Infrared Thermal Imaging and Morpho-Physiological Indices Used for Wheat Genotypes Screening under Drought and Heat Stress
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material, Experimental Design and Establishment
2.2. Growing Conditions
2.3. Treatment Application
2.4. Data Collection
2.4.1. Recorded Parameters for Drought Stress Experiment
Early Vigour Estimation
Excised Leaf Water Loss
Relative Water Contents
Chlorophyll Fluorescence
2.4.2. Recorded Parameters for Heat Stress Experiment
Thermostability of Cell Membrane
Flag Leaf Senescence
Infrared Thermal Imaging-Based Computational Water Stress Indices
2.5. Agronomic Traits
2.6. Statistical Analysis
3. Results
3.1. Genotypic Differences for Early Growth and Development
3.2. Genotypic and Phenotypic Variability Analysis for Grain Yield and Yield Components
3.3. Sensitivity of Wheat Genotypes to Drought and Heat Stress
3.4. Cumulative Genotypic Expression for Flag Leaf Senescence and Chlorophyll Fluorescence
3.5. Multivariate Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IDRC. Facts & Figures on Food and Biodiversity. In IDRC Communications, International Development Research Centrem; IDRC: Ottawa, ON, Canada, 2010; Available online: https://www.idrc.ca/en/research-in-action/facts-figures-food-and-biodiversity (accessed on 22 October 2022).
- FAOSTAT. Crops and Livestock Products; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 10 January 2022).
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar]
- Semenov, M.A.; Shewry, P.R. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci. Rep. 2011, 1, 66. [Google Scholar] [CrossRef] [Green Version]
- Sattar, A.; Sher, A.; Ijaz, M.; Ul-Allah, S.; Rizwan, M.S.; Hussain, M.; Jabran, K.; Cheema, M.A. Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS ONE 2020, 15, e0232974. [Google Scholar] [CrossRef]
- Rosegrant, M.; Agcaoili, M. Global Food Demand, Supply, and Price Prospects to 2010; International Food Policy Research Institute: Washington, DC, USA, 2010. [Google Scholar]
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef] [Green Version]
- Izanloo, A.; Condon, A.G.; Langridge, P.; Tester, M.; Schnurbusch, T. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J. Exp. Bot. 2008, 59, 3327–3346. [Google Scholar] [CrossRef] [Green Version]
- Levitt, J. Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses; Academic Press: New York, NY, USA, 1980; pp. 347–393. [Google Scholar] [CrossRef]
- Vukasovic, S.; Alahmad, S.; Christopher, J.; Snowdon, R.J.; Stahl, A.; Hickey, L.T. Dissecting the genetics of early vigour to design drought-adapted wheat. Front. Plant Sci. 2021, 12, 754439. [Google Scholar] [CrossRef] [PubMed]
- Alghabari, F.; Lukac, M.; Jones, H.; Gooding, M. Effect of R ht Alleles on the Tolerance of Wheat Grain Set to High Temperature and Drought Stress During Booting and Anthesis. J. Agron. Crop Sci. 2014, 200, 36–45. [Google Scholar] [CrossRef]
- McKeown, A.; Warland, J.; McDonald, M.R. Long-term marketable yields of horticultural crops in southern Ontario in relation to seasonal climate. Can. J. Plant Sci. 2005, 85, 431–438. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Gaiser, T.; Naab, J.; Ewert, F. Heat stress in cereals: Mechanisms and modelling. Eur. J. Agron. 2015, 64, 98–113. [Google Scholar] [CrossRef]
- Akter, N.; Islam, M.R. Heat stress effects and management in wheat. A review. Agron. Sustain. Dev. 2017, 37, 1–17. [Google Scholar] [CrossRef]
- Qaseem, M.F.; Qureshi, R.; Shaheen, H. Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Sci. Rep. 2019, 9, 6955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, G.P.; Prasad, P.V.; Fritz, A.K.; Kirkham, M.B.; Gill, B.S. Effects of drought and high temperature stress on synthetic hexaploid wheat. Funct. Plant Biol. 2012, 39, 190–198. [Google Scholar] [CrossRef]
