Salicylic Acid Improves Growth and Physiological Attributes and Salt Tolerance Differentially in Two Bread Wheat Cultivars
Abstract
:1. Introduction
2. Results
2.1. Salicylic Acid Effects on Germination and Seedling Growth under Salt Stress
2.2. Plant Growth and Yield Attributes
2.3. Effect of Salicylic Acid on near Infrared Spectroscopy Measured Characteristics of Two Bread Wheat Cultivars Grown under Salt Stress in the Greenhouse
2.4. Mineral Composition in Flour of two Bread Wheat Cultivars Grown under Salt Stress and Treated by Salicylic Acid
3. Discussion
4. Materials and Methods
4.1. Soil and Biological Materials
4.2. Measurements
4.2.1. Effects of Salt Stress on Germination and Seedling Growth
4.2.2. Morphological Measurements
4.2.3. Physicochemical Composition
4.2.4. Determination of P, Ca, Mg, K, Na, Fe, Mn, Cu, and Zn Contents in Bread Wheat Flour
4.2.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Genc, Y.; Taylor, J.; Lyons, G.; Li, Y.; Cheong, J.; Appelbee, M.; Oldach, K.; Sutton, T. Bread wheat with high salinity and sodicity tolerance. Front. Plant Sci. 2019, 10, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Beltran, J.; Manzur, C.L. Overview of salinity problems in the world and FAO strategies to address the problem. In Proceedings of the International Salinity Forum, Riverside, CA, USA, 25–27 April 2005; Convention Center: Riverside, CA, USA, 2005; pp. 311–313. [Google Scholar]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant Responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Bennett, T.H.; Flowers, T.J.; Bromham, L. Repeated evolution of salt tolerance in grasses. Biol. Lett. 2013, 9, 20130029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrivastava, S.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- McDonald, G.K.; Taylor, J.K.; Verbyla, A.; Kuchel, H. Assessing the importance of subsoil constraints to yield of wheat and its implications for yield improvement. Crop Past. Sci. 2012, 63, 1043–1065. [Google Scholar] [CrossRef]
- James, R.A.; Blake, C.; Byrt, C.S.; Munns, R. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J. Exp. Bot. 2011, 62, 2939–2947. [Google Scholar] [CrossRef] [Green Version]
- Jafari-Shabestari, J.; Corke, H.; Qualset, C.O. Field evaluatiuon to salinity stress in Iranian hexaploid wheat landrace accessions. Genet. Res. Crop Evol. 1995, 42, 147–156. [Google Scholar] [CrossRef]
- Rengasamy, P. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: An overview. Aust. J. Exp. Agric. 2002, 42, 351–361. [Google Scholar] [CrossRef]
- Miransari, M.; Smith, D. Plant hormones and seed germination. Environ. Exp. Bot. 2014, 99, 110–121. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, W.; Li, Y.; Zhang, X.; Bai, X.; Niu, Z.; Zhang, X.; Li, Z.; Van, D. Transcriptomic analysis of seed germination under salt stress in two desert sister species (Populus euphratica and P. pruinosa). Front. Gen. 2019, 10, 231. [Google Scholar] [CrossRef]
- Francois, L.E.; Maas, E.V.; Donovan, T.J.; Youngs, V.L. Effect of salinity on grain yield and quality, vegetative growth, and germination of semi-dwarf and durum wheat. Agronomy 1986, 78, 1053–1058. [Google Scholar] [CrossRef]
