Crop Proteomics under Abiotic Stress: From Data to Insights
Abstract
:1. Introduction
2. Proteomic Technology Adopted by Plant Sciences
3. Crop Subcellular Proteomics
3.1. Construction of Useful Bioinformatic Tool and Database for Crop Subcellular Proteomics
3.2. Methodology of Subcellular Proteomics
3.3. Subcellular Proteomics in Understanding Mechanisms in Crops under Abiotic Stress
4. Crop Proteomics of Post-Translational Modifications
4.1. Importance of Post-Translational Modifications in Crops
4.2. Post-Translational Modifications in Understanding Mechanisms in Crops under Abiotic Stress
5. Crop Proteomics in Understanding Environmental Stress Responses
5.1. Rice Proteomics in Understanding Signaling Mechanisms under Drought Stress
5.2. Wheat Proteomics in Understanding Signaling Mechanisms under Salt Stress
5.3. Maize Proteomics in Understanding Signaling Mechanisms under Osmotic Stress
5.4. Soybean Proteomics in Understanding Signaling Mechanisms under Flooding Stress
6. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, S.; Kim, W.C. Plant growth promotion under water: Decrease of waterlogging-induced ACC and ethylene levels by ACC deaminase-producing bacteria. Front. Microbiol. 2018, 9, 01096. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Khan, M.A.; Kim, W.C. Pseudomonas veronii KJ mitigates flood stress-associated damage in Sesamum indicum L. Appl. Biol. Chem. 2018, 61, 575–585. [Google Scholar] [CrossRef]
- Ahmad, P.; Abdel Latef, A.A.; Rasool, S.; Akram, N.A.; Ashraf, M.; Gucel, S. Role of proteomics in crop stress tolerance. Front. Plant Sci. 2016, 7, 1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef]
- Orimoloye, I.R. Agricultural drought and its potential impacts: Enabling decision-support for food security in vulnerable regions. Front. Sustain. Food Syst. 2022, 6, 838824. [Google Scholar] [CrossRef]
- Mahmood, T.; Khalid, S.; Abdullah, M.; Ahmed, Z.; Shah, M.K.N.; Ghafoor, A.; Du, X. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Park, S.K.; Kim, W.C. The pragmatic introduction and expression of microbial transgenes in plants. J. Microbiol. Biotechnol. 2018, 28, 1955–1970. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.; Kumar, N.; Liu, J.; Pajerowska-Mukhtar, K.M. Dynamic regulatory event mining by iDREM in large-scale multi-omics datasets during biotic and abiotic stress in plants. Methods Mol. Biol. 2021, 2328, 191–202. [Google Scholar]
- Winck, F.V.; Dos-Santos, A.L.W.; Calderan-Rodrigues, M.J. Plant proteomics and systems biology. Adv. Exp. Med. Biol. 2021, 1346, 51–66. [Google Scholar]
- Mergner, J.; Kuster, B. Plant proteome dynamics. Annu. Rev. Plant. Biol. 2022, 73, 67–92. [Google Scholar] [CrossRef]
- Jorrin-Novo, J.V.; Komatsu, S.; Sanchez-Lucas, R.; Rodríguez de Francisco, L.E. Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics! J. Proteom. 2019, 198, 1–10. [Google Scholar] [CrossRef]
- Min, C.W.; Gupta, R.; Agrawal, G.K.; Rakwal, R.; Kim, S.T. Concepts and strategies of soybean seed proteomics using the shotgun proteomics approach. Expert Rev. Proteom. 2019, 16, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Lamelas, L.; García, L.; Cañal, M.J.; Meijón, M. Subcellular Proteomics in Conifers: Purification of Nuclei and Chloroplast Proteomes. In Plant Proteomics. Methods in Molecular Biology, 3rd ed.; Jorrin-Novo, J., Valledor, L., Castillejo, M., Rey, M.D., Eds.; Humana Press: New York, NY, USA, 2020; Volume 2139, pp. 69–78. [Google Scholar]
- Zhu, H.; Tamura, T.; Hamachi, I. Chemical proteomics for subcellular proteome analysis. Curr. Opin. Chem. Biol. 2019, 48, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S. Plant proteomic research 2.0: Trends and perspectives. Int. J. Mol. Sci. 2019, 20, 2495. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Komatsu, S. Plant subcellular proteomics: Application for exploring optimal cell function in soybean. J. Proteom. 2016, 143, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Vu, L.D.; Gevaert, K.; De Smet, I. Protein Language: Post-translational modifications talking to each other. Trends Plant Sci. 2018, 23, 1068–1080. [Google Scholar] [CrossRef]