- Asseng, S.; Foster, I.; Turner, N.C. The impact of temperature variability on wheat yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Ashfaq, W.; Fuentes, S.; Brodie, G.; Gupta, D. The role of silicon in regulating physiological and biochemical mechanisms of contrasting bread wheat cultivars under terminal drought and heat stress environments. Front. Plant Sci. 2022, 13, 955490. [Google Scholar] [CrossRef]
- Olorunwa, O.J.; Adhikari, B.; Shi, A.; Barickman, T.C. Screening of cowpea (Vigna unguiculata L.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage. Plant Sci. 2021, 315, 111136. [Google Scholar] [CrossRef]
- Mwadzingeni, L.; Shimelis, H.; Tesfay, S.; Tsilo, T.J. Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front. Plant Sci. 2016, 7, 1276. [Google Scholar] [CrossRef] [Green Version]
- Federer, W.T.; Raghavarao, D. On augmented designs. Biometrics 1975, 31, 29–35. [Google Scholar] [CrossRef]
- Fleury, D.; Jefferies, S.; Kuchel, H.; Langridge, P. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 2010, 61, 3211–3222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downes, R.G. A Soil, Land-Use and Erosion Survey of Parts of the Counties of Moira and Delatite; Commonwealth Scientific and Industrial Research Organization: Melbourne, Australia, 1949. [Google Scholar]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.-D.; Hatta, M.A.M.; Hinchliffe, A.; Steed, A.; Reynolds, D. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 2018, 4, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Telfer, P.; Edwards, J.; Bennett, D.; Kuchel, H. Heat Stress Tolerance of Wheat. 2015. Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2015/02/heat-stress-tolerance-of-wheat (accessed on 14 October 2018).
- Spiertz, J.; Hamer, R.; Xu, H.; Primo-Martin, C.; Don, C.; van der Putten, P. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. Eur. J. Agron. 2006, 25, 89–95. [Google Scholar] [CrossRef]
- Rebetzke, G.; Richards, R. Genetic improvement of early vigour in wheat. Aust. J. Agric. Res. 1999, 50, 291–302. [Google Scholar] [CrossRef]
- CLARKE, J.M.; McCAIG, T.N. Excised-leaf water retention capability as an indicator of drought resistance of Triticum genotypes. Can. J. Plant Sci. 1982, 62, 571–578. [Google Scholar] [CrossRef]
- Barrs, H.; Weatherley, P. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.C.; Amâncio, S. Antioxidant defence system in plantlets transferred from in vitro to ex vitro: Effects of increasing light intensity and CO2 concentration. Plant Sci. 2002, 162, 33–40. [Google Scholar] [CrossRef]
- Martineau, J.; Specht, J.; Williams, J.; Sullivan, C. Temperature Tolerance in Soybeans. I. Evaluation of a Technique for Assessing Cellular Membrane Thermostability. Crop Sci. 1979, 19, 75–78. [Google Scholar] [CrossRef]
- Borrell, A.K.; Hammer, G.L.; Douglas, A.C. Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Sci. 2000, 40, 1026–1037. [Google Scholar] [CrossRef]
- Fuentes, S.; de Bei, R.; Pech, J.; Tyerman, S. Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig. Sci. 2012, 30, 523–536. [Google Scholar] [CrossRef]
- Biju, S.; Fuentes, S.; Gupta, D. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. Plant Physiol. Biochem. 2018, 127, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Mathworks, M. MATLAB and Statistics Toolbox Release; The MathWorks, Inc.: Natick, MA, USA, 2017. [Google Scholar]
- Jones, H.G.; Stoll, M.; Santos, T.; Sousa, C.D.; Chaves, M.M.; Grant, O.M. Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. J. Exp. Bot. 2002, 53, 2249–2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gahlaut, V.; Jaiswal, V.; Tyagi, B.S.; Singh, G.; Sareen, S.; Balyan, H.S.; Gupta, P.K. QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS ONE 2017, 12, e0182857. [Google Scholar] [CrossRef] [PubMed]
- Yue, B.; Xue, W.; Xiong, L.; Yu, X.; Luo, L.; Cui, K.; Jin, D.; Xing, Y.; Zhang, Q. Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerance from drought avoidance. Genetics 2006, 172, 1213–1228. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 22 October 2022).
