Lead and Zinc Uptake and Toxicity in Maize and Their Management
Abstract
:1. Introduction
2. Zn and Pb Accumulation in Farmlands Worldwide
3. Uptake of Pb and Zn by Maize and Effects of Their Toxicity on Maize
Plant’s Parts | Pb (mg/Kg) | Zn (mg/Kg) | Remark | Area | References |
---|---|---|---|---|---|
Grains | - | 22.8 | Maize was irrigated with wastewater | Shandong, China | [75] |
Shoots | 4180 | 6320 | The concentrations (mg/Kg) of Pb and Zn were 1000 and 500 in soil, respectively. J934 was the main strain. | YuanJiang dry-hot valley, China | [76] |
Roots | 27,870 | 2020 | |||
Grains | 0.04 | 27.32 | - | Guangxi, China | [77] |
Roots | 3.63 | NR * | - | Sichuan Agricultural University, China | [78] |
Stems | 28.0 | NR | |||
Grains | 245 | 2.54 | - | Kanwar wetland, India | [79] |
Grains | 18.28 | 39.17 | - | Punjab, India | [80] |
Fodder | 0.02–1.1 | NR | - | Multan City (Pakistan) | [81] |
Grains | 0.34 | 46.1 | Soil texture was loess | Poland | [82] |
Straw | 8.1 | 504.0 | |||
Roots | 140.0 | 1958.0 | |||
Grains | NR | 30.7 | Soil irrigated with sewage sludge | Embrapa-CNPMA, Brazil | [83] |
Leaves | NR | 7.89 | |||
Leaves | 0.26 | 22.87 | - | Near Ikhueniro dumpsite, Nigeria | [84] |
Shoot | 1.31 | 63.81 | |||
Stems | 1.05 | 40.94 | |||
Roots | 2.62 | 89.55 | |||
Leaf | 76.0 | 32.4 | - | Aba Egbira, Nigeria | [85] |
Stem | 46.2 | 21.0 | |||
Root | 16.2 | 5.6 |
3.1. Involved Genes and Proteins
3.2. Phytosiderophores Mechanisms
4. Reducing the Uptake of Pb and Zn by Maize
4.1. Bioremediation
4.2. Biochar
4.3. Gypsum and Lime Amendment
5. Conclusions
- The maximum accumulation of Pb and Zn in soils was 3015 mg/Kg in Namibia, and 1140 mg/Kg in China.
- The accumulation of Pb in the roots, shoots, and grains of maize reached 27,870, 4180, and 245 mg/Kg, respectively.
- The accumulation of Zn in the roots, shoots, and grains of maize reached 2020, 6320, and 46.1 mg/Kg, respectively.
- The Zrt-/Irt-like protein (ZIP) family can play a significant role in increasing and distributing Zn content in plant tissue.
- The GRMZM2G137161 and GRMZM2G132995 genes are located on the 2 and 6 chromosomes, and they are significantly expressed during Pb stress.
- Biochar, bioremediation, and amendment with gypsum and lime can play a great role in reducing the bioavailability of Pb and Zn in soils.
- The genes involved in the uptake of Zn and Pb by maize have not been fully studied, which needs to be considered in future research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, T.; Ma, J.; Wu, X.; Ju, T.; Lin, X.; Zhang, Y.; Li, X.; Gong, Y.; Hou, H.; Zhao, L.; et al. Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicol. Environ. Saf. 2018, 164, 118–124. [Google Scholar] [CrossRef]
- Sun, R.; Yang, J.; Xia, P.; Wu, S.; Lin, T.; Yi, Y. Contamination features and ecological risks of heavy metals in the farmland along shoreline of Caohai plateau wetland, China. Chemosphere 2020, 254, 126828. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Z.; Luo, X.; Wen, M.; Huang, L.; Chen, B.; Zheng, C.; Zhu, C.; Liang, R. Pollution assessment and source analysis of heavy metals in acidic farmland of the karst region in southern China—A case study of Quanzhou County. Appl. Geochem. 2020, 123, 104764. [Google Scholar] [CrossRef]
- Smieja-Król, B.; Pawlyta, M.; Gałka, M. Ultrafine multi-metal (Zn, Cd, Pb) sulfide aggregates formation in periodically water-logged organic soil. Sci. Total Environ. 2022, 820, 153308. [Google Scholar] [CrossRef]
- Shi, T.; Ma, J.; Zhang, Y.; Liu, C.; Hu, Y.; Gong, Y.; Wu, X.; Ju, T.; Hou, H.; Zhao, L. Status of lead accumulation in agricultural soils across China (1979–2016). Environ. Int. 2019, 129, 35–41. [Google Scholar] [CrossRef]
- Rooney, C.P. The Fate of Lead in Soils Contaminated with Lead Shot. Ph.D. Thesis, Lincoln University, Chester County, PA, USA, 2002. [Google Scholar]
- Xu, Y.; Yu, W.; Ma, Q.; Zhou, H. Accumulation of copper and zinc in soil and plant within ten-year application of different pig manure rates. Plant Soil Environ. 2013, 59, 492–499. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.F.; Shen, R.F.; Shao, J.F. Transport of cadmium from soil to grain in cereal crops: A review. Pedosphere 2021, 31, 3–10. [Google Scholar] [CrossRef]
- Bello-Pérez, L.A.; Flores-Silva, P.C.; Sifuentes-Nieves, I.; Agama-Acevedo, E. Controlling starch digestibility and glycaemic response in maize-based foods. J. Cereal Sci. 2021, 99, 103222. [Google Scholar] [CrossRef]
- Chen, X.; Sun, H.; Zhang, T.; Shang, H.; Han, Z.; Li, Y. Effects of pyridinium-based ionic liquids with different alkyl chain lengths on the growth of maize seedlings. J. Hazard. Mater. 2022, 427, 127868. [Google Scholar] [CrossRef]
- Wang, M.; Zou, J.; Duan, X.; Jiang, W.; Liu, D. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresour. Technol. 2007, 98, 82–88. [Google Scholar] [CrossRef]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Dosio, A.; Naumann, G.; Berg, M.; Toreti, A. When Will Current Climate Extremes Affecting Maize Production Become the Norm? Earths Future 2019, 7, 113–122. [Google Scholar] [CrossRef]
- Hacisalihoglu, G. Zinc (Zn): The Last Nutrient in the Alphabet and Shedding Light on Zn Efficiency for the Future of Crop Production under Suboptimal Zn. Plants 2020, 9, 1471. [Google Scholar] [CrossRef]