- Rharrabti, Y.; Royo, C.; Villegas, D.; Aparicio, N.; Garcia del Moral, L.F. Durum wheat quality in Mediterranean environments, I: Quality expression under different zones, latitudes, and water regimes across Spain. Field Crops Res. 2003, 80, 123–131. [Google Scholar] [CrossRef]
- Katerji, N.; Van Hoorn, J.W.; Fares, C.; Hamdy, A.; Mastrorilli, M.; Oweis, T. Salinity effect on grain quality of two durum wheat varieties differing in salt tolerance. Agric. Water Man. 2005, 75, 85–91. [Google Scholar] [CrossRef]
- Houshmand, S.; Arzani, A.; Mirmohammadi-Maibody, S.A.M. Effects of salinity and drought stress on grain quality of durum wheat. Commun. Soil Sci. Plant Anal. 2014, 45, 297–308. [Google Scholar] [CrossRef]
- Thaler, S.; Eitzinger, J.; Trnka, M.; Dubrovsky, M. Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. J. Agric. Sci. 2012, 150, 537–555. [Google Scholar] [CrossRef]
- Tarchevsky, I.A.; Yakovleva, V.G.; Egorova, A.M. Salicylate induced modifications in plant proteomes (Review). Prikl. Biokhim. Mikrobiol. 2010, 46, 263–275. [Google Scholar] [CrossRef]
- Noreen, S.; Ashraf, M.; Hussain, M.; Jamil, A. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pak. J. Bot. 2009, 41, 473–479. [Google Scholar]
- Patel, P.K.; Hemantaranjan, A. Salicylic acid induced alteration in dry matter partitioning, antioxidant defence system and yield in chickpea (Cicer arietinum L.) under drought stress. Asian J. Crop Sci. 2012, 4, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Saeidnejad, A.H.; Mardani, H.; Naghibolghora, M. Protective effects of salicylic acid on physiological parameters and antioxidants response in maize seedlings under salinity stress. J. Appl. Environ. Biol. Sci. 2012, 2, 364–373. [Google Scholar]
- Metwally, A.; Finkemeier, I.; Georgi, M.; Dietz, K.J. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol. 2003, 132, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Usha, K. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Grow. Regul. 2003, 39, 137–141. [Google Scholar] [CrossRef]
- Janda, T.; Szalai, G.; Tari, I.; Paldi, E. Hydroponic treatment with salicylic acid decreases the effects of chilling in maize (Zea mays L.) plants. Planta 1999, 208, 175–180. [Google Scholar] [CrossRef]
- Dat, J.F.; Lopez-Delgado, H.; Foyer, C.H.; Scott, I.M. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 1998, 116, 1351–1357. [Google Scholar] [CrossRef] [Green Version]
- Hassoon, A.S.; Abduljabbar, I.A. Review on the role of salicylic acid in plants. In Sustainable Crop Production; Hasanuzzaman, M., Ed.; Intech: London, UK, 2019; pp. 1–6. [Google Scholar]
- Gunes, A.; Alpaslan, A.I.M.; Eraslan, G.; Bagci, F.E.; Cicek, N. Salicylic acid induced changeson some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L. ) grown under salinity. Plant Physiol. 2007, 164, 728–736. [Google Scholar] [CrossRef]
- Nazar, R.; Iqbal, N.; Syeed, S.; Khan, N.A. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. Plant Physiol. 2011, 168, 807–815. [Google Scholar] [CrossRef]
