In Vitro Cytotoxic Activity of Methanol Extracts of Selected Medicinal Plants Traditionally Used in Mexico against Human Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Plant Identification
2.2. Cytotoxic Activity
2.3. Antioxidant Activity
2.4. Hemolytic and Anti-Hemolytic Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material and Extraction
4.3. Tumor and Normal Cells
4.4. Antioxidant Activity
4.5. Hemolytic Activity Test
4.6. Anti-Hemolytic Activity Test
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Matasar, M.J.; Zelenetz, A.D. Overview of lymphoma diagnosis and management. Radiol. Clin. N. Am. 2008, 46, 175–198, vii. [Google Scholar] [CrossRef] [PubMed]
- Kulik, L.; El-Serag, H.B. Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology 2019, 156, 477–491.e1. [Google Scholar] [CrossRef]
- Piñero, F.; Dirchwolf, M.; Pessôa, M.G. Biomarkers in hepatocellular carcinoma: Diagnosis, prognosis and treatment response assessment. Cells 2020, 9, 1370–1396. [Google Scholar] [CrossRef] [PubMed]
- Marengo, A.; Rosso, C.; Bugianesi, E. Liver cancer: Connections with obesity, fatty liver, and cirrhosis. Annu. Rev. Med. 2016, 67, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet 2012, 379, 1245–1255. [Google Scholar] [CrossRef]
- Radha Abbas Hasoon, M.; Jawad Kadhim, N. Improvement of the selectivity index (SI) and cytotoxicity activity of doxorubicin drug by Panax ginseng plant extract. Arch. Razi Inst. 2021, 76, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Zaman, W.; Ye, J.; Ahmad, M.; Saqib, S.; Shinwari, Z.K.; Chen, Z. Phylogenetic exploration of traditional Chinese medicinal plants: A case study on Lamiaceae (angiosperms). Pakistan J. Bot. 2022, 54, 1033–1040. [Google Scholar] [CrossRef]
- Zaman, W.; Ahmad, M.; Zafar, M.; Amina, H.; Lubna; Saqib, S.; Ullah, F.; Ayaz, A.; Bahadur, S.; Park, S. Diversity of medicinal plants used as male contraceptives: An initiative towards herbal contraceptives. Indian J. Tradit. Knowl. 2022, 21, 616–624. [Google Scholar]
- Alonso-Castro, A.J.; Villarreal, M.L.; Salazar-Olivo, L.A.; Gomez-Sanchez, M.; Dominguez, F.; Garcia-Carranca, A. Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies. J. Ethnopharmacol. 2011, 133, 945–972. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Herrera, N.J.; Jacobo-Herrera, F.E.; Zentella-Dehesa, A.; Andrade-Cetto, A.; Heinrich, M.; Pérez-Plasencia, C. Medicinal plants used in Mexican traditional medicine for the treatment of colorectal cancer. J. Ethnopharmacol. 2016, 179, 391–402. [Google Scholar] [CrossRef]
- Da Rocha, A.B.; Lopes, R.M.; Schwartsmann, G. Natural products in anticancer therapy. Curr. Opin. Pharmacol. 2001, 1, 364–369. [Google Scholar] [CrossRef]
- Cárdenas Garza, G.R.; Elizondo Luévano, J.H.; Bazaldúa Rodríguez, A.F.; Chávez Montes, A.; Pérez Hernández, R.A.; Martínez Delgado, A.J.; López Villarreal, S.M.; Rodríguez Rodríguez, J.; Sánchez Casas, R.M.; Castillo Velázquez, U.; et al. Benefits of cardamom (Elettaria cardamomum (L.) Maton) and turmeric (Curcuma longa L.) extracts for their applications as natural anti-inflammatory adjuvants. Plants 2021, 10, 1908–1924. [Google Scholar] [CrossRef] [PubMed]
