ± 0.86 | 57.86 ± 0.90 |
Galactitol | 2.05 ± 0.04 | 2.16 ± 0.04 | 2.25 ± 0.03 |
Myo-inositol | 7.19 ± 0.14 | 7.57 ± 0.12 | 7.88 ± 0.12 |
Galactosylglycerol | 25.92 ± 1.10 | 28.93 ± 0.91 | 31.31 ± 0.95 |
Sorbitol-6-phosphate | 46.41 ± 0.91 | 48.90 ± 0.76 | 50.87 ± 0.79 |
myo-Inositol-1-phosphate isomer | 6.04 ± 0.12 | 6.37 ± 0.10 | 6.62 ± 0.10 |
myo-Inositol-2-phosphate isomer | 7.96 ± 0.16 | 8.39 ± 0.13 | 8.73 ± 0.13 |
myo-Inositol-1-phosphate isomer | 3.54 ± 0.07 | 3.73 ± 0.06 | 3.88 ± 0.06 |
myo-Inositol-2-phosphate isomer | 7.36 ± 0.15 | 7.76 ± 0.12 | 8.07 ± 0.13 |
Maltitol; alpha-D-Glc-(1,4)-D-sorbitol | 5.25 ± 0.11 | 5.54 ± 0.09 | 5.76 ± 0.09 |
Galactinol isomer; alpha-D-Gal-(1,3)-myo-Inositol | 0.74 ± 0.02 | 0.78 ± 0.02 | 0.81 ± 0.02 |
Galactinol isomer; alpha-D-Gal-(1,3)-myo-Inositol | 3.93 ± 0.08 | 4.14 ± 0.07 | 4.31 ± 0.07 |
Total sugar alcohols | 282.09 ± 6.12 | 298.87 ± 5.10 | 312.14 ± 5.30 |
Sugar acids | |||
Glyceric acid | 18.27 ± 0.36 | 19.25 ± 0.30 | 20.02 ± 0.31 |
Erithreonic acid | 2.84 ± 0.06 | 2.99 ± 0.05 | 3.11 ± 0.05 |
Threonic acid | 9.00 ± 0.18 | 9.49 ± 0.15 | 9.87 ± 0.16 |
Pentonic acid | 8.24 ± 0.17 | 8.69 ± 0.13 | 9.04 ± 0.14 |
Ribonic acid | 5.10 ± 0.10 | 5.37 ± 0.08 | 5.59 ± 0.09 |
Glucuronic acid isomer | 9.09 ± 0.18 | 9.58 ± 0.15 | 9.96 ± 0.15 |
Galacturonic acid isomer | 17.05 ± 0.34 | 17.97 ± 0.28 | 18.69 ± 0.29 |
Glucuronic acid isomer | 13.96 ± 0.27 | 14.71 ± 0.22 | 15.30 ± 0.24 |
Gluconic acid isomer | 1.91 ± 0.04 | 2.02 ± 0.03 | 2.10 ± 0.03 |
Galacturonic acid isomer | 3.09 ± 0.06 | 3.26 ± 0.05 | 3.39 ± 0.06 |
Glucuronic acid isomer | 4.15 ± 0.08 | 4.37 ± 0.07 | 4.55 ± 0.07 |
Galactonic acid | 6.78 ± 0.14 | 7.15 ± 0.11 | 7.43 ± 0.12 |
Gluconic acid isomer | 3.98 ± 0.08 | 4.19 ± 0.07 | 4.36 ± 0.07 |
Glucaric acid | 16.81 ± 0.92 | 22.66 ± 5.21 | 31.32 ± 0.79 |
Galactaric acid | 3.63 ± 0.07 | 3.82 ± 0.06 | 3.97 ± 0.06 |
Gluconic acid-6-phosphate | 1.64 ± 0.04 | 1.73 ± 0.03 | 1.80 ± 0.03 |
Total sugar acids | 125.54 ± 3.06 | 137.24 ± 4.16 | 150.51 ± 2.65 |
Saccharides (mono-, di-, and tri-) | |||
Xylose methoxyamine | 6.36 ± 0.13 | 6.52 ± 0.21 | 6.97 ± 0.11 |
Arabinose methoxyamine | 13.37 ± 0.15 | 14.28 ± 0.22 | 14.86 ± 0.23 |
Fructose isomer | 15.33 ± 0.30 | 16.16 ± 0.25 | 16.81 ± 0.26 |
Fructose isomer | 20.24 ± 0.40 | 21.33 ± 0.33 | 22.19 ± 0.34 |
Sorbose isomer | 30.12 ± 0.60 | 31.74 ± 0.49 | 33.02 ± 0.51 |
Sorbose isomer | 22.86 ± 0.45 | 24.10 ± 0.37 | 25.07 ± 0.39 |
Galactose isomer | 37.70 ± 0.74 | 39.72 ± 0.61 | 41.33 ± 0.64 |
Galactose isomer | 14.85 ± 0.30 | 15.65 ± 0.24 | 16.28 ± 0.25 |
Glucose isomer | 18.58 ± 0.37 | 19.58 ± 0.31 | 20.37 ± 0.32 |