- Yang, W.J.; Rich, P.J.; Axtell, J.D.; Wood, K.V.; Bonham, C.C.; Ejeta, G.; Rhodes, D. Genotypic variation for glycine betaine in sorghum. Crop. Sci. 2003, 43, 162–169. [Google Scholar] [CrossRef]
- Borsani, O.; Valpuesta, V.; Botella, M.A. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis Seedlings. Plant Physiol. 2001, 126, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Kavi Kishor, P.B.; Sangam, S.; Amrutha, R.N.; SriLaxmi, P.; Naidu, K.R.; Rao, K.R.S.S.; Rao, S.; Reddy, K.J.; Theriappan, P.; Sreenivasulu, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. 2005, 88, 424–438. [Google Scholar]
- Csiszár, J.; Horváth, E.; Váry, Z.; Gallé, Á.; Bela, K.; Brunner, S.; Tari, I. Glutathione transferase supergene family in tomato: Salt stress regulated expression of representative genes from distinct GSTclasses in plants primed with salicylic acid. Plant Physiol. Biochem. 2014, 78, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Jayakannan, M.; Bose, J.; Babourina, O.; Rengel, Z.; Shabala, S. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth. Regul. 2015, 76, 25–40. [Google Scholar] [CrossRef]
- Zheng, J.; Ma, X.; Zhang, X.; Hu, Q.; Qian, R. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions. Physiol. Mol. Biol. Plants 2018, 24, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Syeed, S.; Sehar, Z.; Masood, A.; Anjum, N.A.; Khan, N.A. Control of elevated ion accumulation, oxidative stress, and lipid peroxidation with salicylic acid-induced accumulation of glycinebetaine in salinity-exposed Vigna radiata L. Appl. Biochem. Biotechnol. 2021, 193, 3301–3320. [Google Scholar] [CrossRef] [PubMed]
- Jamali, B.; Eshghi, S.; Tafazoli, E. Vegetative and reproductive growth of strawberry plants, cv. Pajaro affected by salicylic acid and nickel. J. Agric. Sci. Technol. 2011, 13, 895–904. [Google Scholar]
- Al-Rawi, A.N.T.; Al-Ani, M.H.; Al-Saad, T.M. Response of cotton Gossypium hirsutum L. for different irrigation periods and salicylic acid. Anb. J. Agric. Sci. 2014, 12, 283. [Google Scholar] [CrossRef]
- Lolaei, A.; Kaviani, B.; Rezaei, M.A.; Raad, M.K.; Mohammadipour, R. Effect of pre and postharvest treatment of salicylic acid on ripening of fruit and overall quality of strawberry (Fragaria ananasa Duch cv. Camarosa) fruit. Ann. Biol. Res. 2012, 3, 4680–4684. [Google Scholar]
- Yıldırım, E.; Dursun, A. Effect of foliar salicylic acid applications on plant growth and yield of tomato under greenhouse conditions. Acta Hortic. 2009, 807, 395–400. [Google Scholar] [CrossRef]
- Suhaib, M.; Ahmad, I.; Munir, M.; Iqbal, M.B.; Abuzar, M.K.; Ali, S. Salicylic acid induced physiological and ionic efficiency in wheat under salt stress. Pakist. J. Agric. Res. 2018, 31, 79. [Google Scholar] [CrossRef]
- Hussain, S.S.; Mehnaz, S.; Siddique, K.H.M. Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. In Plant Microbiome: Stress Response. Microorganisms for Sustainability; Egamberdieva, D., Ahmad, P., Eds.; Springer: Singapore, 2018; Volume 5. [Google Scholar] [CrossRef]