- Elizondo-Luévano, J.H.; Castro-Ríos, R.; Sánchez-García, E.; Hernández-García, M.E.; Vargas-Villarreal, J.; Rodríguez-Luis, O.E.; Chávez-Montes, A. In vitro study of antiamoebic activity of methanol extracts of Argemone mexicana on trophozoites of Entamoeba histolytica HM1-IMSS. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Martinez, H.C.; Gómez-Flores, R.; Tamez-Guerra, P.; Quintanilla-Licea, R.; Samaniego-Escamilla, M.A.; Monreal-Cuevas, E.; Tamez-Guerra, R.; Rodriguez-Padilla, C. Antitumor activity of Pachycereus marginatus (DC.) Britton Rose extracts against murine lymphoma L5178Y-R and skin melanoma B16F10 cells. J. Med. Plants Res. 2016, 10, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Rai, P.K.; Lalramnghinglova, H. Ethnomedicinal plant resources of Mizoram, India: Implication of traditional knowledge in health care system. Ethnobot. Leafl. 2010, 14, 274–305. [Google Scholar]
- Gerson-Cwilich, R.; Serrano-Olvera, A.; Villalobos-Prieto, A. Complementary and alternative medicine (CAM) in Mexican patients with cancer. Clin. Transl. Oncol. 2006, 8, 200–207. [Google Scholar] [CrossRef]
- Helmstädter, A.; Staiger, C. Traditional use of medicinal agents: A valid source of evidence. Drug Discov. Today 2014, 19, 4–7. [Google Scholar] [CrossRef]
- Molina-Garza, Z.J.; Bazaldúa-Rodríguez, A.F.; Quintanilla-Licea, R.; Galaviz-Silva, L. Anti-Trypanosoma cruzi activity of 10 medicinal plants used in northeast Mexico. Acta Trop. 2014, 136, 14–18. [Google Scholar] [CrossRef]
- Hussain, T.; Bajpai, S.; Saeed, M.; Moin, A.; Alafnan, A.; Khan, M.; Kamal, M.A.; Ganash, M.; Ashraf, G.M. Potentiating effect of ethnomedicinal plants against proliferation on different cancer cell lines. Curr. Drug Metab. 2018, 19, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Gálvez Romero, J.L.; Parada Sosa, C.M.; Burgoa, G.L.; Lorenzo Leal, A.C.; El Kassis, E.G.; Bautista Rodríguez, E.; Paredes Juárez, G.A.; Hernández, L.R.; Bach, H.; Juárez, Z.N. Antimycobacterial, cytotoxic, and anti-inflammatory activities of Artemisia ludoviciana. J. Ethnopharmacol. 2022, 293, 115249. [Google Scholar] [CrossRef]
- Dolghi, A.; Buzatu, R.; Marcovici, I.; Pinzaru, I.; Dehelean, C.A.; Dobrescu, A.; Olaru, F.; Popescu, G.A.; Navolan, D.; Cretu, O.M.; et al. Phytochemical analysis and in vitro cytotoxic activity against colorectal adenocarcinoma cells of Hippophae rhamnodies L., Cymbopogon citratus (D.C.) Stapf, and Ocimum basilicum L. essential oils. Plants 2021, 10, 2752–2768. [Google Scholar] [CrossRef]
- Rodríguez-Chávez, J.L.; Egas, V.; Linares, E.; Bye, R.; Hernández, T.; Espinosa-García, F.J.; Delgado, G. Mexican Arnica (Heterotheca inuloides Cass. Asteraceae: Astereae): Ethnomedical uses, chemical constituents and biological properties. J. Ethnopharmacol. 2017, 195, 39–63. [Google Scholar] [CrossRef]
- Araujo-Espino, D.I.; Zamora-Perez, A.L.; Zúñiga-González, G.M.; Gutiérrez-Hernández, R.; Morales-Velazquez, G.; Lazalde-Ramos, B.P. Genotoxic and cytotoxic evaluation of Jatropha dioica Sessé ex Cerv. by the micronucleus test in mouse peripheral blood. Regul. Toxicol. Pharmacol. 2017, 86, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Vega-Avila, E.; Espejo-Serna, A.; Alarcón-Aguilar, F.; Velasco-Lezama, R. Cytotoxic activity of four Mexican medicinal plants. Proc. West. Pharmacol. Soc. 2009, 52, 78–82. Available online: https://www.researchgate.net/profile/Adolfo-Espejo/publication/51841133_Cytotoxic_Activity_of_Four_Mexican_Medicinal_Plants/links/0fcfd50fd574cd355c000000/Cytotoxic-Activity-of-Four-Mexican-Medicinal-Plants.pdf (accessed on 14 August 2022).