- Aravind, J.; Sankar, S.M.; Wankhede, D.P.; Kaur, V. Augmentedrcbd: Analysis of Augmented Randomised Complete Block Designs. In R Package Version 0.1.3.9000; 2020; Available online: https://cran.r-project.org/package=augmentedRCBD (accessed on 22 October 2022).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. In R Package Version 1.0.7; 2020; Available online: https://CRAN.R-project.org/package=factoextra (accessed on 22 October 2022).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Bourgault, M.; Webber, H.A.; Chenu, K.; O’Leary, G.J.; Gaiser, T.; Siebert, S.; Dreccer, F.; Huth, N.; Fitzgerald, G.J.; Tausz, M.; et al. Early vigour in wheat: Could it lead to more severe terminal drought stress under elevated atmospheric [CO2] and semi-arid conditions? Glob. Chang. Biol. 2020, 26, 4079–4093. [Google Scholar] [CrossRef]
- Wilson, P.; Rebetzke, G.; Condon, A. Pyramiding greater early vigour and integrated transpiration efficiency in bread wheat; trade-offs and benefits. Field Crop. Res. 2015, 183, 102–110. [Google Scholar] [CrossRef]
- Zhao, Z.; Rebetzke, G.J.; Zheng, B.; Chapman, S.C.; Wang, E. Modelling impact of early vigour on wheat yield in dryland regions. J. Exp. Bot. 2019, 70, 2535–2548. [Google Scholar] [CrossRef]
- Mahrookashani, A.; Siebert, S.; Hüging, H.; Ewert, F. Independent and combined effects of high temperature and drought stress around anthesis on wheat. J. Agron. Crop Sci. 2017, 203, 453–463. [Google Scholar] [CrossRef]
- Deshmukh, S.; Basu, M.; Reddy, P. Genetic variability, character association and path coefficients of quantitative traits in Virginia bunch varieties of groundnut. Indian J. Agric. Sci. 1986, 56, 816–821. [Google Scholar]
- Ogunniyan, D.; Olakojo, S. Genetic variation, heritability, genetic advance and agronomic character association of yellow elite inbred lines of maize (Zea mays L.). Niger. J. Genet. 2014, 28, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Johnson, H.W.; Robinson, H.; Comstock, R. Estimates of genetic and environmental variability in soybeans. Agron. J. 1955, 47, 314–318. [Google Scholar]
- Iqbal, J.; Ahsan, M.; Saleem, M.; Ali, A. Appraisal of gene action for indeterminate growth in mungbean [Vigna radiata (L.) Wilczek]. Front. Plant Sci. 2015, 6, 665. [Google Scholar] [PubMed] [Green Version]
- Naveed, M.; Ahsan, M.; Akram, H.M.; Aslam, M.; Ahmed, N. Genetic effects conferring heat tolerance in a cross of tolerant× susceptible maize (Zea mays L.) genotypes. Front. Plant Sci. 2016, 7, 729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abid, M.; Ali, S.; Qi, L.K.; Zahoor, R.; Tian, Z.; Jiang, D.; Snider, J.L.; Dai, T. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci. Rep. 2018, 8, 4615. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.; Choukimath, A.; Isenegger, D.; Panozzo, J.; Spangenberg, G.; Kant, S. Improved wheat growth and yield by delayed leaf senescence using developmentally regulated expression of a cytokinin biosynthesis gene. Front. Plant Sci. 2019, 10, 1285. [Google Scholar] [CrossRef] [Green Version]