- Ali, E.; Hussain, N.; Shamsi, I.H.; Jabeen, Z.; Siddiqui, M.H.; Jiang, L. Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. J. Zhejiang Univ. Sci. B 2018, 19, 130–146. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, T.; Ashraf, M.; Shahbaz, M. Does exogenous application of Glycine betaine as a Pre sowing seed treatment improves growth and regulate some key physiological attributes in wheat plants grown under water deficit conditions. Pak. J. Bot. 2009, 41, 1291–1302. [Google Scholar]
- Syeed, S.; Anjum, N.A.; Nazar, R.; Iqbal, N.; Masood, A.; Khan, N.A. Salicylic acid-mediatedchanges in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L. ) cultivars differing in salt tolerance. Acta Physiol. Plant 2011, 33, 877–886. [Google Scholar] [CrossRef]
- Islam, M.M.; Hoque, M.A.; Okuma, E.; Banu, M.N.A.; Shimoishi, Y.; Nakamura, Y. Exogenous proline and glycine betaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J. Plant Physiol. 2009, 166, 1587–1597. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, F.; Anjum, N.A.; Masood, A.; Sofo, A.; Khan, N.A. The key roles of salicylic acid and sulfur in plant salinity stress tolerance. J. Plant Grow. Regul. 2022, 41, 1891–1904. [Google Scholar] [CrossRef]
- Moles, T.M.; Guglielminet, L.; Reyes, T.H. Differential effects of sodium chloride on germination and post-germination stages of two tomato genotypes. Sci. Hort. 2019, 257, 108730. [Google Scholar] [CrossRef]
- Khodary, S.E.A. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int. J. Agric. Biol. 2004, 6, 5–8. [Google Scholar]
- El-Tayeb, M.A. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul. 2005, 45, 215–224. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Asgher, M.; Khan, N.A. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol. Biochem. 2014, 80, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Nazar, R.; Umar, S.; Khan, N.A. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav. 2015, 10, e1003751. [Google Scholar] [CrossRef] [Green Version]
- Simaei, M.; Khavari-Nejad, R.A.; Bernard, F. Exogenous application of salicylic acid and nitric oxide on the ionic contents and enzymatic activities in NaCl-stressed soybean plants. Am. J. Plant. Sci. 2012, 3, 1495–1503. [Google Scholar] [CrossRef] [Green Version]
- Wada, K.C.; Takeno, K. Stress-induced flowering. Plant Signal. Behav. 2010, 5, 944–947. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Hayat, S.; Ahmad, A. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 2003, 41, 281–284. [Google Scholar] [CrossRef]
- Chandra, A.; Anand, A.; Dubey, A. Effect of salicylic acid on morphological and biochemical attributes in cowpea. J. Environ. Biol. 2007, 28, 193–196. [Google Scholar] [PubMed]
- Khan, M.I.R.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015, 6, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.A.; Nazar, R.; Iqbal, N.; Anjum, N.A. Phytohormones and Abiotic Stress Tolerance in Plants; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Muhammad, R.; YavaŞ, I.; Alhammad, B.A.; Shami, A.; Hasanuzzaman, M.; Kalderis, D. Glycine betaine accumulation, significance and interests for heavy metal tolerance in plants. Plants 2020, 9, 896. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Syeed, S.; Masood, A.; Nazar, R.; Iqbal, N. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int. J. Plant Biol. 2010, 1, e1. [Google Scholar] [CrossRef]