- Sharma, A.; Flores-Vallejo, R.d.C.; Cardoso-Taketa, A.; Villarreal, M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 2017, 208, 264–329. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Melo, K.Y.; Galván-Rodrigo, A.A.; Martínez-Olivo, I.E.; Núñez-Mojica, G.; Ávalos-Alanís, F.G.; García, A.; Del Rayo Camacho-Corona, M. Larrea tridentata and its biological activities. Curr. Top. Med. Chem. 2021, 21, 2352–2364. [Google Scholar] [CrossRef]
- Ferreira, T.L.; Evangelista, A.J.J. Mimosa tenuiflora’s antimicrobial activity on bacteria and fungi from medical importance: An integrative review. Arch. Microbiol. 2021, 203, 3399–3406. [Google Scholar] [CrossRef]
- Jiménez-Estrada, M.; Huerta-Reyes, M.; Tavera-Hernández, R.; Alvarado-Sansininea, J.J.; Alvarez, A.B. Contributions from Mexican flora for the treatment of diabetes mellitus: Molecules of Psacalium decompositum (A. Gray) H. Rob & Brettell. Molecules 2021, 26, 2892–2915. [Google Scholar] [CrossRef]
- Nahar, L.; El-Seedi, H.R.; Khalifa, S.A.M.; Mohammadhosseini, M.; Sarker, S.D. Ruta essential oils: Composition and bioactivities. Molecules 2021, 26, 4766–4796. [Google Scholar] [CrossRef]
- Maldonado-Cubas, J.; San Martin-Martínez, E.; Quiroz-Reyes, C.N.; Casañas-Pimentel, R.G. Cytotoxic effect of Semialarium mexicanum (Miers) Mennega root bark extracts and fractions against breast cancer cells. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2018, 24, 1185–1201. [Google Scholar] [CrossRef]
- Tian, L.W.; Zhang, Z.; Long, H.L.; Zhang, Y.J. Steroidal saponins from the genus Smilax and their biological activities. Nat. Products Bioprospect. 2017, 7, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.B.; Qin, W.; Yang, Z.; Shen, S.; Ma, Y.; Wang, L.Y.; Zhuo, Q.; Gong, Z.L.; Huo, J.S.; Chen, C. Optimization of three-dimensional culture conditions of HepG2 cells with response surface methodology based on the VitroGel system. Biomed. Environ. Sci. 2022, 35, 688–698. [Google Scholar] [CrossRef]
- Guo, L.; Dial, S.; Shi, L.; Branham, W.; Liu, J.; Fang, J.L.; Green, B.; Deng, H.; Kaput, J.; Ning, B. Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab. Dispos. 2011, 39, 528–538. [Google Scholar] [CrossRef] [Green Version]
- Wilkening, S.; Stahl, F.; Bader, A. Comparison of primary human hepatocytes and hepatoma cell line hepg2 with regard to their biotransformation properties. Drug Metab. Dispos. 2003, 31, 1035–1042. [Google Scholar] [CrossRef]
- Weerapreeyakul, N.; Junhom, C.; Barusrux, S.; Thitimetharoch, T. Induction of apoptosis in human hepatocellular carcinoma cells by extracts of Lannea coromandelica (Houtt.) Merr. and Diospyros castanea (Craib) Fletcher. Chinese Med. 2016, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bézivin, C.; Tomasi, S.; Lohezic-Le Devehat, F.; Boustie, J. Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine 2003, 10, 499–503. [Google Scholar] [CrossRef]
- Parvathy, C.R.; Praseetha, P.K. Carbon quantum dot induced hemolysis and anti-angiogenesis in proliferating cancers with Vitis vinifera as the source material. Vegetos 2022, 1–9. [Google Scholar] [CrossRef]
- Arora, A.; Nair, M.G.; Strasburg, G.M. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic. Biol. Med. 1998, 24, 1355–1363. [Google Scholar] [CrossRef]
- Dkhil, M.A.; Delic, D.; El Enshasy, H.A.; Abdel Moneim, A.E. Medicinal plants in therapy: Antioxidant activities. Oxid. Med. Cell. Longev. 2016, 2016, 7468524. [Google Scholar] [CrossRef]