- Christopher, M.; Chenu, K.; Jennings, R.; Fletcher, S.; Butler, D.; Borrell, A.; Christopher, J. QTL for stay-green traits in wheat in well-watered and water-limited environments. Field Crop. Res. 2018, 217, 32–44. [Google Scholar] [CrossRef]
- Kumar, M.; Govindasamy, V.; Rane, J.; Singh, A.; Choudhary, R.; Raina, S.; George, P.; Aher, L.; Singh, N. Canopy temperature depression (CTD) and canopy greenness associated with variation in seed yield of soybean genotypes grown in semi-arid environment. South Afr. J. Bot. 2017, 113, 230–238. [Google Scholar] [CrossRef]
- Foulkes, M.; Sylvester-Bradley, R.; Weightman, R.; Snape, J. Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crop. Res. 2007, 103, 11–24. [Google Scholar] [CrossRef]
- Blum, A. Plant Breeding for Water-Limited Environments; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Slafer, G.A.; Savin, R.; Sadras, V.O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crop. Res. 2014, 157, 71–83. [Google Scholar] [CrossRef]
- Rahman, S.; Shaheen, M.; Rahman, M.; Malik, T. Evaluation of excised leaf water loss and relative water content as screening techniques for breeding drought resistant wheat. Pak. J. Biol. Sci. 2000, 3, 663–665. [Google Scholar]
- Iurlaro, A.; de Caroli, M.; Sabella, E.; de Pascali, M.; Rampino, P.; de Bellis, L.; Perrotta, C.; Dalessandro, G.; Piro, G.; Fry, S.C. Drought and heat differentially affect XTH expression and XET activity and action in 3-day-old seedlings of durum wheat cultivars with different stress susceptibility. Front. Plant Sci. 2016, 7, 1686. [Google Scholar] [CrossRef]
- Elsayed, S.; Elhoweity, M.; Ibrahim, H.H.; Dewir, Y.H.; Migdadi, H.M.; Schmidhalter, U. Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes. Agric. Water Manag. 2017, 189, 98–110. [Google Scholar] [CrossRef]
- Chen, J.; Lin, L.; Lü, G. An index of soil drought intensity and degree: An application on corn and a comparison with CWSI. Agric. Water Manag. 2010, 97, 865–871. [Google Scholar] [CrossRef]
- Balota, M.; Payne, W.A.; Evett, S.R.; Lazar, M.D. Canopy temperature depression sampling to assess grain yield and genotypic differentiation in winter wheat. Crop Sci. 2007, 47, 1518–1529. [Google Scholar] [CrossRef] [Green Version]