- Kumar, V.; Shriram, V.; Hoque, T.S.; Hasan, M.M.; Burritt, D.J.; Hossain, M.A. Glycine betaine-Mediated Abiotic Oxidative-Stress. Tolerance in Plants: Physiological and Biochemical Mechanisms. In Stress Signaling in Plants: Genomics and Proteomics Perspective; Springer: Cham, Switzerland, 2017; Volume 2. [Google Scholar] [CrossRef]
- Rakszegi, M.; Darkó, E.; Lovegrove, A.; Molnár, I.; Láng, L.; Bedő, Z.; Molnár-Láng, M.; Shewry, P. Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS ONE 2019, 14, e0211892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matysiak, K.; Siatkowski, I.; Kierzek, R.; Kowalska, J.; Krawczyk, R. Effect of foliar applied acetyl salicilic acid on wheat (Triticum aestivum L.) under field conditions. Agron. J. 2020, 10, 1918. [Google Scholar] [CrossRef]
- Rahman, M.; Soomro, U.; Zahoor-ul-Hag, M.; Gul, S.H. Effects of NaCl salinity on wheat (Triticum aestivum L.) cultivars. World J. Agric. Sci. 2008, 4, 398–403. [Google Scholar]
- Moyo, M.; Finnie, J.F.; Van Staden, J. Micro-culture effects on leaf epidermis and root structure in Sclerocarya birrea subsp. caffra. S. Afr. J. Bot. 2012, 78, 170–177. [Google Scholar] [CrossRef]
- Ma, X.; Zheng, J.; Zhang, X.; Hu, Q.; Qian, R. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front. Plant Sci. 2017, 8, 600. [Google Scholar] [CrossRef]
- Afzal, I.; Maqsood, S.; Basra, A.; Hameed, A.; Farooq, M. Physiological enhancements for alleviation of salt stress in wheat. Pak. J. Bot. 2006, 38, 1649–1659. [Google Scholar]
- Krzyzanowski, F.C.; Vieira, R.D.; Franco-Neto, J.D.B.; Marcos-Filho, J. (Eds.) Vigor de Sementes: Conceitos a Testes; ABRATES: Londrina, Brazil, 1999. [Google Scholar]
- Yang, F.; Xie, C.; He, D. Analysis and estimate of corn quality by Near Infrared Reflectance (NIR) Spectroscopy. In Proceedings of the 2011 Symposium on Photonics and Optoelectronics (SOPO), Wuhan, China, 16–18 May 2011. [Google Scholar]
- Jini, D.; Joseoh, B. Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci. 2017, 24, 97–108. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Official Methods 985.01; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000; Volume 1. [Google Scholar]
- Cavell, A.J. The colorimetric determination of phosphorus in plant materials. J. Sci. Food Agric. 1955, 6, 479–480. [Google Scholar] [CrossRef]
Days to Germination | |||||||
---|---|---|---|---|---|---|---|
Treatments | |||||||
Cultivars | T0 | SA | T1 | T2 | T1/SA | T2/SA | Cultivar means |
PAN3497 | 1.25 d ± 0.08 | 1.55 a ± 1.03 | 1.53 ab ± 0.07 | 1.56 ab ± 0.20 | 1.58 a ± 1.00 | 1.56 ab ± 0.00 | 1.50 |
SST806 | 1.17 e ± 0.00 | 1.48 bc ± 0.05 | 1.45 bc ± 0.01 | 1.47 b ± 0.00 | 1.50 b ± 0.06 | 1.47 b ± 0.01 | 1.43 |
Means | 1.21 d ± 0.02 | 1.51 ab ± 0.9 | 1.49 b ± 0.04 | 1.51 ab ± 0.43 | 1.54 a ± 0.00 | 1.51 ab ± 0.27 | 1.46 |
Coleoptile Dry Weight (g) | |||||||