- Remila, S.; Atmani-Kilani, D.; Delemasure, S.; Connat, J.-L.; Azib, L.; Richard, T.; Atmani, D. Antioxidant, cytoprotective, anti-inflammatory and anticancer activities of Pistacia lentiscus (Anacardiaceae) leaf and fruit extracts. Eur. J. Integr. Med. 2015, 7, 274–286. [Google Scholar] [CrossRef]
- Bouyahya, A.; Guaouguaou, F.-E.; El Omari, N.; El Menyiy, N.; Balahbib, A.; El-Shazly, M.; Bakri, Y. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. J. Pharm. Anal. 2022, 12, 35–57. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, W.; Piao, H.; Xu, W.; Shi, H.; Zhao, C. The genus Gnaphalium L. (Compositae): Phytochemical and pharmacological characteristics. Molecules 2013, 18, 8298–8318. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Carrillo-Inungaray, M.L.; López, L.I.; Nevárez-Moorillón, G.V.; Aguilar, C.N. Total phenolic content, in vitro antioxidant activity and chemical composition of plant extracts from semiarid Mexican region. Asian Pac. J. Trop. Med. 2015, 8, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Baqueiro-Peña, I.; Guerrero-Beltrán, J. Physicochemical and antioxidant characterization of Justicia spicigera. Food Chem. 2017, 218, 305–312. [Google Scholar] [CrossRef]
- Elizondo-Luevano, J.H.; Verde-Star, J.; González-Horta, A.; Castro-Ríos, R.; Hernández-García, M.E.; Chávez-Montes, A. In vitro effect of methanolic extract of Argemone mexicana against Trichomonas vaginalis. Korean J. Parasitol. 2020, 58, 135–145. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Castro-Ríos, R.; López-Abán, J.; Gorgojo-Galindo, O.; Fernández-Soto, P.; Vicente, B.; Muro, A.; Chávez-Montes, A. Berberine: A nematocidal alkaloid from Argemone mexicana against Strongyloides venezuelensis. Exp. Parasitol. 2021, 220, 1–7. [Google Scholar] [CrossRef]
- Orozco-Flores, A.A.; Valadez-Lira, J.A.; Covarrubias-Cárdenas, K.E.; Pérez-Trujillo, J.J.; Gomez-Flores, R.; Caballero-Hernández, D.; Tamez-Guerra, R.; Rodríguez-Padilla, C.; Tamez-Guerra, P. In vitro antitumor, pro-inflammatory, and pro-coagulant activities of Megalopyge opercularis J.E. Smith hemolymph and spine venom. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Stevigny, C.; Bailly, C.; Quetin-Leclercq, J. Cytotoxic and antitumor potentialities of aporphinoid alkaloids. Curr. Med. Chem. Anti-Cancer Agents 2005, 5, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Ozsoylemez, O.D.; Ozcan, G. Effects of Colchicum baytopiorum leaf extract on cytotoxicity and cell death pathways in C-4 I and Vero cell lines. J. BUON Off. J. Balk. Union Oncol. 2021, 26, 1135–1147. [Google Scholar]
- Bazaldúa-Rodríguez, A.F.; Quintanilla-Licea, R.; Verde-Star, M.J.; Hernández-García, M.E.; Vargas-Villarreal, J.; Garza-González, J.N. Furanocoumarins from Ruta chalepensis with amebicide activity. Molecules 2021, 26, 3684–3694. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Falco, T.; Bonesi, M.; Sicari, V.; Tundis, R.; Bruno, M. Ruta chalepensis L. (Rutaceae) leaf extract: Chemical composition, antioxidant and hypoglicaemic activities. Nat. Prod. Res. 2018, 32, 521–528. [Google Scholar] [CrossRef]
- Varamini, P.; Soltani, M.; Ghaderi, A. Cell cycle analysis and cytotoxic potential of Ruta graveolens against human tumor cell lines. Neoplasma 2009, 56, 490–493. [Google Scholar] [CrossRef] [Green Version]