- Hashiguchi, A.; Komatsu, S. Impact of post-translational modifications of crop proteins under abiotic stress. Proteomes 2016, 4, 42. [Google Scholar] [CrossRef]
- Spoel, S.H. Orchestrating the proteome with post-translational modifications. J. Exp. Bot. 2018, 69, 4499–4503. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, N.; Al-Motawa, M.; Thornalley, P.J. Protein glycation in plants-an under-researched field with much still to discover. Int. J. Mol. Sci. 2020, 21, 3942. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, W.; Wang, X. Post-translational control of ABA signalling: The roles of protein phosphorylation and ubiquitination. Plant Biotechnol. J. 2017, 1, 4–14. [Google Scholar] [CrossRef]
- O'Farrell, P.H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975, 250, 4007–4021. [Google Scholar] [CrossRef]
- Tan, B.C.; Lim, Y.S.; Lau, S.E. Proteomics in commercial crops: An overview. J. Proteom. 2017, 169, 176–188. [Google Scholar] [CrossRef]
- Mamone, G.; Di Stasio, L.; De Caro, S.; Picariello, G.; Nicolai, M.A.; Ferranti, P. Comprehensive analysis of the peanut allergome combining 2-DE gel-based and gel-free proteomics. Food Res. Int. 2019, 116, 1059–1065. [Google Scholar] [CrossRef]
- Sghaier-Hammami, B.; Castillejo, M.Á.; Baazaoui, N.; Jorrín-Novo, J.V.; Escandón, M. GeLC-Orbitrap/MS and 2-DE-MALDI-TOF/TOF comparative proteomics analysis of seed cotyledons from the non-orthodox Quercus ilex tree species. J. Proteom. 2021, 233, 104087. [Google Scholar] [CrossRef] [PubMed]
- López-Pedrouso, M.; Lorenzo, J.M.; Gagaoua, M.; Franco, D. Current trends in proteomic advances for food allergen analysis. Biology 2020, 9, 247. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.; Gao, L.; Zhang, R.; Zhang, C.; Hou, X. Correlation analysis of expression profile and quantitative iTRAQ-LC-MS/MS proteomics reveals resistance mechanism against TuMV in chinese cabbage (Brassica rapa ssp. pekinensis). Front. Genet. 2020, 11, 963. [Google Scholar] [CrossRef]
- Chen, M.X.; Zhang, Y.; Fernie, A.R.; Liu, Y.G.; Zhu, F.Y. SWATH-MS-based proteomics: Strategies and applications in plants. Trends Biotechnol. 2021, 39, 433–437. [Google Scholar] [CrossRef]
- Swart, C.; Martínez-Jaime, S.; Gorka, M.; Zander, K.; Graf, A. Hit-Gel: Streamlining in-gel protein digestion for high-throughput proteomics experiments. Sci. Rep. 2018, 8, 8582. [Google Scholar] [CrossRef] [Green Version]
- Maksup, S.; Pongpakpian, S.; Roytrakul, S. Proteomics of seed nutrition-associated proteins in germinated brown rice in four Thai rice cultivars analyzed by GeLC-MS/MS. Walailak J. Sci. Technol. 2020, 18, 6953. [Google Scholar] [CrossRef]
- Takahashi, D.; Li, B.; Nakayama, T.; Kawamura, Y.; Uemura, M. Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS. Methods Mol. Biol. 2020, 2139, 89–106. [Google Scholar]
- Salvato, F.; Loziuk, P.; Kiyota, E.; Daneluzzi, G.S.; Araujo, P.; Muddiman, D.C.; Mazzafera, P. Label-free quantitative proteomics of enriched nuclei from sugarcane (Saccharum ssp) stems in response to drought stress. Proteomics 2019, 19, e1900004. [Google Scholar] [CrossRef] [PubMed]
- Cheah, B.H.; Lin, H.H.; Chien, H.J.; Liao, C.T.; Liu, L.D.; Lai, C.C.; Lin, Y.F.; Chuang, W.P. SWATH-MS-based quantitative proteomics reveals a uniquely intricate defense response in Cnaphalocrocis medinalis-resistant rice. Sci. Rep. 2020, 10, 6597. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.X.; Lu, C.C.; Sun, P.C. Comprehensive transcriptome and proteome analyses reveal a novel sodium chloride responsive gene network in maize seed tissues during germination. Plant Cell Environ. 2021, 44, 88–101. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, Y.; Zhang, T.; Chen, M.; Song, H. Proteome evaluation of homolog abundance patterns in Arachis hypogaea cv. Tifrunner. Plant Methods 2022, 18, 6. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Yang, X.; Wen, Z.; Nagalakshmi, U.; Dinesh-Kumar, S.P. TurboID-based proximity labeling for in planta identification of protein-protein interaction networks. J. Vis. Exp. 2020, 159, e60728. [Google Scholar] [CrossRef] [PubMed]