PAN3497 | 0.15 a ± 0.04 | 0.09 b ± 0.11 | 0.09 b ± 0.06 | 0.07 c ± 0.09 | 0.06 d ± 0.10 | 0.07 e ± 0.00 | 0.09 |
SST806 | 0.18 a ± 0.12 | 0.11 bc ± 0.00 | 0.13 b ± 0.00 | 0.08 c ± 0.03 | 0.09 c ± 0.09 | 0.08 f ± 0.34 | 0.11 |
Means | 0.16 a ± 0.00 | 0.10 bc ± 0.08 | 0.11 b ± 0.01 | 0.07 c ± 0.08 | 0.07 c ± 0.00 | 0.07 e ± 0.04 | 0.10 |
Radicle Dry Weight (g) | |||||||
PAN3497 | 0.11 a ± 0.00 | 0.08 b ± 0.00 | 0.08 b ± 0.00 | 0.06 c ± 0.09 | 0.05 c ± 0.03 | 0.06 e ± 0.00 | 0.07 |
SST806 | 0.13 a ± 0.18 | 0.11 b ± 0.01 | 0.12 ab ± 0.02 | 0.09 c ± 0.10 | 0.09 c ± 0.01 | 0.09 c ± 0.12 | 0.08 |
Means | 0.12 a ± 0.02 | 0.09 b ± 0.07 | 0.10 b ± 0.07 | 0.07 c ± 0.32 | 0.07 c ± 0.00 | 0.07 c ± 0.26 | 0.09 |
Cultivar | Treat | Shoot Dry Weight (g) | Root Dry Weight (g) | Spike Number | Spike Weight (g) | Grain Number/Plant | Grain Mass/Spike (g) | 1000 Grain Mass (g) |
---|---|---|---|---|---|---|---|---|
PAN3497 | T0 | 1.23 ± 0.25 a | 0.49 ± 0.40 bc | 2 ± 0.01 a | 2.39 ± 0.10 b | 35.33 ± 0.07 b | 1.75 ± 0.03 b | 51.13 ± 0.00 b |
SA | 1.14 ± 0.29 a | 0.65 ± 0.02 a | 0.66 ± 0.04 c | 3.25 ± 0.20 a | 46.02 ± 0.12 a | 1.94 ± 0.76 b | 51.43 ± 0.02 b | |
T1 | 0.73 ± 0.33 b | 0.31 ± 0.10 c | 0.33 ± 0.07 c | 2.1 ± 0.40 b | 34.01 ± 0.00 b | 1.61 ± 0.03 b | 46.16 ± 0.09 d | |
T2 | 0.30 ± 0.04 c | 0.13 ± 0.011 d | 1 ± 0.00 b | 0.63 ± 0.01 c | 13.33 ± 0.90 d | 0.35 ± 0.87 c | 46.66 ± 0.08 d | |
T1/SA | 0.65 ± 0.08 b | 0.60 ± 0.08 b | 2 ± 0.00 a | 2.79 ± 0.23 b | 42.66 ± 0.32 ab | 2.52 ± 0.00 a | 50.5 ± 0.10 c | |
T2/SA | 0.50 ± 0.01 bc | 0.30 ± 0.17 c | 1 ± 0.00 b | 0.81 ± 0.38 c | 20 ± 0.31 c | 0.86 ± 0.10 bc | 52.33 ± 0.91 a | |
SST806 | T0 | 0.88 ± 0.100 c | 0.40 ± 0.24 c | 2 ± 0.00 a | 2.26 ± 0.10 b | 35.66 ± 1.20 d | 1.77 ± 0.00 b | 47.33 ± 1.10 a |
SA | 1.32 ± 0.17 a | 0.64 ± 0.08 b | 2 ± 0.00 a | 3.05 ± 0.80 a | 49.66 ± 0.10 b | 2.41 ± 0.02 a | 38.83 ± 0.03 d | |
T1 | 0.67 ± 0.07 d | 0.29 ± 0.23 d | 0.66 ± 0.10 c | 1.63 ± 0.87 c | 38.66 ± 0.08 d | 1.82 ± 0.95 b | 40.5 ± 0.12 c | |
T2 | 0.53 ± 0.03 d | 0.25 ± 0.07 d | 1 ± 0.00 b | 0.97 ± 0.02 d | 30 ± 0.59 e | 0.97 ± 0.05 c | 33.66 ± 0.90 e | |
T1/SA | 1.09 ± 0.23 b | 0.73 ± 0.54 a | 2 ± 0.00 a | 2.56 ± 0.19 b | 57.33 ± 0.45 a | 2.48 ± 0.13 a | 42.16 ± 0.45 b | |
T2/SA | 1.37 ± 0.20 a | 0.62 ± 0.16 b | 0.66 ± 0.80 c | 1.90 ± 0.50 c | 44.66 ± 0.03 c | 1.57 ± 0.16 bc | 40.5 ± 0.54 c |
Cultivars | Treat | Protein Dry Basis % | NDF Dry Basis % | Starch Dry Basis % |
---|---|---|---|---|
PAN3497 | T0 | 16.52 ± 0.00 d | 19.55 ± 0.65 e | 68.36 ± 0.00 a |
SA | 16.62 ± 0.05 d | 20.67 ± 0.00 d | 68.09 ± 0.00 a | |
T1 | 17.36 ± 0.98 c | 19.94 ± 0.00 e | 65.78 ± 1.50 b | |
T2 | 17.43 ± 1.80 c | 24.0 ± 0.45 b | 59.71 ± 0.34 d | |
T1/SA | 18.85 ± 1.05 b | 23.79 ± 0.89 c | 63.95 ± 2.00 c | |
T2/SA | 19.33 ± 0.00 a | 26.54 ± 0.34 a | 56.7 ± 0.00 e | |
SST806 | T0 | 15.33 ± 0.04 d | 20.58 ± 0.00 e | 67.82 ± 1.50 a |
SA | 15.46 ± 0.56 d | 22.69 ± 1.50 d | 65.59 ± 0.85 b | |
T1 | 17.52 ± 0.80 c | 20.71 ± 0.90 e | 63.16 ± 0.50 c | |
T2 | 21.04 ± 0.00 b | 25.96 ± 0.00 c | 55.74 ± 1.90 e | |
T1/SA | 17.52 ± 0.50 c | 26.53 ± 2.05 b | 59.3 ± 0.50 d | |