- Réthy, B.; Zupkó, I.; Minorics, R.; Hohmann, J.; Ocsovszki, I.; Falkay, G. Investigation of cytotoxic activity on human cancer cell lines of arborinine and furanoacridones isolated from Ruta graveolens. Planta Med. 2007, 73, 41–48. [Google Scholar] [CrossRef]
- Günaydin, K.; Savci, S. Phytochemical studies on Ruta chalepensis (LAM.) Lamarck. Nat. Prod. Res. 2005, 19, 203–210. [Google Scholar] [CrossRef]
- Jacobo-Salcedo, M.D.R.; Alonso-Castro, A.J.; Salazar-Olivo, L.A.; Carranza-Alvarez, C.; Gonzaĺez-Espińdola, L.A.; Domińguez, F.; Maciel-Torres, S.P.; Garciá-Lujan, C.; Gonzaĺez-Martińez, M.D.R.; Goḿez-Sańchez, M.; et al. Antimicrobial and cytotoxic effects of Mexican medicinal plants. Nat. Prod. Commun. 2011, 6, 1925–1928. [Google Scholar] [CrossRef] [Green Version]
- Ángeles-López, G.E.; González-Trujano, M.E.; Rodríguez, R.; Déciga-Campos, M.; Brindis, F.; Ventura-Martínez, R. Gastrointestinal activity of Justicia spicigera Schltdl. in experimental models. Nat. Prod. Res. 2021, 35, 1847–1851. [Google Scholar] [CrossRef]
- Zapata-Morales, J.R.; Alonso-Castro, A.J.; Domínguez, F.; Carranza-Álvarez, C.; Castellanos, L.M.O.; Martínez-Medina, R.M.; Pérez-Urizar, J. Antinociceptive activity of an ethanol extract of Justicia spicigera. Drug Dev. Res. 2016, 77, 180–186. [Google Scholar] [CrossRef]
- Patel, D.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits. Cardiovasc. Hematol. Disord. Drug Targets 2021, 21, 104–114. [Google Scholar] [CrossRef]
- Melchor-Martínez, E.M.; Silva-Mares, D.A.; Torres-López, E.; Waksman-Minsky, N.; Pauli, G.F.; Chen, S.-N.; Niemitz, M.; Sánchez-Castellanos, M.; Toscano, A.; Cuevas, G.; et al. Stereochemistry of a second riolozane and other diterpenoids from Jatropha dioica. J. Nat. Prod. 2017, 80, 2252–2262. [Google Scholar] [CrossRef]
- Castro-Ríos, R.; Melchor-Martínez, E.M.; Solís-Cruz, G.Y.; Rivas-Galindo, V.M.; Silva-Mares, D.A.; Cavazos-Rocha, N.C. HPLC method validation for Jatropha dioica extracts analysis. J. Chromatogr. Sci. 2020, 58, 445–453. [Google Scholar] [CrossRef]
- Vargas-Segura, A.I.; Silva-Belmares, S.Y.; Segura-Ceniceros, E.P.; Ascacio-Valdés, J.A.; Méndez-González, L.; Ilyina, A. Screening and characterization of medicinal plants extracts with bactericidal activity against Streptococcus mutans. Nat. Prod. Res. 2020, 34, 2672–2676. [Google Scholar] [CrossRef]
- Li, P.; Li, L.; Zhu, Q.; Xu, M. Abietane diterpenoids isolated from Clerodendrum bracteatum and their antioxidant and cytotoxic activities. Molecules 2021, 26, 4870–4876. [Google Scholar] [CrossRef]
- Silva-Mares, D.; Torres-López, E.; Rivas-Estilla, A.M.; Cordero-Pérez, P.; Waksman-Minsky, N.; Rivas-Galindo, V.M. Plants from northeast Mexico with anti-HSV activity. Nat. Prod. Commun. 2013, 8, 297–298. [Google Scholar] [CrossRef]
- Knauth, P.; Acevedo-Hernández, G.J.; Cano, M.E.; Gutiérrez-Lomelí, M.; López, Z. In vitro bioactivity of methanolic extracts from Amphipterygium adstringens (Schltdl.) Schiede ex Standl., Chenopodium ambrosioides L., Cirsium mexicanum DC., Eryngium carlinae F. Delaroche, and Pithecellobium dulce (Roxb.) Benth. Used in Traditional Medi. Evid. Based Complement. Altern. Med. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Alam-Escamilla, D.; Estrada-Muñiz, E.; Solís-Villegas, E.; Elizondo, G.; Vega, L. Genotoxic and cytostatic effects of 6-pentadecyl salicylic anacardic acid in transformed cell lines and peripheral blood mononuclear cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015, 777, 43–53. