Magnesium Fertilization Increases Nitrogen Use Efficiency in Winter Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Results
2.1. Magnesium Fertilization Systems and Yield Increment
2.2. Magnesium Accumulation and Indices of Efficiency
2.3. Nitrogen Accumulation and Indices of Efficiency
3. Discussion
3.1. Magnesium Use Efficiency
- Is there an advantage of soil over foliar Mg fertilization?
- Does the stage of wheat development affect the choice of the date for foliar Mg fertilization?
- Is there any interaction between the two fertilization systems with regard to the end result, i.e., yield increase?
- Conservative: a high and stable yield increase, increasing the resistance to abiotic stresses;
- Effective: a moderate-to-high yield increase, provided there are no abiotic stresses;
- Prophylactic: a moderate yield increase, with a constant fertilization factor.
3.2. Impact of Magnesium Uptake on Nitrogen Management by Wheat
4. Materials and Methods
4.1. Experimental Site
4.2. Weather Conditions
4.3. Experimental Design
- Soil-applied magnesium (Mgs): 0, 25, and 50 kg Mg ha−1 (acronym: Mg control, Mgs25, and Mgs50);
- Foliar-applied magnesium (Mgf):
- Without application, i.e., Mgf control;
- Applied at the BBCH 30 stage (I) (I–BBCH 30);
- Applied at the BBCH 49/50 stage (II) (II–BBCH 59/50);
- Applied at the BBCH 30/31 and BBCH 49/50 stages; double-stage application (I + II).
4.4. Plant Material Sampling and Analysis
4.5. Parameters and Indices of Nitrogen Use Efficiency
- Nitrogen accumulation in wheat grain, NaG:
- Nitrogen accumulation in crop residues, Nr:
- Total accumulation of nitrogen in wheat biomass, TN:
- Nitrogen harvest index, NHI:
- Nitrogen unit accumulation in grain, NUA-G:
- Nitrogen unit accumulation in total wheat biomass, NUA-T:
- Nitrogen unit productivity—grain, NUPG:
- Nitrogen unit productivity–total, NUP-T:
- Partial factor productivity of fertilizer N, PFP-N:
- Nitrogen agronomic efficiency, NAE:
- Nitrogen recovery, N–R:
- Nitrogen physiological efficiency, N-PhE:
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Trait | MgaG | MgaCR | MgaT | Mg–HI | MgUA–G | MgUA–T | MgUP–G | MgUP–T | PFP–Mg | MgAE | Mg–R | Mg–PhE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | 0.35 * | 0.36 * | 0.38 * | 0.02 | −0.33 * | −0.37 * | 0.25 | 0.28 | 0.07 | 0.06 | 0.08 | 0.07 |
MgaG | 1.00 | 0.67 *** | 0.97 *** | 0.57 *** | 0.77 *** | 0.71 *** | −0.82 *** | −0.77 *** | 0.01 | 0.05 | 0.10 | 0.07 |
MgaCR | 1.00 | 0.83 *** | −0.23 | 0.44 ** | 0.56 *** | −0.48 ** | −0.62 *** | −0.06 | −0.02 | 0.02 | 0.04 | |
MgaT | 1.00 | 0.36 * | 0.72 *** | 0.71 *** | −0.77 *** | −0.78 *** | −0.01 | 0.03 | 0.08 | 0.07 | ||
Mg–HI | 1.00 | 0.54 ** | 0.34 * | −0.58 *** | −0.35 * | 0.07 | 0.09 | 0.10 | 0.05 | |||
MgUA–G | 1.00 | 0.97 *** | −0.99 *** | −0.97 *** | −0.04 | 0.01 | 0.04 | 0.02 | ||||
MgUA–T | 1.00 | −0.96 *** | −0.99 *** | −0.06 | −0.01 | 0.02 | 0.01 | |||||
MgUP–G | 1.00 | 0.97 *** | 0.01 | −0.04 | −0.07 | −0.05 | ||||||
MgUP–T | 1.00 | 0.04 | −0.01 | −0.05 | −0.04 | |||||||
PFP–Mg | 1.00 | 1.00 *** | 0.99 *** | 0.95 *** | ||||||||
MgAE | 1.00 | 1.00 *** | 0.96 *** | |||||||||
Mg–R | 1.00 | 0.96 *** |