- Egea, G.; Padilla-Díaz, C.M.; Martinez-Guanter, J.; Fernández, J.E.; Pérez-Ruiz, M. Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards. Agric. Water Manag. 2017, 187, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Maes, W.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Dai, H.; Yang, H.; Xu, B.; Li, H.; Long, H.; Li, Z.; Yang, X.; Zhao, C. Combining self-organizing maps and biplot analysis to preselect maize phenotypic components based on UAV high-throughput phenotyping platform. Plant Methods 2019, 15, 1–16. [Google Scholar] [CrossRef]
Wheat Genotypes | Origin | Type | Exp. Code |
---|---|---|---|
KUKRI | Australia | Cultivar | G1 |
DRYSDALE | Australia | Cultivar | G2 |
RAC875 | Australia | Institute ID | G3 |
EXCALIBUR | Australia | Cultivar | G4 |
AXE | Australia | Cultivar | G5 |
CM56756 | Mexico | Breeding line | G6 |
CM58717 | Mexico | Breeding line | G7 |
SWM10896 | Mexico | Breeding line | G8 |
CM61981 | Mexico | Breeding line | G9 |
CM78566 | Mexico | Breeding line | G10 |
CM59443 | Mexico | Breeding line | G11 |
WH147 | Mexico | Breeding line | G12 |
RAC154 | Australia | Breeder designation | G13 |
RAC382 | Australia | Breeder designation | G14 |
RAC386 | Australia | Breeder designation | G15 |
RAC400 | Australia | Breeder designation | G16 |
RAC414 | Australia | Breeder designation | G17 |
M723 | Australia | Breeder designation | G18 |
WAGGA51 | Australia | Breeder designation | G19 |
BR670 | Australia | Breeder designation | G20 |
BR773 | Australia | Breeder designation | G21 |
TR165 | Australia | Breeder designation | G22 |
TR188 | Australia | Breeder designation | G23 |
ECH957 | Australia | Breeder designation | G24 |
ECH952 | Australia | Breeder designation | G25 |
ECH961 | Australia | Breeder designation | G26 |
K14077 | Australia | Breeder designation | G27 |
K14079 | Australia | Breeder designation | G28 |
TR240 | Australia | Breeder designation | G29 |
TR274 | Australia | Breeder designation | G30 |
RAC702 | Australia | Breeder designation | G31 |
RAC704 | Australia | Breeder designation | G32 |
RAC613 | Australia | Breeder designation | G33 |
RAC622 | Australia | Breeder designation | G34 |
RAC629 | Australia | Breeder designation | G35 |
WW1615 | Australia | Breeder designation | G36 |
WW1799 | Australia | Breeder designation | G37 |
QT4425 | Australia | Breeder designation | G38 |
AL24 | Australia | Breeder designation | G39 |
BL14 | Australia | Breeder designation | G40 |
SUN177C | Australia | Breeder designation | G41 |
SUN188B | Australia | Breeder designation | G42 |
K1171 | Australia | Breeder designation | G43 |
M4679 | Australia | Breeder designation | G44 |
M4695 | Australia | Breeder designation | G45 |
M5057 | Australia | Breeder designation | G46 |
Source of Variation | df | D50A | GPS | GWS | GY | HI | SF | SL | SN | SPS | |
---|---|---|---|---|---|---|---|---|---|---|---|
Drought stress | Block | 3 | 128.81 ** | 16.38 ** | 0.05 ** | 1.80 ** | 59.87 * | 130.69 ** | 0.23 ns | 16.37 ** | 1.64 ns |