- Chopra, A.K.; Pathak, C.; Prasad, G. Scenario of heavy metal contamination in agricultural soil and its management. J. Appl. Nat. Sci. 2009, 1, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Nyiramigisha, P. Harmful Impacts of Heavy Metal Contamination in the Soil and Crops Grown Around Dumpsites. Rev. Agric. Sci. 2021, 9, 271–282. [Google Scholar] [CrossRef]
- Leštan, D.; Grčman, H.; Zupan, M.; Bačac, N. Relationship of Soil Properties to Fractionation of Pb and Zn in Soil and Their Uptake into Plantago lanceolata. Soil Sediment Contam. Int. J. 2003, 12, 507–522. [Google Scholar] [CrossRef]
- Zunaidi, A.A.; Lim, L.H.; Metali, F. Transfer of heavy metals from soils to curly mustard (Brassica juncea (L.) Czern.) grown in an agricultural farm in Brunei Darussalam. Heliyon 2021, 7, e07945. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Gao, J.; Yuan, Y.-Q.; Ma, J.; Yu, S. Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment. Cont. Shelf Res. 2016, 124, 125–133. [Google Scholar] [CrossRef]
- Ou, J.; Li, H.; Yan, Z.; Zhou, Y.; Bai, L.; Zhang, C.; Wang, X.; Chen, G. In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay. Sci. Rep. 2018, 8, 4618. [Google Scholar] [CrossRef]
- Huang, B.; Yuan, Z.; Li, D.; Zheng, M.; Nie, X.; Liao, Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review. Environ. Sci. Process. Impacts 2020, 22, 1596–1615. [Google Scholar] [CrossRef]
- Dube, A.; Zbytniewski, R.; Kowalkowski, T.; Cukrowska, E.; Buszewski, B. Adsorption and migration of heavy metals in soil. Polish J. Environ. Stud. 2001, 10, 1–10. [Google Scholar]
- Behroozi, A.; Arora, M.; Fletcher, T.D.; Western, A.W.; Costelloe, J.F. Understanding the Impact of Soil Clay Mineralogy on the Adsorption Behavior of Zinc. Int. J. Environ. Res. 2021, 15, 559–569. [Google Scholar] [CrossRef]
- Sipos, P.; Németh, T.; Mohai, I.; Dódony, I. Effect of soil composition on adsorption of lead as reflected by a study on a natural forest soil profile. Geoderma 2005, 124, 363–374. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review. Water Air Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk-Szabela, D.; Markiewicz, J.; Wolf, W.M. Heavy Metal Uptake by Herbs. IV. Influence of Soil pH on the Content of Heavy Metals in Valeriana officinalis L. Water Air Soil Pollut. 2015, 226, 106. [Google Scholar] [CrossRef] [Green Version]
- Rutkowska, B.; Szulc, W.; Bomze, K.; Gozdowski, D.; Spychaj-Fabisiak, E. Soil factors affecting solubility and mobility of zinc in contaminated soils. Int. J. Environ. Sci. Technol. 2015, 12, 1687–1694. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Yu, J.; Cao, Z.; Meng, M.; Yang, L.; Chen, Q. The Availability and Accumulation of Heavy Metals in Greenhouse Soils Associated with Intensive Fertilizer Application. Int. J. Environ. Res. Public Health 2020, 17, 5359. [Google Scholar] [CrossRef]
- Quenea, K.; Lamy, I.; Winterton, P.; Bermond, A.; Dumat, C. Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 2009, 149, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Romero-Freire, A.; Martin Peinado, F.J.; van Gestel, C.A.M. Effect of soil properties on the toxicity of Pb: Assessment of the appropriateness of guideline values. J. Hazard. Mater. 2015, 289, 46–53. [Google Scholar] [CrossRef]
- Oudeh, M.; Khan, M.; Scullion, J. Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi. Environ. Pollut. 2002, 116, 293–300. [Google Scholar] [CrossRef]
- Lang, F.; Kaupenjohann, M. Effect of dissolved organic matter on the precipitation and mobility of the lead compound chloropyromorphite in solution. Eur. J. Soil Sci. 2003, 54, 139–148. [Google Scholar] [CrossRef]
- Li, T.; Tao, Q.; Liang, C.; Shohag, M.J.I.; Yang, X.; Sparks, D.L. Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environ. Pollut. 2013, 182, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Xue, N.; Han, Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J. Environ. Sci. 2021, 101, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Igalavithana, A.D.; Yang, X.; Zahra, H.R.; Tack, F.M.G.; Tsang, D.C.W.; Kwon, E.E.; Ok, Y.S. Metal(loid) immobilization in soils with biochars pyrolyzed in N2 and CO2 environments. Sci. Total Environ. 2018, 630, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Guo, Q.; Wei, R.; Strauss, H.; Zhu, G.; Li, S.; Song, Z.; Chen, T.; Song, B.; Zhou, T.; et al. Contamination of heavy metals and isotopic tracing of Pb in surface and profile soils in a polluted farmland from a typical karst area in southern China. Sci. Total Environ. 2018, 637, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Dong, D.; Hua, X.; Dong, S. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China. J. Hazard. Mater. 2009, 170, 570–577. [Google Scholar] [CrossRef]
- Guo, W.; Wu, T.; Jiang, G.; Pu, L.; Zhang, J.; Xu, F.; Yu, H.; Xie, X. Spatial Distribution, Environmental Risk and Safe Utilization Zoning of Soil Heavy Metals in Farmland, Subtropical China. Land 2021, 10, 569. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Zhou, Y.; Dou, L.; Cai, L.; Mo, L.; You, J. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environ. Pollut. 2018, 235, 710–719. [Google Scholar] [CrossRef]
- Niu, L.; Yang, F.; Xu, C.; Yang, H.; Liu, W. Status of metal accumulation in farmland soils across China: From distribution to risk assessment. Environ. Pollut. 2013, 176, 55–62. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Mazura NA, I.; Khairulanwar, A. Relationship between Metals in Vegetables with Soils in Farmlands of Kuching, Sarawak. Malays. J. Soil Sci. 2007, 11, 57–69. [Google Scholar]