Trait | NaGY | NaCR | TN | N–HI | NUA–G | NUA–T | NUP–G | NUP–T | PFP–N | NAE | N–R | N–PhE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | 0.50 ** | −0.53 ** | 0.26 | 0.9 *** | −0.16 | −0.38 *** | 0.22 | 0.47 ** | 1.00 | 0.75 *** | 0.14 | 0.38 * |
NaG | 1.00 | 0.40 * | 0.96 *** | 0.24 | 0.78 *** | 0.61 *** | −0.73 *** | −0.53 ** | 0.50 ** | −0.10 | 0.91 *** | −0.61 *** |
NaCR | 1.00 | 0.63 *** | −0.78 *** | 0.84 *** | 0.94 *** | −0.84 *** | −0.94 *** | −0.53 *** | −0.83 *** | 0.70 *** | −0.91 *** | |
TN | 1.00 | −0.01 | 0.90 *** | 0.79 *** | −0.83 *** | −0.72 *** | 0.26 | −0.33 | 0.97 *** | −0.78 *** | ||
N–HI | 1.00 | −0.37 * | −0.59 *** | 0.40 * | 0.64 *** | 0.91 *** | 0.81 *** | −0.13 | 0.55 *** | |||
NUA–G | 1.00 | 0.97 *** | −0.99 *** | −0.94 *** | −0.16 | −0.67 *** | 0.93 *** | −0.97 *** | ||||
NUA–T | 1.00 | −0.97 *** | −0.99 *** | −0.38 * | −0.79 *** | 0.85 *** | −0.99 *** | |||||
NUP–G | 1.00 | 0.96 *** | 0.23 | 0.68 *** | −0.91 *** | 0.98 *** | ||||||
NUP–T | 1.00 | 0.47 ** | 0.83 *** | −0.80 *** | 0.99 *** | |||||||
PFP–N | 1.00 | 0.75 *** | 0.14 | 0.38 * | ||||||||
NAE | 1.00 | −0.37 * | 0.80 *** | |||||||||
R–N | 1.00 | −0.83 *** |
Trait | MgaCR | MgaT | NUA-G | NUA–T | NUP–G | NUP–T | PFP–N | NAE | R–N | PhE–N |
---|---|---|---|---|---|---|---|---|---|---|
MgaG | 0.67 *** | 0.97 *** | −0.91 *** | −0.91 *** | 0.90 *** | 0.92 *** | 0.35 * | 0.82 *** | −0.75 *** | 0.93 *** |
MgaCR | 1.00 | 0.83 *** | −0.54 ** | −0.57 *** | 0.54 ** | 0.57 *** | 0.34 * | 0.68 *** | −0.30 | 0.58 *** |
MgaT | 1.00 | −0.86 *** | −0.89 *** | 0.86 *** | 0.88 *** | 0.38 * | 0.84 *** | −0.67 *** | 0.89 *** |
Appendix B
References
- FAOSTAT. Available online: https://faostat.fao.org/site/567/default.aspx#ancor (accessed on 25 May 2022).
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop yield gaps: Their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef] [Green Version]
- Wójcik-Gront, E.; Iwańska, M.; Wnuk, A.; Oleksiak, T. The analysis of wheat yield variability based on experimental data from 2008-2018 to understand the yield gap. Agriculture 2022, 12, 32. [Google Scholar] [CrossRef]
- Grzebisz, W.; Łukowiak, R. Nitrogen gap amelioration is a core for sustainable intensification of agriculture—A concept. Agronomy 2021, 11, 419. [Google Scholar] [CrossRef]
- Grzebisz, W.; Łukowiak, R.; Sassenrath, G. Virtual nitrogen as a tool for assessment of nitrogen at the field scale. Field Crops Res. 2018, 218, 182–184. [Google Scholar] [CrossRef]
- Grzebisz, W.; Niewiadomska, A.; Przygocka-Cyna, K. Nitrogen HotSpots on the farm—A practice-oriented approach. Agronomy 2022, 12, 1305. [Google Scholar] [CrossRef]
- Ahrends, H.E.; Siebert, S.; Rezaei, E.E.; Seidel, S.J.; Hüging, H.; Ewert, F.; Döring, T.; Rueda-Ayala, V.; Eugster, W.; Gaiser, T. Nutrient supply affects the yield stability of major European crops—A 50 year study. Environ. Res. Lett. 2020, 16, 014003. [Google Scholar] [CrossRef]
- Klepper, B.; Rickman, R.W.; Waldman, S.; Chevalier, P. The physiological life cycle of wheat: Its use in breeding and crop management. Euphytica 1998, 100, 341–347. [Google Scholar]
- Xie, Q.; Mayes, S.; Sparkes, D.L. Pre-anthesis biomass accumulation and plant organs defines yield components in wheat. Eur. J. Agron. 2016, 81, 15–26. [Google Scholar] [CrossRef]