Genotypes (G) | 45 | 50.28 ** | 47.18 ** | 0.05 ** | 1.59 ** | 81.45 ** | 495.01 ** | 1.83 ** | 13.83 ** | 18.64 ** | |
Check (C) | 4 | 13.18 ** | 117.72 ** | 0.02 ** | 3.08 ** | 140.64 ** | 1382.50 ** | 2.35 ** | 1.32 * | 48.39 ** | |
Test genotypes (Gt) and Gt vs. C | 41 | 53.90 ** | 40.30 ** | 0.05 ** | 1.45 ** | 75.68 ** | 408.43 ** | 1.78 ** | 15.05 ** | 15.74 ** | |
Residuals | 12 | 0.53 | 0.54 | 0.00073 | 0.02 | 12.01 | 2.95 | 0.42 | 0.36 | 1.43 | |
Heat stress | Block | 3 | - | 50.82 ** | 0.04 ** | 2.62 ** | 30.09 ns | 509.03 ** | 1.09 ** | 14.23 * | 5.75 * |
G | 45 | - | 59.50 ** | 0.07 ** | 10.64 ** | 155.94 ** | 557.67 ** | 2.38 ** | 14.04 ** | 24.30 ** | |
C | 4 | - | 67.09 ** | 0.10 ** | 19.62 ** | 412.42 ** | 541.97 ** | 1.84 ** | 21.57 ** | 38.86 ** | |
Gt and Gt vs. C | 41 | - | 58.76 ** | 0.07 ** | 9.77 ** | 130.92 ** | 559.20 ** | 2.44 ** | 13.30 ** | 22.88 ** | |
Residuals | 12 | - | 2.08 | 0.01 | 0.41 | 9.61 | 18.96 | 0.16 | 3.64 | 1.39 |
Trait | PV | GV | EV | GCV | GCV Category | PCV | PCV Category | ECV | GA | |
---|---|---|---|---|---|---|---|---|---|---|
Drought stress | GY | 1.54 | 1.52 | 0.02 | 31.02 | High | 31.25 | High | 3.80 | 2.53 |
SPS | 16.14 | 14.71 | 1.43 | 14.39 | Medium | 15.07 | Medium | 4.48 | 7.55 | |
GPS | 39.91 | 39.37 | 0.54 | 41.31 | High | 41.59 | High | 4.82 | 12.86 | |
HI | 64.30 | 52.29 | 12.01 | 25.48 | High | 28.25 | High | 12.21 | 13.45 | |
PHT | 148.32 | 148.03 | 0.29 | 24.10 | High | 24.13 | High | 1.07 | 25.08 | |
D50A | 58.34 | 57.81 | 0.53 | 14.34 | Medium | 14.40 | Medium | 1.38 | 15.61 | |
SN | 16.48 | 16.12 | 0.36 | 43.33 | High | 43.81 | High | 6.46 | 8.19 | |
SF | 381.85 | 378.90 | 2.95 | 34.60 | High | 34.73 | High | 3.05 | 40.0 | |
SL | 1.80 | 1.38 | 0.42 | 15.17 | Medium | 17.30 | Medium | 8.32 | 2.13 | |
GWS | 0.06 | 0.06 | 0.00073 | 48.92 | High | 49.23 | High | 5.55 | 0.49 | |
Heat stress | GY | 7.54 | 7.13 | 0.41 | 52.09 | High | 53.57 | High | 12.5 | 5.36 |
SPS | 19.7 | 18.31 | 1.39 | 16.3 | Medium | 16.91 | Medium | 4.49 | 8.51 | |
GPS | 43.77 | 41.68 | 2.08 | 44.07 | High | 45.15 | High | 9.85 | 13.0 | |
HI | 110.27 | 100.66 | 9.61 | 39.02 | High | 40.84 | High | 12.06 | 19.78 | |
SN | 14.26 | 10.61 | 3.64 | 22.27 | High | 25.80 | High | 13.04 | 5.80 | |
SF | 450.78 | 431.82 | 18.96 | 38.27 | High | 39.10 | High | 8.02 | 41.96 | |
SL | 2.37 | 2.21 | 0.16 | 19.51 | Medium | 20.21 | High | 5.30 | 2.96 | |
GWS | 0.06 | 0.06 | 0.01 | 64.36 | High | 67.17 | High | 19.25 | 0.48 |
Genotypes | GY | D50A | CTD | CWSI | DLR | ELWL | GPS | GWS | HI | Ig | PHT | RWC | SF | SL | SN | SPS | Tc | Tdry | Twet |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Top Performing Ten genotypes | |||||||||||||||||||