- Fürtauer, L.; Küstner, L.; Weckwerth, W.; Heyer, A.G.; Nägele, T. Resolving subcellular plant metabolism. Plant J. 2019, 100, 438–455. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, S.; Hashiguchi, A. Subcellular proteomics: Application to elucidation of flooding-response mechanisms in soybean. Proteomes. 2018, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Hooper, C.M.; Castleden, I.R.; Aryamanesh, N.; Black, K.; Grasso, S.V.; Millar, A.H. CropPAL for discovering divergence in protein subcellular location in crops to support strategies for molecular crop breeding. Plant J. 2020, 104, 812–827. [Google Scholar] [CrossRef]
- Bhattacharya, O.; Ortiz, I.; Walling, L.L. Methodology: An optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. Plant Methods 2020, 16, 131. [Google Scholar] [CrossRef]
- Li, X.; Rehman, S.; Yamaguchi, H.; Hitachi, K.; Tsuchida, K.; Yamaguchi, T.; Sunohara, Y.; Matsumoto, H.; Komatsu, H. Proteomic analysis of the effect of plant-derived smoke on soybean during recovery from flooding stress. J. Proteom. 2018, 181, 238–248. [Google Scholar] [CrossRef]
- Niu, L.; Liu, L.; Wang, W. Digging for stress-responsive cell wall proteins for developing stress-resistant maize. Front. Plant Sci. 2020, 11, 576385. [Google Scholar] [CrossRef] [PubMed]
- Murashita, Y.; Nishiuchi, T.; Rehman, S.; Komatsu, S. Subcellular proteomics to understand promotive effect of plant-derived smoke solution on soybean root. Proteomes 2021, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Hochholdinger, F.; Marcon, C.; Baldauf, J.A.; Yu, P.; Frey, F.P. Proteomics of maize root development. Front. Plant Sci. 2018, 9, 143. [Google Scholar] [CrossRef]
- Hooper, C.M.; Castleden, I.R.; Tanz, S.K.; Grasso, S.V.; Millar, A.H. Subcellular proteomics as a unified approach of experimental localizations and computed prediction data for Arabidopsis and crop plants. Adv. Exp. Med. Biol. 2021, 1346, 67–89. [Google Scholar] [PubMed]
- Cheng, X.; Xiao, X.; Chou, K.C. pLoc_bal-mPlant: Predict Subcellular Localization of Plant Proteins by General PseAAC and Balancing Training Dataset. Curr. Pharm. Des. 2018, 24, 4013–4022. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Schwacke, R.; Flügge, U.I. Identification and Characterization of Plant Membrane Proteins Using ARAMEMNON. Methods Mol. Biol. 2018, 1696, 249–259. [Google Scholar]
- Sahu, S.S.; Loaiza, C.D.; Kaundal, R. Plant-mSubP: A computational framework for the prediction of single- and multi-target protein subcellular localization using integrated machine-learning approaches. AoB Plants. 2019, 12, 3. [Google Scholar] [CrossRef]
- Zhang, N.; Rao, R.S.P.; Salvato, F.; Havelund, J.F.; Møller, I.M.; Thelen, J.J.; Xu, D. MU-LOC: A machine-learning method for predicting mitochondrially localized proteins in plants. Front Plant Sci. 2018, 9, 634. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.K.; Singla, D. VacPred: Sequence-based prediction of plant vacuole proteins using machine-learning techniques. J. Biosci. 2020, 45, 106. [Google Scholar] [CrossRef]
- Mustafa, G.; Komatsu, S. Insights into the Response of Soybean Mitochondrial Proteins to Various Sizes of Aluminum Oxide Nanoparticles under Flooding Stress. J. Proteome Res. 2016, 15, 4464–4475. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Roy, S.K.; Kamal, A.H. Profiling of mitochondrial proteome in wheat roots. Mol. Biol. Rep. 2016, 41, 5359–5366. [Google Scholar] [CrossRef] [PubMed]
