Triterpenoid Saponins from Washnut (Sapindus mukorossi Gaertn.)—A Source of Natural Surfactants and Other Active Components
Abstract
:1. Introduction
2. Plant Description
2.1. Plant Morphology
2.2. Traditional Plant Applications
3. Plant Phytoconstituents
4. Source of Triterpenoid Saponins
5. Biological Activity of Saponins, Extracts, and Plant Oil
5.1. Antibacterial Activity of Plant Extracts
5.2. Antifungal Activity
5.2.1. Activity of Plant Extracts
5.2.2. Activity of Isolated Saponins
5.3. Anti-Inflammatory Activity
5.3.1. Activity of Plant Extracts
5.3.2. Activity of Isolated Saponins
5.4. Antioxidant Activity of Plant Extracts
5.5. Molluscicidal Activity of Plant Extracts
5.6. Antipyretic Activity of Plant Extracts
5.7. Analgesic Activity of Plant Extracts
5.8. Insecticidal Activity
5.8.1. Activity of Plant Extracts
5.8.2. Activity of Isolated Saponins
5.9. Antitumor Activity
5.9.1. Activity of Plant Extracts
5.9.2. Activity of Isolated Saponins
5.10. Cutaneous Activity
5.10.1. Activity of Plant Extracts
5.10.2. Activity of Plant Oil
5.11. Saponin Toxicity
6. Surface Activity
6.1. Surface Tension
6.2. Foaming Properties
6.3. Wetting Properties
6.4. Critical Micelle Concentration
6.5. Solubilizing and Emulsifying Properties
6.6. Washing Properties
6.7. Remediation Properties
7. Discussion and Remarks
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adetunji, C.O.; Palai, S.; Ekwuabu, C.P.; Egbuna, C.; Adetunji, J.B.; Ehis-Eriakha, C.B.; Kesh, S.S.; Mtewa, A.G. General principle of primary and secondary plant metabolites: Biogenesis, metabolism, and extraction. In Preparation of Phytopharmaceuticals for the Management of Disorders; Egbuna, C., Mishra, A.P., Goyal, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–23. [Google Scholar] [CrossRef]
- Khan, R.A. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm. J. 2018, 26, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Kharissova, O.V.; Kharisov, B.I.; Oliva González, C.M.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci. 2019, 6, 191378. [Google Scholar] [CrossRef] [PubMed]
- Hojnik, J.; Ruzzier, M.; Konečnik Ruzzier, M. Transition towards sustainability: Adoption of eco-products among consumers. Sustainability 2019, 11, 4308. [Google Scholar] [CrossRef]
- Badmus, S.O.; Amusa, H.K.; Oyehan, T.A.; Saleh, T.A. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104. [Google Scholar] [CrossRef] [PubMed]
- Chenier, P.J. Surfactants, soaps, and detergents. In Survey of Industrial Chemistry; Springer: Boston, MA, USA, 2002; pp. 461–474. [Google Scholar] [CrossRef]
- Nakama, Y. Surfactants. In Cosmetic Science and Technology; Sakamoto, K., Lochhead, R.Y., Maibach, H.I., Yamashita, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 231–244. ISBN 9780128020548. [Google Scholar] [CrossRef]
- Myers, D. Surfactant Science and Technology, 4th ed.; Wiley: Hoboken, NJ, USA, 2020; pp. 1–19, 149–151. ISBN 9781119465850. [Google Scholar] [CrossRef]
- Góral, I.; Wojciechowski, K. Surface activity and foaming properties of saponin-rich plants extracts. Adv. Colloid Interface Sci. 2020, 279, 102145. [Google Scholar] [CrossRef]
- Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462. [Google Scholar] [CrossRef] [Green Version]
- Mugford, S.T.; Osbourn, A. Saponin synthesis and function. In Isoprenoid Synthesis in Plants and Microorganisms; Bach, T.J., Rohmer, M., Eds.; Springer: New York, NY, USA, 2012; pp. 405–424. ISBN 978-1-4614-4062-8. [Google Scholar] [CrossRef]
- Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M.; Babic, L.; Zhang, B. Saponin-based, biological-active surfactants from plants. In Application and Characterization of Surfactants; Najjar, R., Ed.; IntechOpen: London, UK, 2017; pp. 184–205. [Google Scholar] [CrossRef]
- Lorent, J.H.; Quetin-Leclercq, J.; Mingeot-Leclercq, M.-P. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org. Biomol. Chem. 2014, 12, 8803–8822. [Google Scholar] [CrossRef]
- Pradhan, A.; Bhattacharyya, A. Quest for an eco-friendly alternative surfactant: Surface and foam characteristics of natural surfactants. J. Clean. Prod. 2017, 150, 127–134. [Google Scholar] [CrossRef]
- Bartnik, M.; Facey, P.C. Glycosides. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 101–161. ISBN 9780128020999. [Google Scholar] [CrossRef]
- Kunatsa, Y.; Katerere, D.R. Checklist of african soapy saponin—Rich plants for possible use in communities’ response to global pandemics. Plants 2021, 10, 842. [Google Scholar] [CrossRef]
- Rai, S.; Acharya-Siwakoti, E.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Plant-derived saponins: A review of their surfactant properties and applications. Sci 2021, 3, 44. [Google Scholar] [CrossRef]