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, A.; Peixoto, I.T.A.; Verde-Star, M.J.; De La Torre-Zavala, S.; Aviles-Arnaut, H.; Ruiz, A.L.T.G. in vitro antimicrobial and antiproliferative activity of Amphipterygium adstringens. Evid. Based Complement. Altern. Med. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lambertini, E.; Piva, R.; Khan, M.T.H.; Lampronti, I.; Bianchi, N.; Borgatti, M.; Gambari, R. Effects of extracts from Bangladeshi medicinal plants on in vitro proliferation of human breast cancer cell lines and expression of estrogen receptor alpha gene. Int. J. Oncol. 2004, 24, 419–423. [Google Scholar] [CrossRef]
- Singh, S.; Verma, M.; Malhotra, M.; Prakash, S.; Singh, S.; Verma, M.; Malhotra, M.; Prakash, S.; Singh, T.D. Cytotoxicity of alkaloids isolated from Argemone mexicana on SW480 human colon cancer cell line. Pharm. Biol. 2016, 54, 740–745. [Google Scholar] [CrossRef]
- De La Cruz-Jiménez, L.; Hernández-Torres, M.A.; Monroy-García, I.N.; Rivas-Morales, C.; Verde-Star, M.J.; Gonzalez-Villasana, V.; Viveros-Valdez, E. Biological activities of seven medicinal plants used in Chiapas, Mexico. Plants 2022, 11, 1790–1801. [Google Scholar] [CrossRef]
- Sangkitikomol, W. Antioxidants in Thai herb, vegetable and fruit inhibit hemolysis and Heinz body formation in human erythrocytes. In Oxidative Stress—Environmental Induction and Dietary Antioxidants; Lushchak, V., Ed.; InTech: Shanghai, China, 2012; pp. 289–306. [Google Scholar]
- Coballase-Urrutia, E.; Pedraza-Chaverri, J.; Camacho-Carranza, R.; Cárdenas-Rodríguez, N.; Huerta-Gertrudis, B.; Medina-Campos, O.N.; Mendoza-Cruz, M.; Delgado-Lamas, G.; Espinosa-Aguirre, J.J. Antioxidant activity of Heterotheca inuloides extracts and of some of its metabolites. Toxicology 2010, 276, 41–48. [Google Scholar] [CrossRef]
- Bourvellec, C.L.; Bureau, S.; Renard, C.M.G.C.; Plenet, D.; Gautier, H.; Touloumet, L.; Girard, T.; Simon, S. Cultivar and year rather than agricultural practices affect primary and secondary metabolites in apple fruit. PLoS ONE 2015, 10, e0141916. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Villalobos, J.M.; Romo-Sáenz, C.I.; Morán-Santibañez, K.S.; Tamez-Guerra, P.; Quintanilla-Licea, R.; Orozco-Flores, A.A.; Romero-Arguelles, R.; Tamez-Guerra, R.; Rodríguez-Padilla, C.; Gomez-Flores, R. In vitro tumor cell growth inhibition induced by Lophocereus marginatus (DC.) S. Arias and Terrazas endophytic fungi extracts. Int. J. Environ. Res. Public Health 2021, 18, 9917–9925. [Google Scholar] [CrossRef]
- Effects, A. Nanoemulsions of Jasminum humile L. and Jasminum grandiflorum L. Essential Oils: An Approach to Enhance Their Cytotoxic and Antiviral Effects. Molecules 2022, 27, 36–39. [Google Scholar] [CrossRef]
- Al-Qubaisi, M.; Rozita, R.; Yeap, S.K.; Omar, A.R.; Ali, A.M.; Alitheen, N.B. Selective cytotoxicity of goniothalamin against hepatoblastoma HepG2 cells. Molecules 2011, 16, 2944–2959. [Google Scholar] [CrossRef] [Green Version]
- Elizondo-Luévano, J.H.; Pérez-Narváez, O.A.; Sánchez-García, E.; Castro-Ríos, R.; Hernández-García, M.E.; Chávez-Montes, A. In-vitro effect of Kalanchoe daigremontiana and its main component, quercetin against Entamoeba histolytica and Trichomonas vaginalis. Iran. J. Parasitol. 2021, 16, 394–401. [Google Scholar] [CrossRef]