- Najib, N.W.; Mohammed, S.A.; Ismail, S.H.; Ahmad, W.A. Assessment of Heavy Metal in Soil due to Human Activities in Kangar, Perlis, Malaysia. Int. J. Civ. Environ. Eng. 2012, 12, 28–33. [Google Scholar]
- Zarcinas, B.A.; Ishak, C.F.; McLaughlin, M.J.; Cozens, G. Heavy metals in soils and crops in Southeast Asia. Environ. Geochem. Health 2004, 26, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Yadav, P.K.; Shukla, D.N. Investigation of Heavy metal status in soil and vegetables grown in urban area of Allahabad, Uttar Pradesh, India. Int. J. Sci. Res. Publ. 2013, 3, 1–7. [Google Scholar]
- Kumar Sharma, R.; Agrawal, M.; Marshall, F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol. Environ. Saf. 2007, 66, 258–266. [Google Scholar] [CrossRef]
- Gupta, N.; Khan, D.K.; Santra, S.C. Heavy metal accumulation in vegetables grown in a long-term wastewater-irrigated agricultural land of tropical India. Environ. Monit. Assess. 2012, 184, 6673–6682. [Google Scholar] [CrossRef]
- Qishlaqi, A.; Moore, F. Statistical Analysis of Accumulation and Sources of Heavy Metals Occurrence in Agricultural Soils of Khoshk River Banks, Shiraz, Iran. Am. J. Agric. Environ. Sci. 2007, 2, 565–573. [Google Scholar]
- Jacob, J.O.; Kakulu, S.E. Assessment of Heavy Metal Bioaccumulation in Spinach, Jute Mallow and Tomato in Farms Within Kaduna Metropolis, Nigeria. Am. J. Chem. 2012, 2, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Opaluwa, O.D.; Aremu, M.O.; Ogbo, L.O.; Abiola, K.A.; Odiba, I.E.; Abubakar, M.M.; Nweze, N.O. Heavy metal concentrations in soils, plant leaves and crops grown around dump sites in Lafia Metropolis, Nasarawa State, Nigeria. Adv. Appl. Sci. Res. 2012, 3, 780–784. [Google Scholar]
- Oluyemi, E.A.; Feuyit, G.; Oyekunle JA, O.; Ogunfowokan, A.O. Seasonal variations in heavy metal concentrations in soil and some selected crops at a landfill in Nigeria. Afr. J. Environ. Sci. Technol. 2008, 2, 089–096. [Google Scholar]
- Emurotu, J.E.; Onianwa, P.C. Bioaccumulation of heavy metals in soil and selected food crops cultivated in Kogi State, north central Nigeria. Environ. Syst. Res. 2017, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Mileusnić, M.; Mapani, B.S.; Kamona, A.F.; Ružičić, S.; Mapaure, I.; Chimwamurombe, P.M. Assessment of agricultural soil contamination by potentially toxic metals dispersed from improperly disposed tailings, Kombat mine, Namibia. J. Geochem. Explor. 2014, 144, 409–420. [Google Scholar] [CrossRef]
- Kobierski, M.; Dąbkowska-Naskręt, H. Local background concentration of heavy metals in various soil types formed from glacial till of the Inowrocławska Plain. J. Elem. 2012, 559–585. [Google Scholar] [CrossRef]
- Calina, A.; Calina, J. Evolution of the mollic reddish preluvisol in a romanian riverine region and the assessment of its agro-productive properties in farms and agro-touristic households. Environ. Eng. Manag. J. 2019, 18, 2729–2738. [Google Scholar] [CrossRef]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 2014, 221, 82–90. [Google Scholar] [CrossRef]
- Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in soils, water and food crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Cakmakci, T.; Sahin, U. Productivity and heavy metal pollution management in a silage maize field with reduced recycled wastewater applications with different irrigation methods. J. Environ. Manag. 2021, 291, 112602. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.C.C.; Boechat, C.L.; de Sena, A.F.S.; de Sousa Luz Duarte, L.; do Nascimento, C.W.A.; da Silva, Y.J.A.B.; da Silva, Y.J.A.B.; Saraiva, P.C. Assessing the Distribution and Concentration of Heavy Metals in Soils of an Agricultural Frontier in the Brazilian Cerrado. Water Air Soil Pollut. 2020, 231, 388. [Google Scholar] [CrossRef]
- da Silva, F.B.V.; do Nascimento, C.W.A.; Araújo, P.R.M.; da Silva, L.H.V.; da Silva, R.F. Assessing heavy metal sources in sugarcane Brazilian soils: An approach using multivariate analysis. Environ. Monit. Assess. 2016, 188, 457. [Google Scholar] [CrossRef]
- Lavado, R.S. Concentration of potentially toxic elements in field crops grown near and far from cities of the Pampas (Argentina). J. Environ. Manag. 2006, 80, 116–119. [Google Scholar] [CrossRef]
- Gratton, W.S.; Nkongolo, K.K.; Spiers, G.A. Heavy Metal Accumulation in Soil and Jack Pine (Pinus banksiana) Needles in Sudbury, Ontario, Canada. Bull. Environ. Contam. Toxicol. 2000, 64, 550–557. [Google Scholar] [CrossRef]
- Markus, J.; McBratney, A.B. A review of the contamination of soil with lead. Environ. Int. 2001, 27, 399–411. [Google Scholar] [CrossRef]
- Romdhane, L.; Panozzo, A.; Radhouane, L.; Dal Cortivo, C.; Barion, G.; Vamerali, T. Root Characteristics and Metal Uptake of Maize (Zea mays L.) under Extreme Soil Contamination. Agronomy 2021, 11, 178. [Google Scholar] [CrossRef]
- Baker, N.R.; Fernyhough, P.; Meek, I.T. Light-dependent inhibition of photosynthetic electron transport by zinc. Physiol. Plant. 1982, 56, 217–222. [Google Scholar] [CrossRef]
- Rucińska-Sobkowiak, R. Water relations in plants subjected to heavy metal stresses. Acta Physiol. Plant. 2016, 38, 257. [Google Scholar] [CrossRef] [Green Version]
- Rout, G.R.; Das, P. Effect of Metal Toxicity on Plant Growth and Metabolism: I. Zinc. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; pp. 873–884. [Google Scholar]