- Schnitkey, G.; Paulson, N.; Zulauf, C.; Swansin, K.; Colussi, J.; Baltz, J. Nitrogen fertilizer prices and supply in light of the Ukraine-Russia conflict. Farmdoc Dly. 2022, 12, 45. [Google Scholar]
- Johnston, A.M.; Bruulsema, T.W. 4R nutrient stewardship for improved nutrient use efficiency. Procedia Engine. 2014, 83, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Yazici, A.M. Magnesium: A forgotten element in crop production. Better Crops 2010, 94, 23–25. [Google Scholar]
- Szczepaniak, W.; Barłóg, P.; Łukowiak, R.; Przygocka-Cyna, K. Effect of balanced nitrogen fertilization in four-year rotation on plant productivity. J. Cent. Europ. Agric. 2013, 14, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Grzebisz, W. Magnesium. In Handbook od Plant Nutrition; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 199–260. [Google Scholar]
- Hlisnikovský, L.; Čermak, P.; Kunzová, E.; Barłóg, P. The effect of application of potassium, magnesium and sulphur on wheat and barley grain yield and protein content. Agron. Res. 2019, 17, 1905–1917. [Google Scholar]
- Sadeghi, F.; Rezezad, A.; Rahimi, M. Effect of zinc and magnesium fertilizers on the yield and some characteristics of wheat (Triticum aestivum L.) seeds in two years. Inter. J. Agron. 2021, 2021, 8857222. [Google Scholar] [CrossRef]
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium fertilization improves crop yield in most production systems: A meta–analysis. Front. Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzebisz, W. The influence of crop rotation with an increasing content of cereals on photosynthetic potential of winter wheat. J. Agron. Crop Sci. 1988, 160, 198–207. [Google Scholar] [CrossRef]
- Härdter, R.; Rex, M.; Orlovius, K. Effects of different Mg fertilizer sources on the magnesium availability in soils. Nut. Cycl. Agroecos. 2004, 70, 249–259. [Google Scholar] [CrossRef]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.; Hayyat, M.S.; Imran, M.; Rehman, F.U.; Saeed, M.S.; Mehta, J.; Tampubolon, K. Impact of foliar application of magnesium fertilizer on agronomic crops: A review. Ind. J. Pure App. Biosci. 2020, 8, 281–288. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Elsevier Ltd. Academic Press: London, UK, 1995; 899p. [Google Scholar]
- Kant, S.; Seneweera, S.; Rodin, J.; Materne, M.; Burch, D.; Rothstein, S.J.; Spangenberg, G. Improving yield potential in crop under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies. Front. Plant Sci. 2012, 3, 162. [Google Scholar] [CrossRef] [Green Version]
- Parry, A.J.; Andralojc, P.J.; Scales, J.C.; Salvucci, M.E.; Carmo-Silva, A.E.; Alonso, H.; Whitney, S.M. Rubisco activity and regulation as targets for crop improvement. J. Exp. Bot. 2013, 6493, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Li, S.; Gao, L.; Sun, C.; Hu, J.; Ullah, A.; Gao, J.; Li, X.; Liu, S.; Jiang, D.; et al. Magnesium application promotes rubisco activation and contributes to high-temperature stress alleviation in wheat during the grain filling. Front. Plant Sci. 2021, 12, 675582. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, W.; Przygocka-Cyna, K.; Szczepaniak, W.; Diatta, J.; Potarzycki, J. Magnesium as a nutritional tool of nitrogen efficient management—Plant production and environment. J. Elem. 2010, 15, 771–788. [Google Scholar] [CrossRef] [Green Version]