- Barua, P.; Subba, P.; Lande, N.V. Gel-based and gel-free search for plasma membrane proteins in chickpea (Cicer arietinum L.) augments the comprehensive data sets of membrane protein repertoire. J. Proteomics 2016, 143, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.; Itoh, T.; Hagi, Y.; Matsuta, S.; Nishiyama, A.; Chaya, G.; Kobayashi, Y.; Miura, K.; Komatsu, S. Proteomics analysis of plasma membrane fractions of the root, leaf, and flower of rice. Int. J. Mol. Sci. 2020, 21, 6988. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Komatsu, S. Nuclear proteomics reveals the role of protein synthesis and chromatin structure in root tip of soybean during the initial stage of flooding stress. J. Proteome Res. 2016, 15, 2283–2298. [Google Scholar] [CrossRef]
- Wang, X.; Komatsu, S. Isolation, purity assessment, and proteomic analysis of endoplasmic reticulum. Methods Mol. Biol. 2020, 2139, 117–131. [Google Scholar]
- Zhang, J.; Liu, D.; Zhu, D.; Liu, N.; Yan, Y. Endoplasmic reticulum subproteome analysis reveals underlying defense mechanisms of wheat seedling leaves under salt stress. Int. J. Mol. Sci. 2021, 22, 4840. [Google Scholar] [CrossRef]
- Li, P.; Liu, H.; Yang, H.; Pu, X.; Li, C.; Huo, H.; Chu, Z.; Chang, Y.; Lin, Y.; Liu, L. Translocation of drought-responsive proteins from the chloroplasts. Cells 2020, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Islinger, M.; Manner, A.; Völkl, A. The craft of peroxisome purification-a technical survey through the decades. Subcell. Biochem. 2018, 89, 85–122. [Google Scholar]
- Ghatak, A.; Chaturvedi, P.; Weckwerth, W. Cereal crop proteomics: Systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front. Plant Sci. 2017, 8, 757. [Google Scholar] [CrossRef] [Green Version]
- Strasser, R.; Seifert, G.J.; Doblin, M.S.; Johnson, K.L.; Ruprecht, C.; Pfrengle, F.; Bacic, A.; Estevez, J.M. Cracking the “Sugar Code”: A snapshot of N- and O-glycosylation pathways and functions in plants cells. Front. Plant Sci. 2021, 12, 640919. [Google Scholar] [CrossRef] [PubMed]
- Marx, H.; Minogue, C.; Jayaraman, D. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat. Biotechnol. 2016, 34, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Zadražnik, T.; Moen, A.; Egge-Jacobsen, W.; Meglič, V.; Šuštar-Vozlič, J. Towards a better understanding of protein changes in common bean under drought: A case study of N-glycoproteins. Plant Physiol. Biochem. 2017, 118, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhu, D.; Duan, W.; Deng, X.; Zhang, J.; Ye, X.; Yan, Y. Plasma membrane N-glycoproteome analysis of wheat seedling leaves under drought stress. Int. J. Biol. Macromol. 2021, 193, 1541–1550. [Google Scholar] [CrossRef]
- Wang, X.; Hu, H.; Li, F.; Yang, B.; Komatsu, S.; Zhou, S. Quantitative proteomics reveals dual effects of calcium on radicle protrusion in soybean. J Proteom. 2021, 230, 103999. [Google Scholar] [CrossRef]
- Hsu, C.C.; Zhu, Y.; Arrington, J.V. Universal plant phosphoproteomics workflow and its application to tomato signaling in response to cold stress. Mol. Cell Proteom. 2018, 17, 2068–2080. [Google Scholar] [CrossRef]
- Arefian, M.; Bhagya, N.; Prasad, T.S.K. Phosphorylation-mediated signalling in flowering: Prospects and retrospects of phosphoproteomics in crops. Biol. Rev. Camb. Philos. Soc. 2021, 96, 2164–2191. [Google Scholar] [CrossRef]
- Fan, W.; Zheng, H.; Wang, G. Proteomic analysis of ubiquitinated proteins in maize immature kernels. J. Proteom. 2021, 243, 104261. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, X.; Yang, S.; Ren, H.; Yuan, J.; Jin, H.; Shi, C.; Lai, Z.; Xia, G. Functional analysis of tomato CHIP ubiquitin E3 ligase in heat tolerance. Sci. Rep. 2021, 11, 1713. [Google Scholar] [CrossRef]
- Hashiguchi, A.; Komatsu, S. Early changes in S-Nitrosoproteome in soybean seedlings under flooding stress. Plant Mol. Biol. Rep. 2018, 36, 822–831. [Google Scholar] [CrossRef]