Glucose isomer | 14.56 ± 0.29 | 15.34 ± 0.24 | 15.96 ± 0.25 |
Fructose-6-phosphate isomer | 17.35 ± 0.34 | 18.28 ± 0.28 | 19.02 ± 0.29 |
Mannose-6-phosphate isomer | 3.71 ± 0.08 | 3.91 ± 0.06 | 4.07 ± 0.06 |
Galactose-6-phosphate isomer | 20.12 ± 0.40 | 21.21 ± 0.33 | 22.06 ± 0.34 |
Glucose-6-phosphate isomer | 32.42 ± 0.64 | 34.17 ± 0.53 | 35.54 ± 0.55 |
Fructose-6-phosphate isomer | 6.22 ± 0.13 | 6.56 ± 0.10 | 6.82 ± 0.11 |
Galactose-6-phosphate isomer | 3.56 ± 0.07 | 3.75 ± 0.06 | 3.90 ± 0.06 |
Glucose-6-phosphate isomer | 4.84 ± 0.10 | 5.10 ± 0.08 | 5.31 ± 0.08 |
Sucrose isomer; alpha-D-Glc-(1,2)-beta-D-Fru isomer | 26.57 ± 0.52 | 28.00 ± 0.43 | 29.13 ± 0.45 |
Trehalose; alpha-D-Glc-(1,1)-alpha-D-Glc isomer | 10.82 ± 0.21 | 11.40 ± 0.18 | 11.86 ± 0.18 |
Melibiose isomer; alpha-D-Gal-(1,6)-D-Glc isomer | 19.91 ± 0.40 | 20.98 ± 0.32 | 21.83 ± 0.34 |
Melibiose isomer; alpha-D-Gal-(1,6)-D-Glc isomer | 20.14 ± 0.40 | 21.23 ± 0.33 | 22.09 ± 0.34 |
Sucrose isomer; alpha-D-Glc-(1,2)-beta-D-Fru isomer | 22.02 ± 0.44 | 23.20 ± 0.36 | 24.14 ± 0.38 |
Trehalose; alpha-D-Glc-(1,1)-alpha-D-Glc isomer | 17.28 ± 0.34 | 18.20 ± 0.28 | 18.94 ± 0.29 |
Raffinose; alpha-D-Gal-(1,6)-alpha-D-Glc-(1,2)-beta-D-Fru isomer | 13.83 ± 0.27 | 14.57 ± 0.23 | 15.16 ± 0.24 |
Raffinose; alpha-D-Gal-(1,6)-alpha-D-Glc-(1,2)-beta-D-Fru isomer | 27.44 ± 0.54 | 28.91 ± 0.45 | 30.08 ± 0.47 |
Total saccharides | 440.21 ± 8.38 | 463.89 ± 6.90 | 482.82 ± 7.48 |
Saturated, unsaturated acids and esters | |||
9-(E)-Hexadecenoic acid | 9.13 ± 0.18 | 9.61 ± 0.15 | 10.00 ± 0.15 |
9-(Z)-Hexadecenoic acid | 7.03 ± 0.14 | 7.41 ± 0.12 | 7.71 ± 0.12 |
Heptadecanoic acid | 8.10 ± 0.16 | 8.54 ± 0.13 | 8.88 ± 0.14 |
Hexadecatrienoic acid | 5.19 ± 0.11 | 5.47 ± 0.08 | 5.70 ± 0.09 |
Hexadecanoic acid (Palmitic acid) | 7.03 ± 0.14 | 7.41 ± 0.11 | 7.71 ± 0.12 |
Heptadecanoic acid | 6.49 ± 0.13 | 6.83 ± 0.11 | 7.11 ± 0.11 |
9,12-(Z,Z)-Octadecadienoic acid (Linoleic acid) | 10.38 ± 0.21 | 10.94 ± 0.17 | 11.39 ± 0.18 |
9,12,15-(Z,Z,Z)-Octadecatrienoic acid (Linolenic acid) | 9.01 ± 0.18 | 9.50 ± 0.15 | 9.88 ± 0.15 |
Nonadecanoic acid | 2.50 ± 0.05 | 2.64 ± 0.04 | 2.75 ± 0.04 |
Octadecanoic acid (Stearic acid) | 11.91 ± 0.23 | 12.55 ± 0.19 | 13.05 ± 0.20 |
(2E,4E)-2,4-Octadecadienoic acid | 16.76 ± 0.33 | 17.66 ± 0.27 | 18.38 ± 0.29 |
1-Monopalmitin | 14.79 ± 0.29 | 15.58 ± 0.24 | 16.21 ± 0.25 |
Monooctadecanoylglycerol | 9.24 ± 0.18 | 9.73 ± 0.15 | 10.13 ± 0.16 |
beta-Sitosterol | 16.31 ± 0.32 | 17.18 ± 0.26 | 17.88 ± 0.28 |
Total saturated, unsaturated acids and esters | 141.34 ± 2.77 | 148.95 ± 2.31 | 154.96 ± 2.40 |
Compound | AM Juice 1 µg/mL | AM Juice 2 µg/mL | AM Juice 3 µg/mL |
---|---|---|---|