- Savarino, P.; Demeyer, M.; Decroo, C.; Colson, E.; Gerbaux, P. Mass spectrometry analysis of saponins. Mass Spectrom. Rev. 2021, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, S.; Drusch, S. Saponins—Self-assembly and behavior at aqueous interfaces. Adv. Colloid Interface Sci. 2017, 243, 105–113. [Google Scholar] [CrossRef] [PubMed]
- El Aziz, M.M.A.; Ashour, A.S.; Melad, A.S.G. A review on saponins from medicinal plants: Chemistry, isolation, and determination. J. Nanomed. Res. 2019, 7, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Vincken, J.-P.; Heng, L.; de Groot, A.; Gruppen, H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 2007, 68, 275–297. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Chen, Y.-Y.; Jiao, Q.-Y.; Khan, A.; Li, F.; Han, D.-F.; Cao, G.-D.; Lou, H.-X. Triterpenoid saponins from the pulp of Sapindus mukorossi and their antifungal activities. Phytochemistry 2018, 147, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sparg, S.G.; Light, M.E.; van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004, 94, 219–243. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, B. Biotechnological Advances, Phytochemical Analysis and Ethnomedical Implications of Sapindus Species, 1st ed.; Springer: Singapore, 2019; pp. 6–8, 14, 21, 57–63. ISBN 978-981-32-9188-1. [Google Scholar] [CrossRef]
- Yang, C.-H.; Huang, Y.-C.; Chen, Y.-F.; Chang, M.-H. Foam properties, detergent abilities and long-term preservative efficacy of the saponins from Sapindus mukorossi. J. Food Drug Anal. 2010, 18, 155–160. [Google Scholar] [CrossRef]
- Bhatta, S.; Joshi, L.R.; Khakurel, D.; Bussmann, R.W. Sapindus mukorossi Gaertn. Sapindaceae. In Ethnobotany of the Himalayas; Kunwar, R.M., Sher, H., Bussmann, R.W., Eds.; Springer: Cham, Switzerland, 2021; pp. 1775–1783. ISBN 9783030455972. [Google Scholar] [CrossRef]
- Upadhyay, A.; Singh, D.K. Pharmacological effects of Sapindus mukorossi. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 273–280. [Google Scholar] [CrossRef]
- Zhao, G.; Gao, Y.; Gao, S.; Xu, Y.; Liu, J.; Sun, C.; Gao, Y.; Liu, S.; Chen, Z.; Jia, L. The phenological growth stages of Sapindus mukorossi according to BBCH scale. Forests 2019, 10, 462. [Google Scholar] [CrossRef]
- Tamura, Y.; Miyakoshi, M.; Yamamoto, M. Application of saponin-containing plants in foods and cosmetics. In Alternative Medicine; Sakagami, H., Ed.; IntechOpen: London, UK, 2012; pp. 86–101. [Google Scholar] [CrossRef]
- Goyal, S.; Dileep, K.; Gopal, M.; Shivali, S. Medicinal plants of the genus Sapindus (Sapindaceae)—A review of their botany, phytochemistry, biological activity and traditional uses. J. Drug Deliv. Ther. 2014, 4, 7–20. [Google Scholar] [CrossRef]
- Shah, M.; Parveen, Z.; Khan, M.R. Evaluation of antioxidant, anti-inflammatory, analgesic and antipyretic activities of the stem bark of Sapindus mukorossi. BMC Complement. Altern. Med. 2017, 17, 526. [Google Scholar] [CrossRef] [PubMed]
- Erb, M.; Kliebenstein, D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Pooja, R.; Varsha, S.L.; Aliya, M.S.; Chetana Kumar, T.; Damini, B.M.; Divya, H.K. Phytochemical screening, GCMS, UV-VIS and FTIR analysis of leaf methanolic extract of Sapindus mukorossi L. Int. J. Progress. Res. Sci. Eng. 2022, 3, 97–104. [Google Scholar]
- Liu, M.; Chen, Y.-L.; Kuo, Y.-H.; Lu, M.-K.; Liao, C.-C. Aqueous extract of Sapindus mukorossi induced cell death of A549 cells and exhibited antitumor property in vivo. Sci. Rep. 2018, 8, 4831. [Google Scholar] [CrossRef]
- Ibrahim, M.; Khan, A.A.; Tiwari, S.K.; Habeeb, M.A.; Khaja, M.; Habibullah, C. Antimicrobial activity of Sapindus mukorossi and Rheum emodi extracts against H Pylori: In vitro and in vivo studies. World J. Gastroenterol. 2006, 12, 7136–7142. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Zhang, Q.; Zhong, W.; Chen, M.; Gong, H.; He, S.; Liang, R.; Lv, J.; Song, L. Rapid identification and analysis of the major chemical constituents from the fruits of Sapindus mukorossi by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Res. 2020, 34, 2144–2150. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Nien, C.-J.; Chen, L.-G.; Huang, K.-Y.; Chang, W.-J.; Huang, H.-M. Effects of Sapindus mukorossi seed oil on skin wound healing: In vivo and in vitro testing. Int. J. Mol. Sci. 2019, 20, 2579. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-C.; Wu, M.-D.; Tsai, W.-J.; Liao, S.-C.; Liaw, C.-C.; Hsu, L.-C.; Wu, Y.-C.; Kuo, Y.-H. Triterpenoid saponins from the fruits and galls of Sapindus mukorossi. Phytochemistry 2008, 69, 1609–1616. [Google Scholar] [CrossRef]
- Huang, H.-C.; Tsai, W.-J.; Liaw, C.-C.; Wu, S.-H.; Wu, Y.-C.; Kuo, Y.-H. Anti-platelet aggregation triterpene saponins from the galls of Sapindus mukorossi. Chem. Pharm. Bull. 2007, 55, 1412–1415. [Google Scholar] [CrossRef]