- Qiu, C.; Sun, J.; Wang, Y.; Sun, L.; Xie, H.; Ding, Y.; Qian, W.; Ding, Z. First nitrosoproteomic profiling deciphers the cysteine S-nitrosylation involved in multiple metabolic pathways of tea leaves. Sci. Rep. 2019, 9, 17525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, C.; Qiao, Z.; Chen, X.; Cao, P.; Liu, K.; Liu, S.; Ye, L.; Gong, Z. Proteome-wide analyses reveal the diverse functions of lysine 2-hydroxyisobutyrylation and S-nitrosylation in Oryza sativa. Rice 2020, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, G.; Lin, Q.; Liang, W.; Gao, Z.; Mu, P.; Li, G.; Song, L. Systematic analysis of the lysine malonylome in common wheat. BMC Genom. 2018, 19, 209. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zheng, B.; Zhao, W.; Ren, T.; Zhang, X.; Ning, T.; Liu, P. Global analysis of lysine acetylation in soybean leaves. Sci. Rep. 2021, 11, 17858. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Liu, S.; Chen, C.; Zhu, J.; Yang, X.; Zhou, Y.; Guo, R.; Liu, X.; Gong, Z. Global proteome analysis links lysine acetylation to diverse functions in Oryza sativa. Proteomics 2018, 18, 1700036. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D. Key developmental transitions during flower morphogenesis and their regulation. Curr. Opin. Genet. 2017, 45, 44–50. [Google Scholar] [CrossRef]
- Chen, Y.; Inzé, D.; Vanhaeren, H. Post-translational modifications regulate the activity of the growth-restricting protease DA1. J. Exp. Bot. 2021, 72, 3352–3366. [Google Scholar] [CrossRef]
- Yu, F.; Li, M.; He, D.; Yang, P. Advances on post-translational modifications involved in seed germination. Front. Plant Sci. 2021, 12, 642979. [Google Scholar] [CrossRef]
- Stührwohldt, N.; Schaller, A. Regulation of plant peptide hormones and growth factors by post-translational modification. Plant Biol. 2019, 21, 49–63. [Google Scholar] [CrossRef]
- Leutert, M.; Entwisle, S.W.; Villén, J. Decoding post-translational modification crosstalk with proteomics. Mol. Cell Proteom. 2021, 20, 100129. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Yang, J.; Zhou, W.; Dai, S. Exploring the diversity of plant proteome. J. Integr. Plant Biol. 2021, 63, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Tian, X.; Ku, T.; Wang, G.; Zhang, E. Global identification and systematic analysis of lysine malonylation in maize (Zea mays L.). Front Plant Sci. 2021, 12, 728338. [Google Scholar] [CrossRef] [PubMed]
- Bo, F.; Shengdong, L.; Zongshuai, W.; Fang, C.; Zheng, W.; Chunhua, G.; Geng, L.; Liang’an, K. Global analysis of lysine 2-hydroxyisobutyrylation in wheat root. Sci. Rep. 2021, 11, 6327. [Google Scholar] [CrossRef]
- Kosová, K.; Vítámvás, P.; Urban, M.O.; Prášil, I.T.; Renaut, J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. Front Plant Sci. 2018, 9, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waqas, M.A.; Kaya, C.; Riaz, A.; Farooq, M.; Nawaz, I.; Wilkes, A.; Li, Y. Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front. Plant Sci. 2019, 10, 1336. [Google Scholar] [CrossRef]
- Hamzelou, S.; Pascovici, D.; Kamath, K.S.; Amirkhani, A.; McKay, M.; Atwell, B.J.; Haynes, P.A. Proteomic Responses to Drought Vary Widely Among Eight Diverse Genotypes of Rice (Oryza sativa). Int. J. Mol. Sci. 2020, 21, 363. [Google Scholar] [CrossRef]
- Liu, D.; Han, C.; Deng, X.; Liu, Y.; Liu, N.; Yan, Y. Integrated physiological and proteomic analysis of embryo and endosperm reveals central salt stress response proteins during seed germination of winter wheat cultivar Zhengmai 366. BMC Plant Biol. 2019, 19, 29. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, S.; Yamaguchi, H.; Hitachi, K.; Tsuchida, K.; Kono, Y.; Nishimura, M. Proteomic and Biochemical Analyses of the Mechanism of Tolerance in Mutant Soybean Responding to Flooding Stress. Int. J. Mol. Sci. 2021, 22, 9046. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Cao, C.; Shen, T.; Zhong, L.; He, H.; Chen, X. Comprehensive metabolomic and proteomic analysis in biochemical metabolic pathways of rice spikes under drought and submergence stress. Biochim. Biophys Acta Proteins Proteom. 2019, 1867, 237–247. [Google Scholar] [CrossRef]