Anthocyanins | |||
Cyanidin-3-O-galactoside (idaein) | 278.91 ± 6.56 | 262.69 ± 8.78 | 735.80 ± 17.41 |
Cyanidin-3-O-glucoside (chrysanthemin) | 23.04 ± 0.61 | 25.62 ± 0.99 | 55.34 ± 1.84 |
Cyanidin-3-O-arabinoside | 60.98 ± 2.81 | 60.69 ± 1.82 | 228.72 ± 7.53 |
Cyanidin-3-O-xyloside | 10.91 ± 0.39 | 10.79 ± 0.52 | 30.88 ± 2.1 |
Total anthocyanins | 373.84 ± 9.73 | 359.80 ± 10.46 | 1050.75 ± 24.86 |
Proanthocyanidin monomers | |||
Catechin | 29.64 ± 2.42 | 34.60 ± 3.28 | 23.37 ± 1.02 |
Epicatechin | 239.17 ± 3.05 | 269.47 ± 17.35 | 237.40 ± 3.75 |
Total proanthocyanidin monomers | 268.81 ± 2.89 | 304.07 ± 14.69 | 260.77 ± 3.01 |
Proanthocyanidin dimers | |||
EC→EC(1) | 128.33 ± 2.71 | 131.72 ± 4.09 | 137.45 ± 1.37 |
EC→EC(2) | 126.71 ± 2.68 | 130.03 ± 4.00 | 135.72 ± 1.35 |
EC→EC(3) | 142.15 ± 3.01 | 145.89 ± 4.50 | 152.25 ± 1.52 |
EC→EC(4) | 118.22 ± 2.50 | 121.35 ± 3.76 | 126.63 ± 1.26 |
Total proanthocyanidin dimers | 515.41 ± 10.90 | 529.00 ± 16.35 | 552.05 ± 5.49 |
Proanthocyanidin trimers | |||
EC→EC→EC (1) | 168.32 ± 3.34 | 172.63 ± 5.35 | 180.13 ± 1.80 |
EC→EC→EC (2) | 181.06 ± 3.59 | 185.69 ± 5.76 | 193.76 ± 1.93 |
EC→EC→EC (3) | 148.67 ± 2.95 | 152.46 ± 4.73 | 159.09 ± 1.59 |
EC→EC→EC (4) | 186.36 ± 3.69 | 191.12 ± 5.93 | 199.43 ± 1.99 |
Total proanthocyanidin trimers | 684.41 ± 13.56 | 701.90 ± 21.76 | 732.42 ± 7.29 |
Stilbenes | |||
trans-Resveratrol-3-O-glucoside | 39.80 ± 1.63 | 40.71 ± 1.42 | 44.37 ± 1.79 |
Cyclohexanecarboxylic acid | |||
Quinic acid | 81.74 ± 2.27 | 82.66 ± 1.55 | 84.95 ± 0.42 |
Hydroxycinnamic acids | |||
3-O-Caffeoylquinic acid (chlorogenic acid) | 423.08 ± 7.35 | 432.49 ± 13.41 | 451.29 ± 4.49 |
Caffeic acid-O-galactoside | 73.66 ± 1.28 | 75.29 ± 2.34 | 78.57 ± 0.78 |
Caffeic acid-O-glucoside | 55.71 ± 0.97 | 56.94 ± 1.76 | 59.42 ± 0.59 |
5-O-Caffeoylquinic acid (neochlorogenic acid) | 676.03 ± 11.75 | 691.05 ± 21.43 | 721.10 ± 7.18 |
p-Coumaric acid-O-glucoside | 176.36 ± 3.07 | 180.27 ± 5.59 | 188.11 ± 1.88 |
3-O-p-Coumaroylquinic acid | 298.04 ± 5.18 | 304.67 ± 9.45 | 317.92 ± 3.17 |
Feruloylquinic acid | 185.72 ± 3.23 | 189.85 ± 5.89 | 198.11 ± 1.97 |
4-O-p-Coumaroylquinic acid | 164.01 ± 2.85 | 167.66 ± 5.20 | 174.95 ± 1.74 |
Ferulic acid-O-galactoside | 98.23 ± 1.71 | 100.41 ± 3.11 | 104.78 ± 1.04 |
Ferulic acid-O-glucoside | 91.22 ± 1.58 | 93.25 ± 2.89 | 97.30 ± 0.97 |
Total hydroxycinnamic acids | 2242.06 ± 38.98 | 2291.88 ± 71.06 | 2391.55 ± 23.80 |
Flavonol glycosides | |||
Quercetin-3-O-rhamnosyl-galactoside | 19.07 ± 0.33 | 19.70 ± 0.61 | 20.55 ± 0.20 |
Quercetin-3-O-galactoside (hyperoside) | 21.77 ± 0.38 | 22.48 ± 0.70 | 23.45 ± 0.23 |