- Huang, H.-C.; Tsai, W.-J.; Morris-Natschke, S.L.; Tokuda, H.; Lee, K.-H.; Wu, Y.-C.; Kuo, Y.-H. Sapinmusaponins F−J, bioactive tirucallane-type saponins from the galls of Sapindus mukorossi. J. Nat. Prod. 2006, 69, 763–767. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Huang, H.-C.; Yang Kuo, L.-M.; Hsu, Y.-W.; Lee, K.-H.; Chang, F.-R.; Wu, Y.-C. New dammarane-type saponins from the galls of Sapindus mukorossi. J. Agric. Food Chem. 2005, 53, 4722–4727. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, X.; Qin, B.; Wang, Y.; Xiang, L.; Qi, J. Four new tirucallane-type triterpenoids from Sapindus mukorossi Gaertn. flowers induced neurite outgrowth in PC12 cells related to insulin-like growth factor 1 receptor/phosphoinositide 3-kinase/extracellular regulated protein kinase signaling pathway. Phytochem. Lett. 2019, 34, 5–12. [Google Scholar] [CrossRef]
- Ni, W.; Hua, Y.; Liu, H.Y.; Teng, R.W.; Kong, Y.C.; Hu, X.Y.; Chen, C.X. Tirucallane-type triterpenoid saponins from the roots of Sapindus mukorossi. Chem. Pharm. Bull. 2006, 54, 1443–1446. [Google Scholar] [CrossRef] [PubMed]
- Rong-Wei, T.; Wei, N.; Yan, H.; Chang-Xiang, C. Two new tirucallane-type triterpenoid saponins from Sapindus mukorossi. Acta Bot. Sin. 2003, 45, 369–372. [Google Scholar]
- Ni, W.; Hua, Y.; Teng, R.-W.; Kong, Y.-C.; Chen, C.-X. New tirucallane-type triterpenoid saponins from Sapindus mukorossi Gaertn. J. Asian Nat. Prod. Res. 2004, 6, 205–209. [Google Scholar] [CrossRef]
- Zhang, X.-M.; Yang, D.-P.; Xie, Z.-Y.; Li, Q.; Zhu, L.-P.; Zhao, Z.-M. Two new glycosides isolated from Sapindus mukorossi fruits: Effects on cell apoptosis and caspase-3 activation in human lung carcinoma cells. Nat. Prod. Res. 2016, 30, 1459–1463. [Google Scholar] [CrossRef]
- Nakayama, K.; Fujino, H.; Kasai, R.; Mitoma, Y.; Yata, N.; Tanaka, O. Solubilizing properties of saponins from Sapindus mukorossi Gaertn. Chem. Pharm. Bull. 1986, 34, 3279–3283. [Google Scholar] [CrossRef]
- Sharma, A.; Sati, S.C.; Sati, O.P.; Sati, M.D.; Kothiyal, S.K.; Semwal, D.K.; Mehta, A. A new triterpenoid saponin and antimicrobial activity of ethanolic extract from Sapindus mukorossi Gaertn. J. Chem. 2013, 2013, 218510. [Google Scholar] [CrossRef]
- Spórna-Kucab, A.; Wybraniec, S. High-speed counter-current chromatography in separation and identification of saponins from Beta vulgaris L. cultivar Red Sphere. Polish J. Food Nutr. Sci. 2020, 70, 67–74. [Google Scholar] [CrossRef]
- Sharma, A.; Sati, S.C.; Sati, O.P.; Sati, M.D.; Kothiyal, S.K. Triterpenoid saponins from the pericarps of Sapindus mukorossi. J. Chem. 2013, 2013, 613190. [Google Scholar] [CrossRef]
- Chen, C.; Li, R.; Li, D.; Shen, F.; Xiao, G.; Zhou, J. Extraction and purification of saponins from Sapindus mukorossi. New J. Chem. 2021, 45, 952–960. [Google Scholar] [CrossRef]
- Deng, B.; Liu, Z.; Zou, Z. Optimization of microwave-assisted extraction saponins from Sapindus mukorossi pericarps and an evaluation of their inhibitory activity on xanthine oxidase. J. Chem. 2019, 2019, 5204534. [Google Scholar] [CrossRef] [Green Version]
- Heng, W.; Ling, Z.; Na, W.; Youzhi, G.; Zhen, W.; Zhiyong, S.; Deping, X.; Yunfei, X.; Weirong, Y. Extraction and fermentation-based purification of saponins from Sapindus mukorossi Gaertn. J. Surfactants Deterg. 2015, 18, 429–438. [Google Scholar] [CrossRef]
- Chirva, V.Y.; Kintya, P.K.; Sosnovskii, V.A.; Krivenchuk, P.E.; Zykova, N.Y. Triterpene glycosides of Sapindus mukorossi. II. The structure of aapindosides A and B. Chem. Nat. Compd. 1970, 6, 218–221. [Google Scholar]
- Chirva, V.Y.; Kintya, P.K.; Sosnovskii, V.A. Triterpene glycosides of Sapindus mukorossi. V. Structure of sapindoside E. Chem. Nat. Compd. 1970, 6, 431–434. [Google Scholar] [CrossRef]
- Chirva, V.Y.; Kintya, P.K.; Sosnovskii, V.A.; Zolotarev, B.M. Triterpene glycosides of Sapindus mukorossi. V. The structure of sapindoside D. Chem. Nat. Compd. 1970, 6, 316–319. [Google Scholar] [CrossRef]
- Chirva, V.Y.; Kintya, P.K.; Sosnovskii, V.A. Triterpene glycosides of Sapindus mukorossi. III. Structure of sapindoside C. Chem. Nat. Compd. 1970, 6, 374–375. [Google Scholar] [CrossRef]
- Zhang, X.-M.; Yang, D.-P.; Xie, Z.-Y.; Xue, X.; Zhu, L.-P.; Wang, D.-M.; Zhao, Z.-M. A new triterpenoid saponin and an oligosaccharide isolated from the fruits of Sapindus mukorossi. Nat. Prod. Res. 2014, 28, 1058–1064. [Google Scholar] [CrossRef]
- Huang, H.-C.; Liao, S.-C.; Chang, F.-R.; Kuo, Y.-H.; Wu, Y.-C. Molluscicidal saponins from Sapindus mukorossi, inhibitory agents of golden apple snails, Pomacea canaliculata. J. Agric. Food Chem. 2003, 51, 4916–4919. [Google Scholar] [CrossRef]