- Usman, B.; Nawaz, G.; Zhao, N.; Liao, S.; Liu, Y.; Li, R. Precise editing of the OsPYL9 gene by RNA-guided Cas9 nuclease confers enhanced drought tolerance and grain yield in rice (Oryza sativa L.) by regulating circadian rhythm and abiotic stress responsive proteins. Int. J. Mol. Sci. 2020, 21, 7854. [Google Scholar] [CrossRef]
- Gujjar, R.S.; Banyen, P.; Chuekong, W.; Worakan, P.; Roytrakul, S.; Supaibulwatana, K. A synthetic cytokinin improves photosynthesis in rice under drought stress by modulating the abundance of proteins related to stomatal conductance, chlorophyll contents, and rubisco activity. Plants 2020, 9, 1106. [Google Scholar] [CrossRef] [PubMed]
- Auler, P.A.; Nogueira do-Amaral, M.; Bolacel Braga, E.J.; Maserti, B. Drought stress memory in rice guard cells: Proteome changes and genomic stability of DNA. Plant Physiol. Biochem. 2021, 169, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Yang, X.; Zeng, H.; Guo, L.; Qiu, D. Label-free quantitative proteomic analysis revealed a positive effect of ectopic over-expression of PeaT1 from Alternaria tenuissima on rice (Oryza sativa) response to drought. 3 Biotech. 2018, 8, 480. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Xue, C.; Xiong, Y.; Meng, X.; Li, B.; Shen, R.; Lan, P. Proteomic dissection of the similar and different responses of wheat to drought, salinity and submergence during seed germination. J. Proteom. 2020, 220, 103756. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Luo, F.; Zou, R.; Liu, J.; Yan, Y. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. J. Proteom. 2021, 234, 104097. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, X.; Niu, F.; Sun, X.; Hu, Z.; Zhang, H. iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Proteomics 2017, 17, 1600265. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Xiao, C.; Xiao, B.; Wang, M.; Liu, J.; Bhanbhro, N.; Khan, A.; Wang, H.; Wang, H.; Yang, C. Proteomic profiling sheds light on alkali tolerance of common wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2019, 138, 58–64. [Google Scholar] [CrossRef]
- Feng, W.; Liu, Y.; Cao, Y.; Zhao, Y.; Zhang, H.; Sun, F.; Yang, Q.; Li, W.; Lu, Y.; Zhang, X.; et al. Maize ZmBES1/BZR1-3 and -9 transcription factors negatively regulate drought tolerance in transgenic Arabidopsis. Int. J. Mol. Sci. 2022, 23, 6025. [Google Scholar] [CrossRef]
- Xin, L.; Zheng, H.; Yang, Z.; Guo, J.; Liu, T.; Sun, L.; Xiao, Y.; Yang, J.; Yang, Q.; Guo, L. Physiological and proteomic analysis of maize seedling response to water deficiency stress. J. Plant Physiol. 2018, 228, 29–38. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Avramova, V.; Baggerman, G.; Raemdonck, G.V.; Valkenborg, D.; Ostade, X.V.; Guisez, Y.; Prinsen, E.; Asard, H.; Ende, W.V.; et al. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. Plant Cell Environ. 2020, 43, 2254–2271. [Google Scholar] [CrossRef]
- Lu, F.; Li, W.; Peng, Y.; Cao, Y.; Qu, J.; Sun, F.; Yang, Q.; Lu, Y.; Zhang, X.; Zheng, L.; et al. ZmPP2C26 alternative splicing variants negatively regulate drought tolerance in maize. Front. Plant Sci. 2022, 13, 851531. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, M.; Zhao, C.; Wang, Y.; Zhang, R. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties. BMC Plant Biol. 2021, 21, 1513. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Peng, Y.; Zhao, X.; Wu, B.; Chen, F.; Ren, B.; Zhuang, Z.; Gao, Q.; Ding, Y. Comparative proteomics analysis of the seedling root response of drought-sensitive and drought-tolerant maize varieties to drought stress. Int. J. Mol. Sci. 2019, 20, 2793. [Google Scholar] [CrossRef] [Green Version]
- Ludwiczak, A.; Osiak, M.; Cárdenas-Pérez, S.; Lubinska-Mielinska, S.; Piernik, A. Osmotic stress or ionic composition: Which affects the early growth of crop species more? Agronomy 2021, 11, 435. [Google Scholar] [CrossRef]