- Grzebisz, W. Crop response to magnesium fertilization as affected by nitrogen supply. Plant Soil 2013, 368, 23–39. [Google Scholar] [CrossRef]
- Potarzycki, J. Effect of magnesium and zinc supplementation at the background of nitrogen rate on nitrogen management by maize canopy cultivated in monoculture. Plant Soil Environ. 2011, 57, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, W.; Grzebisz, W.; Potarzycki, J.; Łukowiak, R.; Przygocka-Cyna, K. The magnesium and calcium mineral status of maize at physiological maturity as a toll for an evaluation of yield-forming conditions. J. Elem. 2016, 2193, 881–897. [Google Scholar]
- Grzebisz, W.; Potarzycki, J. The in-season nitrogen concentration in the potato tuber as the yield driver. Agron. J. 2020, 112, 1287–1308. [Google Scholar] [CrossRef]
- Pogłodziński, R.; Barłog, P.; Grzebisz, W. Effect of nitrogen and magnesium sulfate application on sugar beet yield and quality. Plant Soil Environ. 2021, 67, 507–513. [Google Scholar] [CrossRef]
- Grzebisz, W.; Potarzycki, J. Effect of magnesium fertilization systems on grain yield formation by winter wheat (Triticum aestivum L.) during the grain filling period. Agronomy 2022, 12, 12. [Google Scholar] [CrossRef]
- Wallace, A.; Wallace, G.A. Closing the Crop-Yield Gap through Better Soil and Better Management; Wallace Laboratories: Los Angeles, CA, USA, 2003; p. 162. [Google Scholar]
- Slafer, G.A.; Elia, M.; Savin, R.; Garcia, G.A.; Terrile, I.I.; Ferrante, A.; Miralles, D.J.; González, F.G. Fruiting efficiency: An alternative trait to further rise in wheat yield. Food Energy Sec. 2015, 4, 92–109. [Google Scholar] [CrossRef]
- Ahmadi-Lahijani, M.J.; Emam, Y. Post-anthesis drought stress effects on photosynthesis rate and chlorophyll content if wheat genotypes. J. Plant Physiol. Breed. 2016, 6, 35–52. [Google Scholar]
- Mathur, S.; Agrawal, D.; Jajoo, A. Photosynthesiis: Response to high temperaturę stress. J. Photochem. Photobiol. B 2014, 137, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Veres, S.; Ondrasek, G.; Zsombik, L. Wheat sensitivity to nitrogen supply under different climatic conditions. In Global Wheat Production; Fhad, S., Basir, A., Adnan, M., Eds.; InTech: Rijeka, Croatia, 2018; pp. 31–49. [Google Scholar]
- Hodgkinson, L.; Dodd, I.C.; Binley, A.; Ashton, R.W.; White, R.P.; Watts, C.W.; Whalley, W.R. Root growth in field grown winter wheat: Some effects of soil conditions, season and genotype. Eur. J. Agron. 2017, 91, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potarzycki, J. Influence of nitrogen and magnesium fertilization at the flag leaf stage of winter wheat development on the yield and grain quality. Fertil. Fertil. 2008, 32, 99–109. [Google Scholar]
- Potarzycki, J. Nitrogen management of winter wheat fertilized with magnesium and nitrogen fertilizers at the flag leaf stage of growth. Fertil. Fertil. 2008, 32, 110–120. [Google Scholar]