- Tsonev, T.; Cebola Lidon, F.J. Zinc in plants—An overview. Emir. J. Agric. 2012, 24, 322–333. [Google Scholar]
- Li, D.; Zhang, L.; Chen, M.; He, X.; Li, J.; An, R. Defense Mechanisms of Two Pioneer Submerged Plants during Their Optimal Performance Period in the Bioaccumulation of Lead: A Comparative Study. Int. J. Environ. Res. Public Health 2018, 15, 2844. [Google Scholar] [CrossRef] [Green Version]
- Subbaiah, L.V.; Prasad, T.N.V.K.V.; Krishna, T.G.; Sudhakar, P.; Reddy, B.R.; Pradeep, T. Novel Effects of Nanoparticulate Delivery of Zinc on Growth, Productivity, and Zinc Biofortification in Maize (Zea mays L.). J. Agric. Food Chem. 2016, 64, 3778–3788. [Google Scholar] [CrossRef]
- Islam, F.; Yasmeen, T.; Riaz, M.; Arif, M.S.; Ali, S.; Raza, S.H. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol. Environ. Saf. 2014, 110, 143–152. [Google Scholar] [CrossRef]
- Ali, M.; Nas, F.S. The effect of lead on plants in terms of growing and biochemical parameters: A review. MOJ Ecol. Environ. Sci. 2018, 3, 265–268. [Google Scholar] [CrossRef]
- Mishra, S.; Srivastava, S.; Tripathi, R.D.; Kumar, R.; Seth, C.S.; Gupta, D.K. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 2006, 65, 1027–1039. [Google Scholar] [CrossRef]
- Hussain, A.; Abbas, N.; Arshad, F.; Akram, M.; Khan, Z.I.; Ahmad, K.; Mansha, M.; Mirzaei, F. Effects of diverse doses of Lead (Pb) on different growth attributes of Zea-mays L. Agric. Sci. 2013, 4, 262–265. [Google Scholar] [CrossRef] [Green Version]
- Sofy, M.R.; Seleiman, M.F.; Alhammad, B.A.; Alharbi, B.M.; Mohamed, H.I. Minimizing Adverse Effects of Pb on Maize Plants by Combined Treatment with Jasmonic, Salicylic Acids and Proline. Agronomy 2020, 10, 699. [Google Scholar] [CrossRef]
- Yang, G.; Zhu, G.; Li, H.; Han, X.; Li, J.; Ma, Y. Accumulation and bioavailability of heavy metals in a soil-wheat/maize system with long-term sewage sludge amendments. J. Integr. Agric. 2018, 17, 1861–1870. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Liu, L.; Li, D.-W.; Zhou, W.-N.; Zhou, Z.-P.; Zhang, C.-F.; Luo, Y.-Y.; Wang, H.-B.; Li, H.-Y. The effect of endophytic Peyronellaea from heavy metal-contaminated and uncontaminated sites on maize growth, heavy metal absorption and accumulation. Fungal Ecol. 2013, 6, 539–545. [Google Scholar] [CrossRef]
- Gu, Q.; Yu, T.; Yang, Z.; Ji, J.; Hou, Q.; Wang, L.; Wei, X.; Zhang, Q. Prediction and risk assessment of five heavy metals in maize and peanut: A case study of Guangxi, China. Environ. Toxicol. Pharmacol. 2019, 70, 103199. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, F.; Wang, C.; Luo, J.; Lin, H.; Xiang, K.; Liu, L.; Zhao, M.; Zhang, Y.; Ding, H.; et al. Difference between Pb and Cd Accumulation in 19 Elite Maize Inbred Lines and Application Prospects. J. Biomed. Biotechnol. 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Singh, A.K.; Sathya, M.; Verma, S.; Jayakumar, S. Health risk assessment of heavy metals in crop grains grown on open soils of Kanwar wetland, India. Euro-Mediterr. J. Environ. Integr. 2018, 3, 29. [Google Scholar] [CrossRef]
- Sharma, S.; Nagpal, A.K.; Kaur, I. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem. 2018, 255, 15–22. [Google Scholar] [CrossRef]
- Iqbal, Z. Surveillance of Heavy Metals in Maize Grown with Wastewater and Their Impacts on Animal Health in Peri-Urban Areas of Multan, Pakistan. Pak. J. Agric. Sci. 2019, 56, 321–328. [Google Scholar] [CrossRef]
- Stanislawska-Glubiak, E.; Korzeniowska, J.; Kocon, A. Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils. Environ. Sci. Pollut. Res. 2015, 22, 4706–4714. [Google Scholar] [CrossRef]
- Alcantara, S.; Pérez, D.V.; Almeida, M.R.A.; Silva, G.M.; Polidoro, J.C.; Bettiol, W. Chemical Changes and Heavy Metal Partitioning in an Oxisol Cultivated with Maize (Zea mays L.) after 5 Years Disposal of a Domestic and an Industrial Sewage Sludge. Water Air Soil Pollut. 2009, 203, 3–16. [Google Scholar] [CrossRef]
- Oladejo, N.; Anegbe, B.; Adeniyi, O. Accumulation of Heavy Metals in Soil and Maize Plant (Zea mays) in the Vicinity of Two Government Approved Dumpsites in Benin City, Nigeria. Asian J. Chem. Sci. 2017, 3, 1–9. [Google Scholar] [CrossRef]
- Awokunmi, E.; Adefemi, O.; Asaolu, S. Tissues Accumulation of Heavy Metals by Maize (Zea maize L.) Cultivated on Soil Collected from Selected Dumpsites in Ekiti State, Nigeria. Am. Chem. Sci. J. 2015, 5, 156–162. [Google Scholar] [CrossRef]
- Alonge, O.B. Heavy Metal Uptake by Four Plant Species: Radish, Indian mustard, Corn, And Soybean; West Virginia University: Morgantown, WV, USA, 2015. [Google Scholar]
- Mishra, S.; Dubey, R.S. Heavy Metal Uptake and Detoxification Mechanisms in Plants. Int. J. Agric. Res. 2006, 1, 122–141. [Google Scholar] [CrossRef] [Green Version]
- Hindu, V.; Palacios-Rojas, N.; Babu, R.; Suwarno, W.B.; Rashid, Z.; Usha, R.; Saykhedkar, G.R.; Nair, S.K. Identification and validation of genomic regions influencing kernel zinc and iron in maize. Theor. Appl. Genet. 2018, 131, 1443–1457. [Google Scholar] [CrossRef] [Green Version]
- Guerinot, M. Lou The ZIP family of metal transporters. Biochim. Biophys. Acta (BBA)-Biomembr. 2000, 1465, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Eide, D.J. The Zip Family of Zinc Transporters. In Zinc Finger Proteins; Springer: Boston, MA, USA; pp. 261–264.