- Faizal, A.; Geelen, D. Saponins and their role in biological processes in plants. Phytochem. Rev. 2013, 12, 877–893. [Google Scholar] [CrossRef]
- Wei, M.; Qiu, J.; Li, L.; Xie, Y.; Yu, H.; Guo, Y.; Yao, W. Saponin fraction from Sapindus mukorossi Gaertn as a novel cosmetic additive: Extraction, biological evaluation, analysis of anti-acne mechanism and toxicity prediction. J. Ethnopharmacol. 2021, 268, 113552. [Google Scholar] [CrossRef]
- Francis, G.; Kerem, Z.; Makkar, H.P.S.; Becker, K. The biological action of saponins in animal systems: A review. Br. J. Nutr. 2002, 88, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Orczyk, M.; Wojciechowski, K.; Brezesinski, G. The influence of steroidal and triterpenoid saponins on monolayer models of the outer leaflets of human erythrocytes, E. coli and S. cerevisiae cell membranes. J. Colloid Interface Sci. 2020, 563, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Ahhmed, A.; Shin, J.H.; Baek, J.S.; Kim, M.Y.; Kim, J.D. Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and gram negative bacteria, a comprehensive study in vitro and in vivo. Evidence-Based Complement. Altern. Med. 2018, 2018, 3486106. [Google Scholar] [CrossRef]
- Desai, S.D.; Desai, D.G.; Kaur, H. Saponins and their biological activities. Pharma Times 2009, 41, 13–16. [Google Scholar]
- Arabski, M.; Węgierek-Ciuk, A.; Czerwonka, G.; Lankoff, A.; Kaca, W. Effects of saponins against clinical E. coli strains and eukaryotic cell line. J. Biomed. Biotechnol. 2012, 2012, 286216. [Google Scholar] [CrossRef] [PubMed]
- Barros Cota, B.; Batista Carneiro de Oliveira, D.; Carla Borges, T.; Cristina Catto, A.; Valverde Serafim, C.; Rogelis Aquiles Rodrigues, A.; Kohlhoff, M.; Leomar Zani, C.; Assunção Andrade, A. Antifungal activity of extracts and purified saponins from the rhizomes of Chamaecostus cuspidatus against Candida and Trichophyton species. J. Appl. Microbiol. 2021, 130, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Penfold, J.; Thomas, R.K.; Tucker, I.; Petkov, J.T.; Stoyanov, S.D.; Denkov, N.; Golemanov, K.; Tcholakova, S.; Webster, J.R.P. Saponin adsorption at the air–water interface—Neutron reflectivity and surface tension study. Langmuir 2018, 34, 9540–9547. [Google Scholar] [CrossRef]
- Garai, S. Triterpenoid saponins. Nat. Prod. Chem. Res. 2014, 2, 1–13. [Google Scholar] [CrossRef]
- Elekofehinti, O.O.; Iwaloye, O.; Olawale, F.; Ariyo, E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology 2021, 28, 250–272. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, Y.; Huang, L.; Li, J.; Sun, H.; Zhao, Y.; Yang, J.; Zhou, W. Antioxidant activities of saponins extracted from Radix trichosanthis: An in vivo and in vitro evaluation. BMC Complement. Altern. Med. 2014, 14, 86. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.S.; Gelmi, C.; de Oliveira, J.V.; Galo, J.L.; Pranto, H. Use of a saponin based molluscicide to control Pomacea canaliculata snails in southern Brazil. Nat. Prod. Commun. 2009, 4, 1327–1330. [Google Scholar] [CrossRef]
- Cui, C.; Yang, Y.; Zhao, T.; Zou, K.; Peng, C.; Cai, H.; Wan, X.; Hou, R. Insecticidal activity and insecticidal mechanism of total saponins from Camellia oleifera. Molecules 2019, 24, 4518. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Walia, S.; Kumar, J.; Dhingra, S.; Parmar, B.S. Screening for feeding deterrent and insect growth regulatory activity of triterpenic saponins from Diploknema butyracea and Sapindus mukorossi. J. Agric. Food Chem. 2010, 58, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Doligalska, M.; Jóźwicka, K.; Donskow-Łysoniewska, K.; Kalinowska, M. The antiparasitic activity of avenacosides against intestinal nematodes. Vet. Parasitol. 2017, 241, 5–13. [Google Scholar] [CrossRef]
- Heng, W.; Ling, Z.; Na, W.; Youzhi, G.; Zhen, W.; Zhiyong, S.; Deping, X.; Yunfei, X.; Weirong, Y. Analysis of the bioactive components of Sapindus saponins. Ind. Crops Prod. 2014, 61, 422–429. [Google Scholar] [CrossRef]
- Sağlık, I.; Güçlüer, Ö.; Özhak, B. Investigation of the antimicrobial effects of Sapindus mukorossi on endodontic pathogens. J. Exp. Clin. Med. 2020, 37, 111–118. [Google Scholar] [CrossRef]
- Porsche, F.M.; Molitor, D.; Beyer, M.; Charton, S.; André, C.; Kollar, A. Antifungal activity of saponins from the fruit pericarp of Sapindus mukorossi against Venturia inaequalis and Botrytis cinerea. Plant Dis. 2018, 102, 991–1000. [Google Scholar] [CrossRef]
- Takagi, K.; Park, E.-H.; Kato, H. Anti-inflammatory activities of hederagenin and crude saponin isolated from Sapindus mukorossi Gaertn. Chem. Pharm. Bull. 1980, 28, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Kuo, P.-L.; Chen, Y.-H.; Huang, J.-C.; Ho, M.-L.; Lin, R.-J.; Chang, J.-S.; Wang, H.-M. Tyrosinase inhibition, free radical scavenging, antimicroorganism and anticancer proliferation activities of Sapindus mukorossi extracts. J. Taiwan Inst. Chem. Eng. 2010, 41, 129–135. [Google Scholar] [CrossRef]