- Pérez Marqués, U.; Murillo, G.; Tur, E.; Vinardell, M.P.; García Simón, G.; Pascual, J.R. Evaluación de la irritación ocular mediante un ensayo de hemólisis y desnaturalización de la hemoglobina in vitro. Rev. Toxicol. 2003, 20, 193–198. [Google Scholar]
- Elizondo-Luévano, J.H.; Hernández-García, M.E.; Pérez-Narváez, O.A.; Castro-Ríos, R.; Chávez-Montes, A. Berberina, curcumina y quercetina como potenciales agentes con capacidad antiparasitaria. Rev. Biol. Trop. 2020, 68, 1241–1249. [Google Scholar] [CrossRef]
- Pieroni, L.G.; De Rezende, F.M.; Ximenes, V.F.; Dokkedal, A.L. Antioxidant activity and total phenols from the methanolic extract of Miconia albicans (Sw.) Triana leaves. Molecules 2011, 16, 9439–9450. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Castro-Ríos, R.; Vicente, B.; Fernández-Soto, P.; López-Aban, J.; Muro, A.; Chávez-Montes, A.; Chávez-Montes, A. In vitro antischistosomal activity of the Argemone mexicana methanolic extract and its main component berberine. Iran. J. Parasitol. 2021, 16, 91–100. [Google Scholar] [CrossRef]
Plant Species | Family | Mexican Common Name | Evaluated Plant Part | Voucher Number | Yield % |
---|---|---|---|---|---|
Amphipterygium adstringens (Schltdl.) Standl. | Anacardiaceae | Cuachalalate | Bark | 30642 | 38.36 |
Argemone mexicana L. | Papaveraceae | Chicalote | Leaves | 29127 | 11.26 |
Artemisia ludoviciana Nutt. | Compositae | Estafiate | Leaves | 30643 | 18.39 |
Cymbopogon citratus (DC.) Stapf. | Poaceae | Zacate limón | Leaves | 30644 | 23.04 |
Heterotheca inuloides Cass. | Compositae | Mexican arnica | Flowers | 30646 | 20.49 |
Jatropha dioica Sessé | Euphorbiaceae | Sangre de dragón | Root | 30648 | 15.97 |
Justicia spicigera Schltdl. | Acanthaceae | Muicle | Leaves | 30649 | 13.18 |
Larrea tridentata (Sessé & Moc. ex DC.) Coville | Zygophyllaceae | Gobernadora | Leaves | 30650 | 13.17 |
Mimosa tenuiflora (Willd.) Poir. | Leguminosae | Tepezcohuite | Bark | 30651 | 10.84 |
Psacalium peltatum (Kunth) Cass. | Compositae | Matarique | Leaves | 30652 | 10.93 |
Pseudognaphalium obtusifolium (L.) Hilliard & B.L.Burtt. | Compositae | Gordolobo | Leaves | 30653 | 16.99 |
Ruta chalepensis L. | Rutaceae | Ruda | Root | 30654 | 19.39 |
Semialarium mexicanum (Miers) Mennega | Celastraceae | Cancerina | Bark | 30647 | 10.52 |
Smilax aspera L. | Smilacaceae | Zarzaparrilla | Leaves | 30655 | 13.14 |
Tagetes lucida Cav. | Compositae | Hierbanís or Yerbaniz | Bark | 30656 | 20.63 |
Plant Extract | HEP-G2 IC50 (µg/mL) | Vero IC50 (µg/mL) | SI |
---|---|---|---|
Amphipterygium adstringens | 41.77 ± 6.18 c | 197.98 ± 4.71 e | 4.74 |
Argemone mexicana | 820.78 ± 20.81 h | 245.41 ± 13.05 g | 0.29 |
Artemisia ludoviciana | 1034.76 ± 12.01 i,j | 197.37 ± 2.79 e | 0.19 |
Cymbopogon citratus | 1560.01 ± 23.26 j | 24.47 ± 3.79 a | 0.02 |
Heterotheca inuloides | 1002.08 ± 14.81 i | 36.95 ± 8.22 b | 0.04 |
Jatropha dioica | 12.34 ± 3.12 b | 70.59 ± 9.73 d | 5.72 |
Justicia spicigera | 2.92 ± 0.54 a | 54.91 ± 7.60 c | 18.84 |
Larrea tridentata | 403.05 ± 13.72 d | 214.64 ± 1.63 f | 0.53 |
Mimosa tenuiflora | 809.64 ± 19.72 h | 467.59 ± 13.72 h | 0.58 |
Psacalium peltatum | 975.81 ± 15.19 i | 54.91 ± 4.94 c | 0.06 |
Pseudognaphalium obtusifolium | 690.05 ± 10.45 g | 61.98 ± 2.82 c,d | 0.09 |
Ruta chalepensis | 1.79 ± 0.38 a | 522.08 ± 29.96 i | 291.50 |
Semialarium mexicanum | 527.10 ± 20.87 e | 20.75 ± 3.16 a | 0.04 |