- Mondal, T.K.; Ganie, S.A.; Rana, M.K.; Sharma, T.R. Genome-wide Analysis of Zinc Transporter Genes of Maize (Zea mays). Plant Mol. Biol. Rep. 2014, 32, 605–616. [Google Scholar] [CrossRef]
- Gao, C.; Gao, K.; Yang, H.; Ju, T.; Zhu, J.; Tang, Z.; Zhao, L.; Chen, Q. Genome-wide analysis of metallothionein gene family in maize to reveal its role in development and stress resistance to heavy metal. Biol. Res. 2022, 55, 1–13. [Google Scholar] [CrossRef]
- Ajeesh Krishna, T.P.; Maharajan, T.; Victor Roch, G.; Ignacimuthu, S.; Antony Ceasar, S. Structure, Function, Regulation and Phylogenetic Relationship of ZIP Family Transporters of Plants. Front. Plant Sci. 2020, 11, 662. [Google Scholar] [CrossRef]
- Liu, B.; Yu, H.; Yang, Q.; Ding, L.; Sun, F.; Qu, J.; Feng, W.; Yang, Q.; Li, W.; Fu, F. Zinc Transporter ZmLAZ1-4 Modulates Zinc Homeostasis on Plasma and Vacuolar Membrane in Maize. Front. Plant Sci. 2022, 13, 1249. [Google Scholar] [CrossRef]
- Baxter, I.R.; Gustin, J.L.; Settles, A.M.; Hoekenga, O.A. Ionomic Characterization of Maize Kernels in the Intermated B73 × Mo17 Population. Crop Sci. 2013, 53, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Cai, Y.; Liu, Z.; Wang, G.; Wang, J.; Guo, Y.; Wang, H. Identification of QTL for zinc and iron concentration in maize kernel and cob. Euphytica 2012, 187, 345–358. [Google Scholar] [CrossRef]
- Ganie, S.A.; Mazumder, A.; Kiran, K.; Hossain, F.; Sharma, R.; Mondal, T.K. Transcriptional dynamics of Zn-accumulation in developing kernels of maize reveals important Zn-uptake mechanisms. Genomics 2020, 112, 3435–3447. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, Y.; Wu, W.; Li, Y.; Luo, L.; Lan, Y.; Cao, Y.; Zhang, Z.; Gao, S.; Yuan, G.; et al. Genome-wide association analysis of lead accumulation in maize. Mol. Genet. Genom. 2018, 293, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Tan, M.; Yu, H.; Li, L.; Zhu, D.; Chen, Y.; Jiang, M. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. BMC Genom. 2018, 19, 709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grotz, N.; Guerinot, M. Lou Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2006, 1763, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ge, F.; Hou, F.; Sun, W.; Zheng, Q.; Zhang, X.; Ma, L.; Fu, J.; He, X.; Peng, H.; et al. Transcription Factors Responding to Pb Stress in Maize. Genes 2017, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- Cobbett, C.; Goldsbrough, P. Phytochelatins and Metallothioneins:: Roles in Heavy Metal Detoxification and Homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159–182. [Google Scholar] [CrossRef] [Green Version]
- de Framond, A.J. A metallothionein-like gene from maize (Zea mays) Cloning and characterization. FEBS Lett. 1991, 290, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Kong, J.-J.; Wang, T.-Q.; Sun, Y. Binding of Cd(II), Pb(II), and Zn(II) to a type 1 metallothionein from maize (Zea mays). BioMetals 2018, 31, 539–550. [Google Scholar] [CrossRef]
- Sunkar, R.; Kaplan, B.; Bouche, N.; Arazi, T.; Dolev, D.; Talke, I.N.; Maathuis, F.J.M.; Sanders, D.; Bouchez, D.; Fromm, H. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J. 2000, 24, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shan, X.; Wen, B.; Owens, G.; Fang, J.; Zhang, S. Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ. Exp. Bot. 2007, 61, 246–253. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Mandi, S. Phytosiderophores and absorption of iron and other cations by plants. In Cation Transporters in Plants; Elsevier: Amsterdam, The Netherlands, 2022; pp. 385–399. [Google Scholar]
- Tolay, I.; Erenoglu, B.; Römheld, V.; Braun, H.J.; Cakmak, I. Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies. J. Exp. Bot. 2001, 52, 1093–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curie, C.; Cassin, G.; Couch, D.; Divol, F.; Higuchi, K.; Le Jean, M.; Misson, J.; Schikora, A.; Czernic, P.; Mari, S. Metal movement within the plant: Contribution of nicotianamine and yellow stripe 1-like transporters. Ann. Bot. 2009, 103, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Puschenreiter, M.; Gruber, B.; Wenzel, W.W.; Schindlegger, Y.; Hann, S.; Spangl, B.; Schenkeveld, W.D.C.; Kraemer, S.M.; Oburger, E. Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils. Environ. Exp. Bot. 2017, 138, 67–76. [Google Scholar] [CrossRef]
- Ghoniem, A.A.; El-Naggar, N.E.-A.; Saber, W.I.A.; El-Hersh, M.S.; El-Khateeb, A.Y. Statistical modeling-approach for optimization of Cu2+ biosorption by Azotobacter nigricans NEWG-1; characterization and application of immobilized cells for metal removal. Sci. Rep. 2020, 10, 9491. [Google Scholar] [CrossRef]
- Xiao, R.; Huang, Z.; Li, X.; Chen, W.; Deng, Y.; Han, C. Lime and Phosphate Amendment Can Significantly Reduce Uptake of Cd and Pb by Field-Grown Rice. Sustainability 2017, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cai, D.; Ji, M.; Chen, Z.; Yao, L.; Han, H. Isolation of heavy metal-immobilizing and plant growth-promoting bacteria and their potential in reducing Cd and Pb uptake in water spinach. Sci. Total Environ. 2022, 819, 153242. [Google Scholar] [CrossRef]