- Chen, I.C.; Chen, M.T.; Chung, T.W. Analysis of antioxidant property of the extract of saponin by experiment design methodology. IOP Conf. Ser. Earth Environ. Sci. 2020, 594, 012002. [Google Scholar] [CrossRef]
- Upadhyay, A.; Singh, D.K. Molluscicidal Activity of Sapindus mukorossi and Terminalia chebula against the freshwater snail Lymnaea acuminata. Chemosphere 2011, 83, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Eddaya, T.; Boughdad, A.; Sibille, E.; Chaimbault, P.; Zaid, A.; Amechrouq, A. Biological activity of Sapindus mukorossi Gaerten (Sapindaceae) aqueous extract against Thysanoplusia orichalcea (Lepidoptera: Noctuidae). Ind. Crops Prod. 2013, 50, 325–332. [Google Scholar] [CrossRef]
- Du, M.; Huang, S.; Zhang, J.; Wang, J.; Hu, L.; Jiang, J. Toxicological test of saponins from Sapindus mukorossi Gaerth. Open J. For. 2015, 5, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Tmáková, L.; Sekretár, S.; Schmidt, Š. Plant-derived surfactants as an alternative to synthetic surfactants: Surface and antioxidant activities. Chem. Pap. 2016, 70, 188–196. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Varughese, S.; Deshpande, A.P. Micellar characterisation of saponin from Sapindus mukorossi. Tenside Surfactants Deterg. 2006, 43, 262–268. [Google Scholar] [CrossRef]
- Meshram, P.D.; Shingade, S.; Madankar, C.S. Comparative study of saponin for surfactant properties and potential application in personal care products. Mater. Today Proc. 2021, 45, 5010–5013. [Google Scholar] [CrossRef]
- Yekeen, N.; Malik, A.A.; Idris, A.K.; Reepei, N.I.; Ganie, K. Foaming properties, wettability alteration and interfacial tension reduction by saponin extracted from soapnut (Sapindus mukorossi) at room and reservoir conditions. J. Pet. Sci. Eng. 2020, 195, 107591. [Google Scholar] [CrossRef]
- Wojtoń, P.; Szaniawska, M.; Hołysz, L.; Miller, R.; Szcześ, A. Surface activity of natural surfactants extracted from Sapindus mukorossi and Sapindus trifoliatus soapnuts. Colloids Interfaces 2021, 5, 7. [Google Scholar] [CrossRef]
- Burakova, Y.; Madera, R.; Wang, L.; Buist, S.; Lleellish, K.; Schlup, J.R.; Shi, J. Food-grade saponin extract as an emulsifier and immunostimulant in emulsion-based subunit vaccine for pigs. J. Immunol. Res. 2018, 2018, 8979838. [Google Scholar] [CrossRef]
- Samal, K.; Das, C.; Mohanty, K. Eco-friendly biosurfactant saponin for the solubilization of cationic and anionic dyes in aqueous system. Dye. Pigment. 2017, 140, 100–108. [Google Scholar] [CrossRef]
- Vinarov, Z.; Radeva, D.; Katev, V.; Tcholakova, S.; Denkov, N. Solubilisation of hydrophobic drugs by saponins. Indian J. Pharm. Sci. 2018, 80, 709–718. [Google Scholar] [CrossRef]
- Golemanov, K.; Tcholakova, S.; Denkov, N.; Pelan, E.; Stoyanov, S.D. The role of the hydrophobic phase in the unique rheological properties of saponin adsorption layers. Soft Matter 2014, 10, 7034–7044. [Google Scholar] [CrossRef] [PubMed]
- Nhat Do, D.; Tai Dang, T.; Tuan Le, Q.; Duc Lam, T.; Giang Bach, L.; Chinh Nguyen, D.; Quoc Toan, T. Extraction of saponin from Gleditsia peel and applications on natural dishwashing liquid detergent. Mater. Today Proc. 2019, 18, 5219–5230. [Google Scholar] [CrossRef]
- Ghagi, R.; Satpute, S.K.; Chopade, B.A.; Banpurkar, A.G. Study of functional properties of Sapindus mukorossi as a potential bio-surfactant. Indian J. Sci. Technol. 2011, 4, 530–533. [Google Scholar] [CrossRef]
- Mondal, M.H.; Malik, S.; Garain, A.; Mandal, S.; Saha, B. Extraction of natural surfactant saponin from soapnut (Sapindus mukorossi) and its utilization in the remediation of hexavalent chromium from contaminated water. Tenside Surfactants Deterg. 2017, 54, 519–529. [Google Scholar] [CrossRef]
- Shi, Y.-M.; Yan, H.; Wu, L.-S.; Xie, J.-J.; Chen, H.-G. Effects of different irradiation treatments on total saponins content of Sapindus mukorossi. Dose-Response 2022, 20, 1–6. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Mukherjee, S.; Hashim, M.A.; JN, S.; Villegas, N.M.; Sen Gupta, B. Zinc removal from soil by washing with saponin obtained from Sapindus mukorossi. J. Environ. Anal. Chem. 2018, 5, 1–8. [Google Scholar] [CrossRef]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef]
- Li, R.; Wu, Z.L.; Wang, Y.J.; Li, L.L. Separation of total saponins from the pericarp of Sapindus mukorossi Gaerten. by foam fractionation. Ind. Crops Prod. 2013, 51, 163–170. [Google Scholar] [CrossRef]