T2/SA | 22.55 ± 0.54 a | 30.26 ± 0.00 a | 51.14 ± 2.50 f |
Cultivars | Treat | Macro-Minerals (mg kg−1) | Micro-Minerals (mg kg−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
P | K | Mg | Ca | Na | Mn | Zn | Fe | Cu | ||
PAN3497 | T0 | 719.3 ± 0.0 c | 3340.6 ± 0.0 b | 974.0 ± 0.0 b | 719.3 ± 0.0 c | 173.3 ± 0.1 d | 14.6 ± 1.0 d | 213.4 ± 0.0 c | 109.3 ± 0.0 cd | 3.8 ± 2.0 d |
SA | 782 ± 0.0 bc | 3471.3 ± 0.1 b | 1241.6 ± 0.0 a | 782 ± 0.0 bc | 216.6 ± 0.0 cd | 28.3 ± 0.0 c | 154.9 ± 0.2 d | 206 ± 0.00 a | 4.4 ± 0.8 b | |
T1 | 895.3 ± 0.1 b | 4258.6 ± 0.0 a | 1062.6 ± 1.0 ab | 895.3 ± 1.1 b | 444 ± 1.5 b | 61.5 ± 0.2 a | 405 ± 0.1 b | 89.3 ± 1.1 d | 4.0 ± 1.0 c | |
T2 | 900.6 ± 0.9 ab | 3424 ± 0.3 b | 1036.6 ± 0.5 ab | 900.6 ± 0.0 ab | 270 ± 0.0 c | 61.2 ± 1.0 a | 479.8 ± 0.0 b | 112.6 ± 0.0 cd | 4.4 ± 0.0 b | |
T1/SA | 1045.3 ± 2.5 a | 3557.3 ± 0.0 b | 1130.4 ± 0.0 a | 1045.3 ± 0.0 a | 197.3 ± 1.0 d | 58.2 ± 1.5 b | 548 ± 0.5 a | 88.0 ± 0.9 d | 4.5 ± 0.0 b | |
T2/SA | 940.6 ± 1.5 ab | 4228 ± 0.5 a | 1125.0 ± 0.1 a | 940.6 ± 0.2 ab | 1253.3 ± 0.3 a | 67 ± 0.0 a | 567.0 ± 1.0 a | 132.6 ± 0.2 b | 6.0 ± 1.0 a | |
SST806 | T0 | 906.6 ± 0.0 d | 6180 ± 0.0 a | 1098.2 ± 0.0 d | 906.6 ± 0.0 e | 193.3 ± 0.3 f | 26.2 ± 0.0 c | 298.6 ± 0.0 d | 83.3 ± 0.5 c | 4.6 ± 0.00 d |
SA | 802 ± 0.5 e | 3104 ± 0.3 de | 1175.3 ± 1.5 c | 802 ± 1.5 f | 306.6 ± 0.5 d | 26.4 ± 1.0 c | 298.0 ± 0.1 d | 151.3 ± 0.0 a | 5.2 ± 2.00 c | |
T1 | 995.3 ± 0.1 d | 3258.6 ± 0.9 d | 1082.6 ± 0.3 d | 995.3 ± 0.0 d | 544 ± 0.0 c | 60.2 ± 0.0 b | 319 ± 0.1 c | 90.3 ± 0.2 c | 4.5 ± 0.50 d | |
T2 | 1056.6 ± 0.9 c | 4152.6 ± 0.0 c | 1158.7 ± 0.9 cd | 1056.6 ± 1.0 c | 979.3 ± 1.2 b | 75.4 ± 0.9 a | 687.0 ± 0.2 b | 136 ± 0.2 b | 6.6 ± 0.55 b | |
T1/SA | 1145.3 ± 0.0 b | 2557.3 ± 0.1 e | 1230.4 ± 0.0 b | 1145.3 ± 0.0 b | 297.3 ± 0.1 e | 58.2 ± 0.0 b | 673 ± 0.0 b | 86.6 ± 0.0 c | 5.5 ± 0.10 c | |
T2/SA | 1252 ± 0.3 a | 6392 ± 0.2 b | 1322.6 ± 0.0 a | 1252 ± 0.0 a | 1282.6 ± 2.0 a | 68.0 ± 0.5 a | 839.8 ± 0.0 a | 156.6 ± 0.8 a | 7.9 ± 0.00 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdi, N.; Van Biljon, A.; Steyn, C.; Labuschagne, M.T. Salicylic Acid Improves Growth and Physiological Attributes and Salt Tolerance Differentially in Two Bread Wheat Cultivars. Plants 2022, 11, 1853. https://doi.org/10.3390/plants11141853
Abdi N, Van Biljon A, Steyn C, Labuschagne MT. Salicylic Acid Improves Growth and Physiological Attributes and Salt Tolerance Differentially in Two Bread Wheat Cultivars. Plants. 2022; 11(14):1853. https://doi.org/10.3390/plants11141853
Chicago/Turabian StyleAbdi, Neila, Angeline Van Biljon, Chrisna Steyn, and Maryke Tine Labuschagne. 2022. "Salicylic Acid Improves Growth and Physiological Attributes and Salt Tolerance Differentially in Two Bread Wheat Cultivars" Plants 11, no. 14: 1853. https://doi.org/10.3390/plants11141853
APA StyleAbdi, N., Van Biljon, A., Steyn, C., & Labuschagne, M. T. (2022). Salicylic Acid Improves Growth and Physiological Attributes and Salt Tolerance Differentially in Two Bread Wheat Cultivars. Plants, 11(14), 1853. https://doi.org/10.3390/plants11141853