- Huang, W.-L.; Wu, P.-C.; Chiang, T.-Y. Metagenomics: Potential for bioremediation of soil contaminated with heavy metals. Ecol. Genet. Genom. 2022, 22, 100111. [Google Scholar] [CrossRef]
- Li, M.; Cheng, X.; Guo, H. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int. Biodeterior. Biodegrad. 2013, 76, 81–85. [Google Scholar] [CrossRef]
- Cui, H.; Liu, L.-L.; Dai, J.-R.; Yu, X.-N.; Guo, X.; Yi, S.-J.; Zhou, D.-Y.; Guo, W.-H.; Du, N. Bacterial community shaped by heavy metals and contributing to health risks in cornfields. Ecotoxicol. Environ. Saf. 2018, 166, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Li, X.; Song, J.; Jiang, W.; Liu, Y.; Fan, W. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides. Chemosphere 2018, 197, 33–41. [Google Scholar] [CrossRef] [PubMed]
- White, C.; Shaman, A.K.; Gadd, G.M. An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat. Biotechnol. 1998, 16, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhang, Y.; Tang, Q.; Shi, S. Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability. Biochem. Eng. J. 2021, 166, 107856. [Google Scholar] [CrossRef]
- Jalilvand, N.; Akhgar, A.; Alikhani, H.A.; Rahmani, H.A.; Rejali, F. Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. J. Soil Sci. Plant Nutr. 2020, 20, 206–219. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.; Kumar, N.; Bishnoi, K.; Bishnoi, N.R. Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis. Chem. Eng. J. 2009, 146, 401–407. [Google Scholar] [CrossRef]
- Bender, J.; Gould, J.P.; Vatcharapijarn, Y.; Young, J.S.; Phillips, P. Removal of zinc and manganese from contaminated water with cyanobacteria mats. Water Environ. Res. 1994, 66, 679–683. [Google Scholar] [CrossRef]
- Tunali, S.; Çabuk, A.; Akar, T. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem. Eng. J. 2006, 115, 203–211. [Google Scholar] [CrossRef]
- Zhang, K.; Xue, Y.; Xu, H.; Yao, Y. Lead removal by phosphate solubilizing bacteria isolated from soil through biomineralization. Chemosphere 2019, 224, 272–279. [Google Scholar] [CrossRef]
- Iram, S.; Shabbir, R.; Zafar, H.; Javaid, M. Biosorption and Bioaccumulation of Copper and Lead by Heavy Metal-Resistant Fungal Isolates. Arab. J. Sci. Eng. 2015, 40, 1867–1873. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, B.; Sun, X.; Yu, L.; Wu, L.; Liu, W.; Wang, D.; Li, Y.; Jia, R.; Yu, H.; et al. Removal and tolerance mechanism of Pb by a filamentous fungus: A case study. Chemosphere 2019, 225, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Paria, K.; Mandal, S.M.; Chakroborty, S.K. Simultaneous Removal of Cd(II) and Pb(II) Using a Fungal Isolate, Aspergillus penicillioides (F12) from Subarnarekha Estuary. Int. J. Environ. Res. 2018, 12, 77–86. [Google Scholar] [CrossRef]
- Bano, A.; Hussain, J.; Akbar, A.; Mehmood, K.; Anwar, M.; Hasni, M.S.; Ullah, S.; Sajid, S.; Ali, I. Biosorption of heavy metals by obligate halophilic fungi. Chemosphere 2018, 199, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Periathamby, A.; Ahmed, A.; Innocent, O.; Hamid, F.S. Effective bioremediation of heavy metal–contaminated landfill soil through bioaugmentation using consortia of fungi. J. Soils Sediments 2020, 20, 66–80. [Google Scholar] [CrossRef]
- Zhang, D.; Yin, C.; Abbas, N.; Mao, Z.; Zhang, Y. Multiple heavy metal tolerance and removal by an earthworm gut fungus Trichoderma brevicompactum QYCD-6. Sci. Rep. 2020, 10, 6940. [Google Scholar] [CrossRef]
- Udovic, M.; Plavc, Z.; Lestan, D. The effect of earthworms on the fractionation, mobility and bioavailability of Pb, Zn and Cd before and after soil leaching with EDTA. Chemosphere 2007, 70, 126–134. [Google Scholar] [CrossRef]
- Udovic, M.; Lestan, D. Eisenia fetida avoidance behavior as a tool for assessing the efficiency of remediation of Pb, Zn and Cd polluted soil. Environ. Pollut. 2010, 158, 2766–2772. [Google Scholar] [CrossRef]
- Pattnaik, S.; Reddy, M.V. Remediation of heavy metals from urban waste by vermicomposting using earthworms: Eudrilus eugeniae, Eisenia fetida and Perionyx excavatus. Int. J. Environ. Waste Manag. 2012, 10, 284. [Google Scholar] [CrossRef]
- Jusselme, M.D.; Poly, F.; Miambi, E.; Mora, P.; Blouin, M.; Pando, A.; Rouland-Lefèvre, C. Effect of earthworms on plant Lantana camara Pb-uptake and on bacterial communities in root-adhering soil. Sci. Total Environ. 2012, 416, 200–207. [Google Scholar] [CrossRef]
- Heavy Metal Remediation Potential of a Tropical Wetland Earthworm, Libyodrilus violaceus (Beddard). Iran. J. Energy Environ. 2016, 7, 247–254. [CrossRef]
- Kumar, V.; Dwivedi, S.K. Mycoremediation of heavy metals: Processes, mechanisms, and affecting factors. Environ. Sci. Pollut. Res. 2021, 28, 10375–10412. [Google Scholar] [CrossRef] [PubMed]
- Dusengemungu, L.; Kasali, G.; Gwanama, C.; Ouma, K.O. Recent Advances in Biosorption of Copper and Cobalt by Filamentous Fungi. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Ayele, A.; Haile, S.; Alemu, D.; Kamaraj, M. Comparative Utilization of Dead and Live Fungal Biomass for the Removal of Heavy Metal: A Concise Review. Sci. World J. 2021, 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shakya, M.; Sharma, P.; Meryem, S.S.; Mahmood, Q.; Kumar, A. Heavy Metal Removal from Industrial Wastewater Using Fungi: Uptake Mechanism and Biochemical Aspects. J. Environ. Eng. 2016, 142. [Google Scholar] [CrossRef]