- Lichota, A.; Gwozdzinski, K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci. 2018, 19, 3533. [Google Scholar] [CrossRef] [PubMed]
- Rakesh, M.R.; Ashok, K.; Kumar, S.A.; Amitabh, T. Formulation of herbal shampoos from Asparagus racemosus, Acacia concin, Sapindus mukorossi. Int. J. Pharm. Sci. Rev. Res. 2010, 4, 39–44. [Google Scholar]
- Goyal, N.; Jerold, F. Biocosmetics: Technological advances and future outlook. Environ. Sci. Pollut. Res. 2021, 2021, 1–22. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Nien, C.-J.; Chen, L.-G.; Lee, S.-Y.; Chang, W.-J.; Pan, Y.-H.; Hsieh, S.-C.; Huang, H.-M. Sapindus mukorossi seed oil changes tyrosinase activity of α-MSH-induced B16F10 cells via the antimelanogenesic effect of eicosenoic acid. Nat. Prod. Commun. 2020, 15, 1–7. [Google Scholar] [CrossRef]
- Lin, S.; Wu, Y.; Chang, W.; Feng, S.; Huang, H.-M. The treatment efficiency and microbiota analysis of Sapindus mukorossi seed oil on the ligature-induced periodontitis rat model. Int. J. Mol. Sci. 2022, 23, 8560. [Google Scholar] [CrossRef]
- Shiu, S.-T.; Lew, W.-Z.; Lee, S.-Y.; Feng, S.-W.; Huang, H.-M. Effects of Sapindus mukorossi seed oil on proliferation, osteogenetic/odontogenetic differentiation and matrix vesicle secretion of human dental pulp mesenchymal stem cells. Materials 2020, 13, 4063. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Chiang, T.-H.; Chen, J.-H. Properties of soapnut (Sapindus mukorossi) oil biodiesel and its blends with diesel. Biomass Bioenergy 2013, 52, 15–21. [Google Scholar] [CrossRef]
- Madariaga-Mazón, A.; Hernández-Alvarado, R.B.; Noriega-Colima, K.O.; Osnaya-Hernández, A.; Martinez-Mayorga, K. Toxicity of secondary metabolites. Phys. Sci. Rev. 2019, 4, 20180116. [Google Scholar] [CrossRef]
- Kapse, A.; Anup, N.; Patel, V.; Saraogi, G.K.; Mishra, D.K.; Tekade, R.K. Polymeric micelles: A ray of hope among new drug delivery systems. In Drug Delivery Systems; Tekade, R.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 235–289. ISBN 9780128145081. [Google Scholar] [CrossRef]
- Ivanova, N.; Starov, V.M. Wetting and spreading by aqueous surfactant solutions. In Surfactant Science and Technology; Romsted, L.S., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 171–192. [Google Scholar] [CrossRef]
- Lu, Z.; Lei, Z.; Zafar, M.N. Synthesis and performance characterization of an efficient environmental-friendly Sapindus mukorossi saponins based hybrid coal dust suppressant. J. Clean. Prod. 2021, 306, 127261. [Google Scholar] [CrossRef]
- Schmitt, C.; Grassl, B.; Lespes, G.; Desbrières, J.; Pellerin, V.; Reynaud, S.; Gigault, J.; Hackley, V.A. Saponins: A renewable and biodegradable surfactant from its microwave-assisted extraction to the synthesis of monodisperse lattices. Biomacromolecules 2014, 15, 856–862. [Google Scholar] [CrossRef]
No. | Chemical Name | Abbreviations | Type | Ref. |
---|---|---|---|---|
1 | 3β,7β,20(S),22-tetrahydroxydammar-24-ene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside | R1: -Glc2 a-Rha b R2: -CH3 R3: -OH R4: -OH R5: -H | Dammarane | [41] |
2 | 3β,7β,20(S),22,23-pentahydroxydammar-24-ene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside | R1: -Glc2-Rha R2: -CH3 R3: -OH R4: -OH R5: -OH | ||
3 | 3β,7β,20(S),22,25-pentahydroxydammar-23-ene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside | R1: -Glc2-Rha R2: -OH R3: -OH | Dammarane | [41] |
4 | 25-methoxy-3β,7β,20(S),22-tetrahydroxydammar-23-ene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside | R1: -Glc2-Rha R2: -OH R3: -OCH3 | ||
5 | 25-methoxy-3β,7β,20(R)-trihydroxydammar-23-ene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside | R1: -Glc2-Rha R2: -H R3: -OCH3 | ||
6 | 21β-methoxy-3β,21(S),23(R)-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside | R1: -Glc6-Rha R2: β-OCH3 R3: β-H | Tirucallane | [40] |
7 | 21α-methoxy-3β,21(S),23(R)-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside | R1: -Glc6-Rha R2: α-OCH3 R3: β-H | ||
8 | 21α-methoxy-3β,21(R),23(R)-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside | R1: -Glc2-Rha R2: α-OCH3 R3: β-H | ||
9 | 21β-methoxy-3β,21(S),23(R)-epoxytirucalla-7,24-diene-3-O-α-l-dirhamnopyranosyl-(1→2,6)-β-d-glucopyranoside | R1: -Glc2,6-Rha,Rha R2: β-OCH3 R3: β-H | ||
10 | 21α-methoxy-3β,21(R),23(R)-epoxytirucalla-7,24-diene-3-O-α-l-dirhamnonopyranosyl-(1→2,6)-β-d-glucopyranoside | R1: -Glc2,6-Rha,Rha R2: α-OCH3 R3: β-H | ||
11 | Hederagenin-3-O-(3-O-acetyl-α-l-arabinopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Ara3 c-OAc R2: -CH2OH R3: -H | Oleanane | [38] |
12 | Hederagenin-3-O-(4-O-acetyl-α-l-arabinopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Ara4-OAc R2: -CH2OH R3: -H | ||
13 | Hederagenin-3-O-(2,3-O-diacetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl2,3 d-OAc,OAc R2: -CH2OH R3: -H | ||