Kaempferol-3-O-galactoside | 8.32 ± 0.15 | 8.59 ± 0.27 | 8.96 ± 0.09 |
Quercetin-3-O-rhamnosyl-glucoside | 15.19 ± 0.27 | 15.69 ± 0.49 | 16.36 ± 0.16 |
Quercetin-3-O-glucoside (isoquercetin) | 17.02 ± 0.30 | 17.57 ± 0.55 | 18.33 ± 0.18 |
Kaempferol-3-O-glucoside (astragalin) | 7.42 ± 0.13 | 7.66 ± 0.24 | 7.99 ± 0.08 |
Quercetin-3-O-arabinoside (guaiaverin) | 12.51 ± 0.22 | 12.93 ± 0.40 | 13.48 ± 0.13 |
Quercetin-3-O-xyloside | 10.42 ± 0.18 | 10.76 ± 0.33 | 11.23 ± 0.11 |
Kaempferol-3-O-rhamnosyl-galactoside | 9.34 ± 0.17 | 9.65 ± 0.30 | 10.06 ± 0.10 |
Kaempferol-3-O-rhamnosyl-glucoside | 6.83 ± 0.12 | 7.05 ± 0.22 | 7.36 ± 0.07 |
Kaempferol-3-O-arabinoside | 8.32 ± 0.14 | 8.59 ± 0.26 | 8.96 ± 0.09 |
Kaempferol-3-O-xyloside | 9.55 ± 0.17 | 9.86 ± 0.31 | 10.29 ± 0.10 |
Total flavonol glycosides | 145.75 ± 2.53 | 150.52 ± 4.67 | 157.02 ± 1.53 |
Total analyzed polyphenols | 4351.83 ± 75.38 | 4460.53 ± 136.67 | 5273.87 ± 63.16 |
Characteristic | Juice 1 | Juice 2 | Juice 3 |
---|---|---|---|
Organic fruits/Bio product label | N/A | yes | yes |
Source of fruits/region in Bulgaria | N/A |
Central Stara
Planina mountain, near Kapinovski Monastery temperate-continental climate with pronounced mountain influence; latitude: 42.978677; longitude: 25.747620; altitude 203 m. |
Central Stara
Planina mountain, near city of Troyan climate: temperate-continental climate; latitude: 42.883, longitude: 24.717; altitude 446 m. |
Processing |
|
|
|
Additives |
NO sugars,
NO preservatives, NO additives |
NO sugars,
NO preservatives, NO additives |
NO sugars,
NO preservatives, NO additives |
Package | 250 mL glass bottle | 1.5 L bag in box | 270 mL glass bottle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasinov, O.; Dincheva, I.; Badjakov, I.; Grupcheva, C.; Galunska, B. Comparative Phytochemical Analysis of Aronia melanocarpa L. Fruit Juices on Bulgarian Market. Plants 2022, 11, 1655. https://doi.org/10.3390/plants11131655
Tasinov O, Dincheva I, Badjakov I, Grupcheva C, Galunska B. Comparative Phytochemical Analysis of Aronia melanocarpa L. Fruit Juices on Bulgarian Market. Plants. 2022; 11(13):1655. https://doi.org/10.3390/plants11131655
Chicago/Turabian StyleTasinov, Oskan, Ivayla Dincheva, Ilian Badjakov, Christina Grupcheva, and Bistra Galunska. 2022. "Comparative Phytochemical Analysis of Aronia melanocarpa L. Fruit Juices on Bulgarian Market" Plants 11, no. 13: 1655. https://doi.org/10.3390/plants11131655
APA StyleTasinov, O., Dincheva, I., Badjakov, I., Grupcheva, C., & Galunska, B. (2022). Comparative Phytochemical Analysis of Aronia melanocarpa L. Fruit Juices on Bulgarian Market. Plants, 11(13), 1655. https://doi.org/10.3390/plants11131655