- Szczepaniak, W.; Nowicki, B.; Bełka, D.; Kazimierowicz, A.; Kulwicki, M.; Grzebisz, W. Effect of foliar application of micronutrients and fungicides on the nitrogen use efficiency in winter wheat. Agronomy 2022, 12, 257. [Google Scholar] [CrossRef]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jaknkowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification: Principles, classification scheme and correlation. Soil Sci. Annu. 2019, 70, 71–97. [Google Scholar] [CrossRef]
Factor | Level of Factor | MgaG | MgaCR | MgaT | MgHI | MgUA–G | MgUA–T | MgUP–G | MgUP–T | PFP–Mg | MgAE | Mg–R | Mg–PhE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg ha−1 | % | kg Mg t−1 | kg Grain kg−1 Mg | t Grain kg−1 Mgf | % | t Grain kg−1 MgaT | |||||||
Year | 2013 | 11.1 b | 5.3 b | 16.4 b | 67.9 a | 1.31 a | 1.93 a | 766.2 c | 519.9 c | 731.8 c | 0.36 b | 62.6 b | 0.66 b |
(Y) | 2014 | 12.6 a | 5.8 a | 18.4 a | 68.4 a | 1.15 b | 1.69 b | 871.6 b | 595.4 b | 946.8 a | 0.44 a | 81.6 a | 1.05 a |
2015 | 8.3 c | 4.6 c | 12.9 c | 64.8 b | 0.86 c | 1.33 c | 1178.8 a | 760.5 a | 843.3 b | 0.34 b | 54.4 c | 0.56 b | |
p | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
Mg in-soil | 0 | 10.6 | 5.1 a | 15.6 b | 67.4 | 1.11 | 1.65 | 921.5 | 620.1 | 1990.1 a | 0.91 a | 156.2 a | 2.21 a |
Mgs | 25 | 10.7 | 5.1 a | 15.8 ab | 67.3 | 1.10 | 1.63 | 950.7 | 634.6 | 346.8 b | 0.16 b | 27.2 b | 0.04 b |
50 | 10.8 | 5.5 a | 16.3 a | 66.3 | 1.11 | 1.67 | 944.3 | 621.2 | 185.0 c | 0.09 c | 15.2 c | 0.01 c | |
p | n.s. | * | * | n.s. | n.s. | n.s. | n.s. | n.s. | *** | *** | *** | *** | |
Mg foliar | 0 | 10.4 | 4.8 b | 15.2 b | 68.3 a | 1.11 | 1.63 | 929.0 | 633.2 | 191.9 d | 0.09 d | 14.0 d | 0.02 d |
(Mgs) | I | 10.6 | 5.1 ab | 15.7 ab | 67.1 ab | 1.09 | 1.62 | 959.9 | 638.5 | 1524.4 a | 0.69 a | 118.1 a | 1.96 a |
II | 10.9 | 5.3 ab | 16.1 a | 67.1 ab | 1.12 | 1.67 | 919.5 | 614.2 | 975.2 b | 0.44 b | 79.7 b | 0.75 b | |
I + II | 10.8 | 5.6 a | 16.4 a | 65.7 b | 1.10 | 1.68 | 947.0 | 615.3 | 671.2 c | 0.31 c | 53.0 c | 0.30 c | |
p | n.s. | *** | *** | * | n.s. | n.s. | n.s. | n.s. | *** | *** | *** | *** | |
Source of Variation for Interaction | |||||||||||||
Y × Mgs | * | n.s. | * | * | * | n.s. | * | * | *** | *** | *** | *** | |
Y × Mgf | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. | n.s. | *** | *** | ** | *** | |
Mgs × Mgf | n.s. | ** | ** | * | n.s. | n.s. | n.s. | *** | *** | *** | *** | *** | |
Y × Mgs × Mgf | n.s. | * | * | n.s. | n.s. | n.s. | n.s. | ** | *** | *** | *** | *** |
Factor | Level of Factor | NaG | NaCR | TN | NHI | NUA–G | NUA–T | NUP–G | NUP–T | PFP–N | NAE | N–R | N–PhE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg N ha−1 | % | kg N t−1 | kg Grain kg−1 N | Grain kg−1 Nf | % | Grain kg−1 TN | |||||||
Year | 2013 | 185.0 c | 46.8 b | 231.8 c | 79.8 c | 21.9 b | 27.4 b | 45.8 b | 36.5 b | 44.5 | 22.1 b | 78.9 b | 28.0 b |
(Y) | 2014 | 224.5 b | 30.3 c | 254.8 b | 88.1 a | 20.5 c | 23.3 c | 49.0 a | 43.1 a | 57.5 | 27.1 a | 81.5 b | 33.6 a |
2015 | 265.0 a | 59.0 a | 324.0 a | 81.8 b | 27.3 a | 33.4 a | 36.7 c | 30.0 c | 51.0 | 20.7 c | 107.2 a | 19.4 c | |
p | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
Mg in-soil | 0 | 214.5 b | 45.1 | 259.6 b | 82.6 | 22.6 b | 27.5 b | 45.1 a | 37.4 a | 50.2 b | 22.4 b | 83.6 b | 27.8 a |
Mgs | 25 | 228.8 a | 44.9 | 273.7 a | 83.6 | 23.6 a | 28.3 a | 43.1 b | 36.1 b | 51.1 a | 23.4 ab | 91.0 a | 26.4 a |