- Joshi, P.K.; Swarup, A.; Maheshwari, S.; Kumar, R.; Singh, N. Bioremediation of Heavy Metals in Liquid Media Through Fungi Isolated from Contaminated Sources. Indian J. Microbiol. 2011, 51, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Campos, J.; Dendooven, L.; Alvarez-Bernal, D.; Contreras-Ramos, S.M. Potential of earthworms to accelerate removal of organic contaminants from soil: A review. Appl. Soil Ecol. 2014, 79, 10–25. [Google Scholar] [CrossRef]
- Zeb, A.; Li, S.; Wu, J.; Lian, J.; Liu, W.; Sun, Y. Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. Sci. Total Environ. 2020, 740, 140145. [Google Scholar] [CrossRef]
- Yuvaraj, A.; Karmegam, N.; Tripathi, S.; Kannan, S.; Thangaraj, R. Environment-friendly management of textile mill wastewater sludge using epigeic earthworms: Bioaccumulation of heavy metals and metallothionein production. J. Environ. Manag. 2020, 254, 109813. [Google Scholar] [CrossRef]
- Suthar, S. Metal remediation from partially composted distillery sludge using composting earthworm Eisenia fetida. J. Environ. Monit. 2008, 10, 1099. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Nazari, M.; Rezania, S.; Farraji, H.; Vakili, M. Biochar enhanced the performance of microalgae/bacteria consortium for insecticides removal from synthetic wastewater. Process Saf. Environ. Prot. 2022, 157, 284–296. [Google Scholar] [CrossRef]
- Ibrahim, E.A.; El-Sherbini, M.A.A.; Selim, E.-M.M. Effects of biochar on soil properties, heavy metal availability and uptake, and growth of summer squash grown in metal-contaminated soil. Sci. Hortic. 2022, 301, 111097. [Google Scholar] [CrossRef]
- Kang, X.; Geng, N.; Li, X.; Yu, J.; Wang, H.; Pan, H.; Yang, Q.; Zhuge, Y.; Lou, Y. Biochar Alleviates Phytotoxicity by Minimizing Bioavailability and Oxidative Stress in Foxtail Millet (Setaria italica L.) Cultivated in Cd- and Zn-Contaminated Soil. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Al-Wabel, M.I.; Usman, A.R.A.; El-Naggar, A.H.; Aly, A.A.; Ibrahim, H.M.; Elmaghraby, S.; Al-Omran, A. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J. Biol. Sci. 2015, 22, 503–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchini, P.; Quilliam, R.S.; DeLuca, T.H.; Vamerali, T.; Jones, D.L. Does biochar application alter heavy metal dynamics in agricultural soil? Agric. Ecosyst. Environ. 2014, 184, 149–157. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Lehmann, J. Black carbon decomposition under varying water regimes. Org. Geochem. 2009, 40, 846–853. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Berry, C.M.; Strawn, D.G.; Novak, J.M.; Levine, J.; Harley, A. Biochars Reduce Mine Land Soil Bioavailable Metals. J. Environ. Qual. 2017, 46, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, B.A.; Ellis, N.; Kim, C.S.; Bi, X. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. Environ. Pollut. 2017, 230, 329–338. [Google Scholar] [CrossRef]
- Irfan, M.; Mudassir, M.; Khan, M.J.; Dawar, K.M.; Muhammad, D.; Mian, I.A.; Ali, W.; Fahad, S.; Saud, S.; Hayat, Z.; et al. Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Sci. Rep. 2021, 11, 18416. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Rivier, P.-A.; Rasse, D.; Joner, E.J. Biochar Affects Heavy Metal Uptake in Plants through Interactions in the Rhizosphere. Appl. Sci. 2020, 10, 5105. [Google Scholar] [CrossRef]
- Puga, A.P.; Abreu, C.A.; Melo, L.C.A.; Beesley, L. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J. Environ. Manag. 2015, 159, 86–93. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; McGrouther, K.; Huang, H.; Lu, K.; Guo, X.; He, L.; Lin, X.; Che, L.; Ye, Z.; et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ. Sci. Pollut. Res. 2016, 23, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Ali, A.; Arockiam Jeyasundar, P.G.S.; Li, Y.; Abdelrahman, H.; Latif, A.; Li, R.; Basta, N.; Li, G.; Shaheen, S.M.; et al. Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil. Environ. Pollut. 2021, 277, 116800. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wang, B.; Shi, Z.; Li, L.; Li, Y.; Mao, Z.; Liao, L.; Zhang, H.; Wu, Y. Immobilization of heavy metals (Cd, Zn, and Pb) in different contaminated soils with swine manure biochar. Environ. Pollut. Bioavailab. 2021, 33, 55–65. [Google Scholar] [CrossRef]
- Nie, T.; Yang, X.; Chen, H.; Müller, K.; Shaheen, S.M.; Rinklebe, J.; Song, H.; Xu, S.; Wu, F.; Wang, H. Effect of biochar aging and co-existence of diethyl phthalate on the mono-sorption of cadmium and zinc to biochar-treated soils. J. Hazard. Mater. 2021, 408, 124850. [Google Scholar] [CrossRef]
- Saqib Rashid, M.; Liu, G.; Yousaf, B.; Song, Y.; Ahmed, R.; Rehman, A.; Arif, M.; Irshad, S.; Cheema, A.I. Efficacy of rice husk biochar and compost amendments on the translocation, bioavailability, and heavy metals speciation in contaminated soil: Role of free radical production in maize (Zea mays L.). J. Clean. Prod. 2022, 330, 129805. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, B.; Jiao, L.; Meng, X.; Zhang, L.; Li, B.; Sun, H. Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil. Sci. Total Environ. 2022, 813, 152648. [Google Scholar] [CrossRef]