Smilax aspera | 393.05 ± 15.06 d | 582.11 ± 31.14 i | 1.48 |
Tagetes lucida | 607.93 ± 11.15 f | 780.62 ± 9.27 j | 1.28 |
Plant Extract | DPPH Assay (IC50 in µg/mL) |
---|---|
Amphipterygium adstringens | 504.89 ± 34.33 c |
Argemone mexicana | 565.98 ± 17.60 c |
Artemisia ludoviciana | 723.33 ± 25.92 d,e |
Cymbopogon citratus | 690.4 ± 26.37 d |
Heterotheca inuloides | 19.24 ± 2.11 b |
Jatropha dioica | 681.18 ± 15.64 d |
Justicia spicigera | 924.92 ± 30.83 f |
Larrea tridentata | 665.41 ± 31.70 d |
Mimosa tenuiflora | 547.66 ± 28.87 c |
Psacalium peltatum | 520.52 ± 15.69 c |
Pseudognaphalium obtusifolium | 528.67 ± 25.78 c |
Ruta chalepensis | 859.85 ± 25.08 e |
Semialarium mexicanum | 1,639.79 ± 35.74 g |
Smilax aspera | 936.5 ± 11.19 f |
Tagetes lucida | 550.85 ± 16.09 c |
Ascorbic acid (positive control) | 7.23 ± 0.03 a |
Plant Extract | Hemolytic Activity | Anti-Hemolytic Activity |
---|---|---|
IC50 (µg/mL) | ||
Amphipterygium adstringens | 203.62 ± 11.96 a | 5.35 ± 1.63 a |
Argemone mexicana | 973.88 ± 38.46 f | 101.60 ± 10.21 d |
Artemisia ludoviciana | 746.39 ± 12.80 d | 50.31 ± 7.64 c |
Cymbopogon citratus | 606.82 ± 19.12 c | 32.01 ± 4.74 b |
Heterotheca inuloides | 835.73 ± 23.73 e | 5.42 ± 0.89 a |
Jatropha dioica | 545.74 ± 8.76 b | 72.92 ± 4.85 d |
Justicia spicigera | ˃2500 † | 81.08 ± 8.10 d |
Larrea tridentata | 741.71 ± 12.80 d | 777.85 ± 18.58 f |
Mimosa tenuiflora | ˃2500 † | 71.24 ± 6.47 d |
Psacalium peltatum | ˃2500 † | 5.92 ± 1.29 a |
Pseudognaphalium obtusifolium | ˃2500 † | 143.17 ± 19.29 e |
Ruta chalepensis | 738.73 ± 20.74 d | 28.29 ± 2.31 b |
Semialarium mexicanum | 1976.75 ± 26.06 f | 41.32 ± 8.27 b c |
Smilax aspera | 625.17 ± 13.11 c | 4.41 ± 0.69 a |
Tagetes lucida | 843.84 ± 31.93 e | 62.48 ± 8.52 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elizondo-Luévano, J.H.; Gomez-Flores, R.; Verde-Star, M.J.; Tamez-Guerra, P.; Romo-Sáenz, C.I.; Chávez-Montes, A.; Rodríguez-Garza, N.E.; Quintanilla-Licea, R. In Vitro Cytotoxic Activity of Methanol Extracts of Selected Medicinal Plants Traditionally Used in Mexico against Human Hepatocellular Carcinoma. Plants 2022, 11, 2862. https://doi.org/10.3390/plants11212862
Elizondo-Luévano JH, Gomez-Flores R, Verde-Star MJ, Tamez-Guerra P, Romo-Sáenz CI, Chávez-Montes A, Rodríguez-Garza NE, Quintanilla-Licea R. In Vitro Cytotoxic Activity of Methanol Extracts of Selected Medicinal Plants Traditionally Used in Mexico against Human Hepatocellular Carcinoma. Plants. 2022; 11(21):2862. https://doi.org/10.3390/plants11212862
Chicago/Turabian StyleElizondo-Luévano, Joel H., Ricardo Gomez-Flores, María J. Verde-Star, Patricia Tamez-Guerra, César I. Romo-Sáenz, Abelardo Chávez-Montes, Nancy E. Rodríguez-Garza, and Ramiro Quintanilla-Licea. 2022. "In Vitro Cytotoxic Activity of Methanol Extracts of Selected Medicinal Plants Traditionally Used in Mexico against Human Hepatocellular Carcinoma" Plants 11, no. 21: 2862. https://doi.org/10.3390/plants11212862
APA StyleElizondo-Luévano, J. H., Gomez-Flores, R., Verde-Star, M. J., Tamez-Guerra, P., Romo-Sáenz, C. I., Chávez-Montes, A., Rodríguez-Garza, N. E., & Quintanilla-Licea, R. (2022). In Vitro Cytotoxic Activity of Methanol Extracts of Selected Medicinal Plants Traditionally Used in Mexico against Human Hepatocellular Carcinoma. Plants, 11(21), 2862. https://doi.org/10.3390/plants11212862