14 | Hederagenin-3-O-(2,4-O-diacetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl2,4-OAc,OAc R2: -CH2OH R3: -H | ||
15 | 3,7,20(S)-trihydroxydammar-24-ene-3-O-α-l-rhamnopyrnosyl-(1→2)-β-d-glucopyranoside | R1: -Glc2-Rha R2: -OH R3: -CH3 R4: -H R5: -H | Dammarane | [38] |
16 | 3,7,20(R)-trihydroxydammar-24-ene-3-O-α-l-rhamnopyrnosyl-(1→2)-β-d-glucopyranoside | R1: -Glc2-Rha R2: -CH3 R3: -OH R4: -H R5: -H | ||
17 | 21α-methoxy- 3β,21(R),23(S)-epoxytirucall-7,24-diene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside | R1: -Glc2-Glc R2: α-OCH3 R3: β-H | Tirucallane | [39] |
18 | 21α-methoxy-3β,21(R),23(S)-epoxytirucall-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside | R1: -Glc2-Glc6-Rha R2: α-OCH3 R3: β-H | ||
19 | Hederagenin-3-O-(3,4-O-di-acetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl3,4-OAc,OAc R2: -CH2OH R3: -H | Oleanane | [38] |
20 | Hederagenin-3-O-(2-O-acetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl2-OAc R2: -CH2OH R3: -H | ||
21 | Hederagenin-3-O-(3-O-acetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl3-OAc R2: -CH2OH R3: -H | ||
22 | Hederagenin-3-O-(4-O-acetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl4-OAc R2: -CH2OH R3: -H | ||
23 | Hederagenin-3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Ara R2: -CH2OH R3: -H | ||
24 | 21β-methoxy-3β,23α-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside | R1: -Glc6-Rha R2: β-OCH3 R3: α-H | Tirucallane | [42] |
25 | 21β-methoxy-3β,23α-epoxytirucalla-7,24-diene-3-O-α-l-dirhamnopyranosyl-(1→2,6)-β-d-glucopyranoside | R1: -Glc2,6-Rha,Rha R2: β-OCH3 R3: α-H | ||
26 | 21α-methoxy-3β,23α-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranoside | R1: -Glc2,3-Rha,Ara R2: α-OCH3 R3: α-H | ||
27 | 21α-methoxy-3β,23α-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside | R1: -Glc2-Rha R2: α-OCH3 R3: α-H | ||
28 | 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucall-7,24R-diene-3β,21-diol | R1: -Glc2,3-Rha,Ara R2: -OH | Tirucallane | [44] |
29 | 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranosyl-21,23R-epoxyl tirucall-7,24R-diene-3β,21-diol | R1: -Glc6-Rha R2: -OH | ||
30 | 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl (21,23R)-epoxyl tirucalla-7,24-diene-(21S)-ethoxyl-3β-ol | R1: -Glc2,3-Rha,Ara R2: -OCH2CH3 | Tirucallane | [45] |
31 | 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl (21,23R)-epoxyl tirucall-7,24-diene-(21S)-methoxyl-3β-ol | R1: -Glc2,3-Rha,Ara R2: -OCH3 | ||
32 | 3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-ethoxy-3β-ol | R1: -Glc2,3-(Rha3-Ara),Ara R2: -OCH2CH3 | Tirucallane | [43] |
33 | 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[β-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-ethoxy-3β-ol | R1: -Glc2,3-(Rha3-Xyl),Ara R2: -OCH2CH3 | ||
34 | 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-methoxy-3β-ol | R1: -Glc2,3-(Rha3-Xyl),Ara R2: -OCH3 | ||
35 | 3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[α-l- rhamnopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-ethoxy-3β-ol | R1: -Glc2,3-(Rha3-Ara),Rha R2: -OCH2CH3 | ||
36 | 3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-methoxy-3β-ol | R1: -Glc2,3-(Rha3-Ara),Rha R2: -OCH3 | ||
37 | 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-ethoxyl-3β-ol | R1: -Glc6-Rha R2: -OCH2CH3 | ||
38 | Hederagenin-3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl-28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl ester | R1: -Ara2-Rha3-Xyl R2: -CH2OH R3: -Glc2-Glc | Oleanane | [47] |
39 | Hederagenin-3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl-28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl ester | R1: -Ara2-Rha3-Ara R2: -CH2OH R3: -Glc2-Glc | ||
40 | Hederagenin-3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl-28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl ester | R1: -Ara2-Rha R2: -CH2OH R3: -Glc2-Glc | ||
41 | Hederagenin-3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha R2: -CH2OH R3: -H | Oleanane | [54] |
42 | Hederagenin-3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl R2: -CH2OH R3: -H | ||
43 | Hederagenin-3-O-β-d-glucopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl4-Glc R2: -CH2OH R3: -H | Oleanane | [57] |
44 | Hederagenin-3-O-β-d-glucopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl4-Glc2,6-Glc,Rha R2: -CH2OH R3: -H | Oleanane | [56] |
45 | Hederagenin-3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl-28-O-β-d-glucopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosy-(1→2)-α-l-arabinopyranosyl ester | R1: -Ara2-Rha3-Xyl R2: -CH2OH R3: -Ara2-Rha3-Xyl4-Glc2,6-Glc,Rha | Oleanane | [55] |