- Sun, F.; Yu, H.; Qu, J.; Cao, Y.; Ding, L.; Feng, W.; Khalid, M.H.B.; Li, W.; Fu, F. Maize ZmBES1/BZR1-5 decreases ABA sensitivity and confers tolerance to osmotic stress in transgenic Arabidopsis. Int. J. Mol. Sci. 2020, 21, 996. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Zhao, Y.; Yanan, Z.; Song, X.; Yuan, J.; Liu, Y. Identification of salt stress-responsive proteins in maize (Zea may) seedlings using iTRAQ-based proteomic technique. Iran. J. Biotechnol. 2021, 19, e2512. [Google Scholar]
- Geilfus, C.M.; Tenhaken, R.; Carpentier, S.C. Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves. J. Biol. Chem. 2017, 292, 18800–18813. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.L.C.; Geilfus, C.M.; Carpentier, S.C. Genotype-specific growth and proteomic responses of maize toward salt stress. Front. Plant Sci. 2018, 9, 661. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Zhao, Y.; Wang, Y.; Shi, Z.; Zhang, P.; Zhang, Y.; Song, W.; Zhao, J. Comparative proteomics of contrasting maize genotypes provides insights into salt-stress tolerance mechanisms. J. Proteome Res. 2018, 17, 141–153. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Chen, Z.; Yang, B.; Komatsu, S.; Zhou, S. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress. J. Proteom. 2020, 232, 104064. [Google Scholar] [CrossRef]
- Wang, X.; Komatsu, S. Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean. J. Proteom. 2017, 172, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Furuya, T.; Ueno, K.; Yamaguchi, H.; Hitachi, K.; Tsuchida, K.; Tani, M.; Tian, J.; Komatsu, S. Proteomic Analysis of Irradiation with Millimeter Waves on Soybean Growth under Flooding Conditions. Int. J. Mol. Sci. 2020, 21, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, T.; Mustafa, G.; Nishiuchi, T.; Komatsu, S. Comparative Analysis of the Effect of Inorganic and Organic Chemicals with Silver Nanoparticles on Soybean under Flooding Stress. Int. J. Mol. Sci. 2020, 21, 1300. [Google Scholar] [CrossRef] [PubMed]
Technique (Labeling Tool) | Detection Tool | Merits/Demerits | Stage * | Ref ** |
---|---|---|---|---|
DIGE (Cy3, Cy5)/MALDI-TOF/MS | TOF | Time and cost effective/Not suitable for hydrophobic proteins | First | [23] |
MudPIT | Conversion dynode/electron multiplier | Less time consuming/PTMs cannot be detected | Second | [23] |
LC-MS/MS | ESI | Quicker with less extensive extraction procedures and high resolution/More time consuming | Second | [11] |
MALDI-TOF/MS | TOF | Fast, accurate, and less expensive/Low analytical sensitivity | Second | [25] |
GeLC-MS/MS | ESI-MS/MS | High speed with excellent quantification properties/Less sensitive for large proteins | Third | [25] |
LC-MS/MS | SRM/MRM | Valuable tool for biomarker validation/Different ionization of individual peptide modifications | Third | [26] |
iTRAQ-LC-MS/MS | Multiplex stable isotope amino-specific reagent | High-throughput multiplexing capacity/Time consuming, laborious, and expensive | Third | [27] |
SWATH-MS | DIA | Comprehensive quantitative analysis/Hard data analysis requiring sophisticated software tools | Fourth | [28] |
Subcellular | Crop | Organ | Purification Method | MS Methodology | No * | Major Findings | Ref ** |
---|---|---|---|---|---|---|---|
Stroma, chloroplast | Tomato | Leaf | Percoll reagent | 2D-LC-MS/MS | 254 | Optimized method for chloroplast isolation increased the number of tomato chloroplasts eightfold. | [40] |
Chloroplast, ribosome | Soybean | Leaf | NETN buffer, anti-acetyl lysine antibody beads | EASY-nLC-MS/MS | 1538 | Motif analysis of modified peptides extracted 17 conserved motifs of acetylation. | [41] |
Cell wall | Maize | Leaf/Root | Vacuum-infiltration–centrifugation technique | ESI-qQ-TOF-MS/MS | 863 | Twenty cell-wall proteins were declared as potential candidates against both biotic and abiotic stresses. | [42] |
Plasma membrane, nuclei | Soybean | Root | Mem-PER plus extraction kit, plant nuclei extraction kit | LC-MS/MS | 268 | ATPase increased in plasma membrane, and nuclear proteins mainly decreased. However, RNA polymerase II was upregulated. | [43] |