50 | 231.2 a | 46.0 | 277.2 a | 83.5 | 23.5 a | 28.3 a | 43.2 b | 36.2 b | 51.7 a | 24.0 a | 92.9 a | 26.7 a | |
p | *** | n.s. | *** | n.s. | *** | ** | *** | *** | *** | ** | *** | n.s. | |
Mg foliar | 0 | 217.1 b | 43.6 | 260.6 b | 83.2 | 23.0 | 27.8 | 44.1 | 36.7 | 49.6 b | 21.9 b | 84.2 b | 26.7 |
(Mgf) | I | 228.6 a | 45.5 | 274.2 a | 83.5 | 23.4 | 28.1 | 43.4 | 36.3 | 51.5 a | 23.8 a | 91.3 a | 26.8 |
II | 222.1 ab | 46.1 | 268.1 ab | 82.9 | 23.0 | 27.9 | 44.6 | 37.1 | 51.1 a | 23.4 a | 88.1 ab | 27.8 | |
I + II | 231.5 a | 46.2 | 277.7 a | 83.4 | 23.6 | 28.4 | 43.2 | 36.1 | 51.8 a | 24.1 a | 93.2 a | 26.7 | |
p | *** | n.s. | *** | n.s. | n.s. | n.s. | n.s. | n.s. | *** | *** | *** | n.s. | |
Source of Variation for Interaction | |||||||||||||
Y × Mgs | ** | ** | * | ** | ** | n.s. | *** | ** | n.s. | n.s. | n.s. | n.s. | |
Y × Mgf | * | * | n.s. | * | *** | * | *** | ** | n.s. | n.s. | n.s. | * | |
Mgs × Mgf | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. | * | n.s. | n.s. | n.s. | |
Y × Mgs × Mgf | n.s. | * | n.s. | n.s. | * | n.s. | * | * | n.s. | n.s. | n.s. | n.s. |
Year | Soil Layer | pH | P 1 | K 1 | Mg 2 | Nmin |
---|---|---|---|---|---|---|
(cm) | 1 M KCl | mg kg−1 Soil | kg ha−1 | |||
2012/2013 | 0–30 | 6.5 | 63.2 1 M 3 | 157.7 M | 33.2 H | 76 4 |
30–60 | 59.7 1 M | 107.9 M | 25.3 M | |||
2013/2014 | 0–30 | 6.7 | 91.6 1 H | 168.0 M | 30.2 M | 74 |
30–60 | 91.6 1 H | 153.6 M | 24.7 M | |||
2014/2015 | 0–30 | 6.6 | 87.2 1 H | 182.6 H | 24.1 M | 57 |
30–60 | 95.9 1 H | 149.9 M | 30.2 M |
Treatment | Fertilization Schedule | N–P2O5–K2O | Mg–Soil | Mg–Foliar |
---|---|---|---|---|
kg ha−1 | ||||
1.1 | NPK | 190–70–80 | 0 | 0 |
2.1 | NPK–Mg foliar BBCH 30 | 190–70–80 | 0 | 2.4 |
2.2 | NPK–Mg foliar BBCH 49/50 | 190–70–80 | 0 | 4.0 |
2.3 | NPK–Mg foliar BBCH 30 + 49.50 | 190–70–80 | 0 | 6.4 |
3.1 | NPK–Mg soil | 190–70–80 | 25 | 0 |
3.2 | NPK–Mg soil + foliar BBCH 30 | 190–70–80 | 25 | 2.4 |
3.3 | NPK–Mg soil + foliar BBCH 49/50 | 190–70–80 | 25 | 4.0 |
3.4 | NPK–Mg soil + foliar BBCH 30 + 49/50 | 190–70–80 | 25 | 6.4 |
4.1 | NPK–Mg soil | 190–70–80 | 50 | 0 |
4.2 | NPK–Mg soil + foliar BBCH 30 | 190–70–80 | 50 | 2.4 |
4.3 | NPK–Mg soil + foliar BBCH 49/50 | 190–70–80 | 50 | 4.0 |
4.4 | NPK–Mg soil + foliar BBCH 30 + 49/50 | 190–70–80 | 50 | 6.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potarzycki, J.; Grzebisz, W.; Szczepaniak, W. Magnesium Fertilization Increases Nitrogen Use Efficiency in Winter Wheat (Triticum aestivum L.). Plants 2022, 11, 2600. https://doi.org/10.3390/plants11192600
Potarzycki J, Grzebisz W, Szczepaniak W. Magnesium Fertilization Increases Nitrogen Use Efficiency in Winter Wheat (Triticum aestivum L.). Plants. 2022; 11(19):2600. https://doi.org/10.3390/plants11192600
Chicago/Turabian StylePotarzycki, Jarosław, Witold Grzebisz, and Witold Szczepaniak. 2022. "Magnesium Fertilization Increases Nitrogen Use Efficiency in Winter Wheat (Triticum aestivum L.)" Plants 11, no. 19: 2600. https://doi.org/10.3390/plants11192600
APA StylePotarzycki, J., Grzebisz, W., & Szczepaniak, W. (2022). Magnesium Fertilization Increases Nitrogen Use Efficiency in Winter Wheat (Triticum aestivum L.). Plants, 11(19), 2600. https://doi.org/10.3390/plants11192600