46 | Hederagenin-3-O-β-d-glucopyranosyl-(1→3)-β-d-xylopyranosyl-(1→3)- β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl3-Xyl3-Glc R2: -CH2OH R3: -H | Oleanane | [58] |
47 | Hederagenin-3-O-(3,4-O-diacetyl-α-l-arabinopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Ara3,4-OAc,OAc R2: -CH2OH R3: -H | ||
48 | 3-O-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-(1→6)-β-d-glucopyranosyl-(1→3)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl oleanolic acid | R1: -Ara2-Rha3-Xyl3-Glc6-Xyl2-Rha R2: -CH3 R3: -H | Oleanane | [46] |
49 | Hederagenin 3-O-(2,4-O-di-acetyl-α-l-arabinopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Ara2,4-OAc,OAc R2: -CH2OH R3: -H | Oleanane | [59] |
50 | Hederagenin 3-O-α-l-arabinopyranoside | R1: -Ara R2: -CH2OH R3: -H | ||
51 | Hederagenin-3-O-β-d-xylopyranosyl-(2→1)-[3-O-acetyl-α-l-arabinopyranosyl]-28-O-α-l-rhamnopyranosylester | R1: -Xyl2-Ara3-OAc R2: -CH2OH R3: -Rha | Oleanane | [48] |
52 | Hederagenin 3-O-α-l-rhamnopyranosyl (3→1)-[2,4-O-diacetyl-α-l-arabinopyranosyl]-28-O-β-d-glucopyranosyl-(2→1) [3-O-acetyl-β-d-glucopyranosyl] ester | R1: -Rha3-Ara2,4-OAc,OAc R2: -CH2OH R3: -Glc2-Glc3-OAc | Oleanane | [50] |
53 | Oleanolic acid 3-O-α-l-arabinofuranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Ara e R2: -CH3 R3: -H | Oleanane | [22] |
54 | Hederagenin 3-O-5‴-O-acetyl-α-l-arabinofuranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Ara5 e-OAc R2: -CH2OH R3: -H | ||
55 | 23-O-acetyl-hederagenin 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl R2: -CH2OAc R3: -H | ||
56 | Gypsogenin 3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Ara R2: -CH2O R3: -H | ||
57 | Betulinic acid 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl | Lupane | [22] |
58 | Hederagenin-3-O-β-d-glucopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Glc R2: -CH2OH R2: -H | Oleanane | [36] |
59 | Hederagenin-3-O-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Rha R2: -CH2OH R3: -H | Oleanane | [36] |
60 | Hederagenin-3-O-β-d-xylopyranosyl-(1→3)-α-l-arabinopyranoside | R1: -Ara2-Xyl R2: -CH2OH R3: -H | ||
61 | Hederagenin-3-O-(4-O-acetyl-β-d-glucopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Glc4-OAc R2: -CH2OH R3: -H | ||
62 | 3-O-β-d-glucopyranosyl-(1→2)-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl oleanolic acid | R1: -Glc2-Rha3-Rha2-Glc R2: -CH3 R3: -H | ||
63 | 3-O-β-d-xylopyranosyl-(1→2)-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl oleanolic acid | R1: -Glc2-Rha3-Rha2-Xyl R2: -CH3 R3: -H | ||
64 | Oleanolic acid 3-O-(4-O-acetyl-α-l-arabinopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Ara4-OAc R2: -CH3 R3: -H | ||
65 | Gypsogenin 3-O-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Rha R2: -CHO R3: -H | ||
66 | Oleanolic acid 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Xyl R2: -CH3 R3: -H | Oleanane | [22] |
67 | Oleanolic acid 3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside | R1: -Ara2-Rha3-Ara R2: -CH3 R3: -H |
Sapindus mukorossi Soapnut Tree | Properties | Purpose |
---|---|---|
Extracts, Oils and Isolated Saponins | Antibacterial and Antifungal | Preservatives, Disinfectants, Antibiotics |
Tyrosinase and P. acnes inhibitor | Skin whitening, Anti-acne cosmetics | |
Antioxidant, Wound healing | Natural food and cosmetic antioxidants, Skin-care cosmetics | |
Antitumor and Cytotoxic | Natural anticancer drugs | |
Molluscicidal and Insecticidal | Natural pesticides, Plant protection products | |
Antipyretic, Analgesic, Anti-inflammatory | Herbal painkillers, Anti-inflammatory, and Antipyretic drugs | |
Surface tension reduction, Foaming, Wetting, Washing | Natural detergents, Wetting, Washing, Foaming, and Cleaning agents | |
Micelle formation, Solubilization, and Leaching | Natural solubilizers, Emulgators, Leaching, and Remediation agents |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sochacki, M.; Vogt, O. Triterpenoid Saponins from Washnut (Sapindus mukorossi Gaertn.)—A Source of Natural Surfactants and Other Active Components. Plants 2022, 11, 2355. https://doi.org/10.3390/plants11182355
Sochacki M, Vogt O. Triterpenoid Saponins from Washnut (Sapindus mukorossi Gaertn.)—A Source of Natural Surfactants and Other Active Components. Plants. 2022; 11(18):2355. https://doi.org/10.3390/plants11182355
Chicago/Turabian StyleSochacki, Mateusz, and Otmar Vogt. 2022. "Triterpenoid Saponins from Washnut (Sapindus mukorossi Gaertn.)—A Source of Natural Surfactants and Other Active Components" Plants 11, no. 18: 2355. https://doi.org/10.3390/plants11182355
APA StyleSochacki, M., & Vogt, O. (2022). Triterpenoid Saponins from Washnut (Sapindus mukorossi Gaertn.)—A Source of Natural Surfactants and Other Active Components. Plants, 11(18), 2355. https://doi.org/10.3390/plants11182355