Cell wall, plasma membrane, secreted mucilage | Maize | Root | CHAPS with TCIP buffer | 2D-LC-MS/MS | 150 | Eight lateral root initiation mutant-specific proteins were identified, out of which four were involved in lignin metabolism. | [44] |
PTMs | Crop | Organ | PTM Detection Method | MS | No * | Major Findings | Ref ** |
---|---|---|---|---|---|---|---|
Glycosylation | Common bean | Leaf | Qproteome Total Glycoprotein Kit | LC-MS/MS | 35 | Beta-glucosidase increased among proteins which were involved in cell-wall metabolism. | [64] |
Wheat | Leaf | Hydrophilic interaction liquid chromatography (HILIC) enrichment | LC-MS/MS | 173 | Glycosylated proteins (related to protein kinase activity involved in the reception and transduction of extracellular signals and plant cell-wall remolding) were regulated by drought stress. | [65] | |
Phosphorylation | Rice | Protoplast | HIS-kinase buffer with an anti-FLAG antibody | LC-MS/MS | 152 | Cyclic-nucleotide-gated channel OsCNGC9 enhanced chilling tolerance in rice through regulating cold-induced Ca2+ influx and cytoplasmic Ca2+ elevation. | [66] |
Tomato | Leaf | PolyMAC-Ti kit | LC-MS/MS | 550 | The activation of SnRK2s and their direct substrates assisted tomatoes in surviving long-term cold stress. | [67] | |
Maize | Leaf | Nickel–nitriloacetic acid beads | LC-MS/MS | 692 | Tyrosine phosphorylation and calcium signaling pathways played important roles during de-etiolation of leaves. | [68] | |
Ubiquitination | Maize | Kernel | PTM Scan ubiquitin remnant motif K-ε-GG kit | LC-MS/MS | 881 | Eight conserved ubiquitination motifs, including KubD, GKub, Ekub, KubXXXE, Akub, NXKub, KubXXXXXN, and Kkub, were found in ubiquitinated peptides. | [69] |
Tomato | Leaf | Anti-ubiquitin monoclonal antibody | LC-MS/MS | 652 | Tomato carboxyl terminus of hs70-interacting proteins played a critical role in heat stress response most likely by targeting degradation of misfolded proteins that were generated during heat stress. | [70] | |
S-nitrosylation | Soybean | Seedlings | S-nitrosylated-protein detection assay kit | LC-MS/MS | 162 | Western blot analysis confirmed that S-nitrosylated status of alcohol dehydrogenase increased with flooding. | [71] |
Tea | Leaf | Anti-TMT Resin | LC-MS/MS | 191 | RuBisCO was S-nitrosylated at 6 cysteine sites, and S-nitrosylated-ALDO played crucial role in Calvin cycle and glycolysis. | [72] | |
Rice | Seedling | Antinitryl antibody beads | LC-MS/MS | 866 | Nitrosylated proteins were involved in histone H3, and different sites were combined in core histones to enhance chilling stress. | [73] | |
Lysine malonylation | Wheat | Leaf | Antimalonyllysine antibody agarose beads | LC-MS/MS | 233 | Protein interaction network analysis revealed eight highly interconnected clusters of malonylated proteins which were involved in carbon fixation. | [74] |
Lysine acetylation | Soybean | Leaf | Agarose beads eluted by trifluoroacetic acid | LC-MS/MS | 17 | The conserved motifs of lysine-acetylated peptides were extracted, which were found to be involved in ribosome activity and protein biosynthesis. | [75] |
Rice | Leaf | Anti-acetyl lysine antibody beads and NETN buffer | LC-MS/MS | 866 | Eleven lysine motifs were conserved, and 45% of the identified proteins were localized in chloroplast; 38 lysine acetylated motifs were combined in core histones. | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kausar, R.; Wang, X.; Komatsu, S. Crop Proteomics under Abiotic Stress: From Data to Insights. Plants 2022, 11, 2877. https://doi.org/10.3390/plants11212877
Kausar R, Wang X, Komatsu S. Crop Proteomics under Abiotic Stress: From Data to Insights. Plants. 2022; 11(21):2877. https://doi.org/10.3390/plants11212877
Chicago/Turabian StyleKausar, Rehana, Xin Wang, and Setsuko Komatsu. 2022. "Crop Proteomics under Abiotic Stress: From Data to Insights" Plants 11, no. 21: 2877. https://doi.org/10.3390/plants11212877
APA StyleKausar, R., Wang, X., & Komatsu, S. (2022). Crop Proteomics under Abiotic Stress: From Data to Insights. Plants, 11(21), 2877. https://doi.org/10.3390/plants11212877