- Rodríguez-Jordá, M.P.; Garrido, F.; García-González, M.T. Potential use of gypsum and lime rich industrial by-products for induced reduction of Pb, Zn and Ni leachability in an acid soil. J. Hazard. Mater. 2010, 175, 762–769. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Dubrovina, T.A.; Losev, A.A.; Karpukhin, M.M.; Vorobeichik, E.L.; Dovletyarova, E.A.; Brykov, V.A.; Brykova, R.A.; Ginocchio, R.; Yáñez, C.; Neaman, A. Gypsum soil amendment in metal-polluted soils—an added environmental hazard. Chemosphere 2021, 281, 130889. [Google Scholar] [CrossRef]
- Kim, H.S.; Seo, B.-H.; Kuppusamy, S.; Lee, Y.B.; Lee, J.-H.; Yang, J.-E.; Owens, G.; Kim, K.-R. A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil. Ecotoxicol. Environ. Saf. 2018, 148, 615–619. [Google Scholar] [CrossRef]
- Hussain Lahori, A.; Zhang, Z.; Guo, Z.; Mahar, A.; Li, R.; Kumar Awasthi, M.; Ali Sial, T.; Kumbhar, F.; Wang, P.; Shen, F.; et al. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicol. Environ. Saf. 2017, 145, 313–323. [Google Scholar] [CrossRef] [PubMed]
Pb (mg/Kg, Average or Range) | Zn (mg/Kg) | Remarks | Area | References |
---|---|---|---|---|
30.7 | 85.8 | Farmland | China | [34] |
350.0 | 271.0 | Agricultural soil | China | [35] |
637.6 | 1140.0 | NR * | Guilin, China | [36] |
380.0 | NR | Farmland | Northeast, China | [37] |
32.4 | 76.0 | Farmland | Taihang Piedmont Plain, China | [38] |
31.2 | NR | Farmland | Pearl River Delta, South China | [39] |
33.0 | 92.6 | Farmland | China | [40] |
20.3–25.3 | 76.7–93.5 | Agricultural soil | Siburan, Malaysia | [41] |
600.0 | NR | In dry seasons | Kangar, Malaysia | [42] |
26.4 | 38.0 | NR | Malaysia | [43] |
18.2 | 38.3 | Farmland | Allahabad, India | [44] |
15.5 | 43.5 | Farmland | Varansai, India | [45] |
20.9–51.7 | 107.0–148.0 | Agricultural land | Titagarh, India | [46] |
254.6 | 117.0 | Agricultural soil | Shiraz, Iran | [47] |
0.67 | NR | Farmland | Nigeria | [48] |
0.53 | 0.40 | Farmland | Near Shandam, Nigeria | [49] |
304.5 | 206.6 | Farmland (wet season) | Nigeria | [50] |
12.8 | 28.0 | Farmland | Kogi state, Nigeria | [51] |
19–3015 | 27–104 | Agricultural soil | Kombat mine, Namibia | [52] |
12.9 | 40.6 | NR | Inowroclawska Plain, Poland | [53] |
18.9 | 35.8 | NR | Romania | [54] |
19.7 | 74.8 | Agricultural land | Argolida basin, Greece | [55] |
- | Up to 150 | NR | European Union | [56] |
3.64 | 52.2 | Agricultural land | Turkey | [57] |
13.0 | 35.0 | Agriculture land | Uruçuí-Preto watershed, Brazil | [58] |
11.2 | 16.2 | Agricultural land | Pernambuco state, Brazil | [59] |
15.2 | 41.2 | Agricultural land | Argentina | [60] |
29 | 23 | Agricultural soil (top soil) | Sudbury, Canada | [61] |
14 | - | NR | Queensland, Australia | [62] |
4.7 | - | NR | Perth, Australia | [62] |
Species | Pb Removal (%) | Zn Removal (%) | Main Removal Mechanisms | References |
---|---|---|---|---|
Bacteria | ||||
Sporosarcina pasteurii | 33–85 | 21–66 | Biomineralization | [119] |
Sporosarcina pasteurii Terrabacter tumescens UR53 UR47 UR41 UR31 | 88–99 | 88–99 | Biomineralization | [115] |
Stenotrophomonas rhizophila Sporosarcina pasteurii Variovorax boronicumulans | 96.2 97.1 95.9 | 63.9 94.8 73.8 | Biomineralization | [120] |
Bacillus brevis | - | 30–71 | Biosorption | [121] |
Cyanobacteria | - | 96 | - | [122] |
Bacillus sp. | >50 | - | Biosorption | [123] |
Bacillus sp. | >60 | Biomineralization | [124] | |
Fungi | ||||
Aspergillus niger | 40.8–45.5 | - | Biosorption | [125] |
Pleurotus ostreatus ISS-1 | 53.7 | - | Extracellular biosorption, intracellular bioaccumulation, and precipitation with extracellular oxalic acids | [126] |
Aspergillus penicillioides | >70 | - | Bioaccumulation and biosorption | [127] |
Aspergillus flavus Sterigmatomyces halophilus | - - | 86 83 | Biosorption | [128] |
Ascomycota | - | 36 | Bioaccumulation Enzyme process | [129] |
Trichoderma brevicompactum QYCD-6 | 97.5 | 4.6 | Bioaccumulation | [130] |
Earthworms | ||||
Eisenia fetida and Octolasion tyrtaeum | 58.4 | 25.0 | Ingestion and bioaccumulation | [131] |
Eisenia fetida | 6–73 | 3–23 | Ingestion and accumulation | [132] |
Eudrilus eugeniae, Eisenia fetida and Perionyx excavatus | 55.7 | 73.6 | Bioaccumulation | [133] |
Lantana camara | 20 | - | Bioaccumulation | [134] |
Libyodrillus violaceus | 3.5 | 18.5 | Bioaccumulation | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abedi, T.; Gavanji, S.; Mojiri, A. Lead and Zinc Uptake and Toxicity in Maize and Their Management. Plants 2022, 11, 1922. https://doi.org/10.3390/plants11151922
Abedi T, Gavanji S, Mojiri A. Lead and Zinc Uptake and Toxicity in Maize and Their Management. Plants. 2022; 11(15):1922. https://doi.org/10.3390/plants11151922
Chicago/Turabian StyleAbedi, Tayebeh, Shahin Gavanji, and Amin Mojiri. 2022. "Lead and Zinc Uptake and Toxicity in Maize and Their Management" Plants 11, no. 15: 1922. https://doi.org/10.3390/plants11151922
APA StyleAbedi, T., Gavanji, S., & Mojiri, A. (2022). Lead and Zinc Uptake and Toxicity in Maize and Their Management. Plants, 11(15), 1922. https://doi.org/10.3390/plants11151922