ECH957 | 8.87 | 61.43 | 0.87 | 0.58 | 10.73 | 57.18 | 26.53 | 0.98 | 44.71 | 0.72 | 80.63 | 75.26 | 81.21 | 9.82 | 9.00 | 32.77 | 24.13 | 24.97 | 22.98 |
RAC875 | 5.60 | 47.73 | 1.62 | 0.47 | 10.02 | 52.81 | 23.17 | 0.52 | 39.63 | 1.11 | 51.83 | 78.77 | 82.23 | 8.79 | 10.50 | 28.17 | 23.28 | 24.33 | 22.52 |
M723 | 5.97 | 57.76 | 0.91 | 0.64 | 11.73 | 46.69 | 15.87 | 0.40 | 23.61 | 0.57 | 71.97 | 71.39 | 64.15 | 7.32 | 15.0 | 24.77 | 24.09 | 24.66 | 23.09 |
DRYSDALE | 4.75 | 50.42 | 2.98 | 0.41 | 10.04 | 69.41 | 22.33 | 0.48 | 34.63 | 1.42 | 48.66 | 77.45 | 73.26 | 8.42 | 9.75 | 30.50 | 22.02 | 22.85 | 21.43 |
WH147 | 4.73 | 47.32 | 0.90 | 0.54 | 9.39 | 72.38 | 28.47 | 0.51 | 25.29 | 0.84 | 23.10 | 76.32 | 89.48 | 8.65 | 9.20 | 31.97 | 24.10 | 25.10 | 22.91 |
EXCALIBUR | 4.30 | 51.50 | 2.75 | 0.41 | 10.08 | 56.81 | 18.50 | 0.45 | 41.09 | 1.42 | 51.50 | 76.59 | 84.09 | 7.42 | 9.50 | 22.00 | 22.25 | 23.21 | 21.57 |
RAC622 | 5.54 | 62.96 | 0.89 | 0.59 | 7.63 | 64.42 | 13.93 | 0.35 | 28.68 | 0.70 | 52.83 | 83.89 | 45.85 | 7.82 | 15.60 | 30.37 | 24.11 | 24.81 | 23.12 |
RAC704 | 4.22 | 47.29 | 2.88 | 0.43 | 6.29 | 78.69 | 11.93 | 0.36 | 40.18 | 1.31 | 44.16 | 74.34 | 43.17 | 7.32 | 11.60 | 27.70 | 22.12 | 22.93 | 21.50 |
AL24 | 4.21 | 51.63 | 1.65 | 0.59 | 8.93 | 66.42 | 11.73 | 0.59 | 43.12 | 0.70 | 51.77 | 76.76 | 40.09 | 7.22 | 7.20 | 29.57 | 23.35 | 24.03 | 22.40 |
BR670 | 4.20 | 58.43 | 0 | 0.67 | 11.39 | 45.77 | 15.87 | 0.35 | 34.33 | 0.50 | 60.63 | 81.19 | 69.91 | 7.82 | 12.0 | 22.77 | 26.64 | 27.50 | 24.92 |
Low performing five genotypes | |||||||||||||||||||
KUKRI | 3.25 | 48.62 | 0.54 | 0.74 | 6.94 | 79.46 | 13.67 | 0.35 | 26.78 | 0.35 | 55.75 | 70.06 | 48.87 | 6.88 | 9.25 | 28.0 | 24.46 | 25.02 | 22.85 |
ECH952 | 2.74 | 52.43 | 0 | 0.59 | 10.06 | 67.91 | 12.53 | 0.46 | 18.72 | 0.70 | 55.63 | 64.82 | 50.45 | 7.48 | 6.0 | 24.77 | 25.11 | 25.47 | 24.58 |
TR165 | 2.68 | 50.43 | 0 | 0.82 | 8.39 | 66.92 | 17.87 | 0.54 | 18.59 | 0.22 | 53.63 | 73.31 | 65.20 | 8.48 | 5.0 | 27.43 | 25.70 | 26.09 | 24.01 |
TR274 | 2.57 | 51.63 | 0 | 0.90 | 6.96 | 99.42 | 9.93 | 0.33 | 20.43 | 0.64 | 46.16 | 73.35 | 39.93 | 7.32 | 7.60 | 25.03 | 25.37 | 25.96 | 25.93 |
CM59443 | 2.55 | 49.65 | 0 | 0.75 | 9.39 | 80.22 | 8.47 | 0.49 | 23.81 | 0.34 | 42.10 | 81.47 | 29.42 | 7.98 | 5.20 | 28.63 | 26.51 | 27.05 | 24.91 |
Treatment | GY | RCI | CTD | CWSI | GPS | GWS | HI | Ig | SF | SL | SN | SPS | Tc | Tdry | Twet |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Top performing ten genotypes | |||||||||||||||
ECH957 | 11.35 | 16.90 | 0 | 0.29 | 23.83 | 0.95 | 35.34 | 0.68 | 68.31 | 10.02 | 11.85 | 35.03 | 25.40 | 26.03 | 24.48 |
AXE | 10.73 | 12.16 | 0 | 0.83 | 20.77 | 0.82 | 43.49 | 0.73 | 68.97 | 9.35 | 13.25 | 29.97 | 29.11 | 28.96 | 26.23 |
RAC875 | 9.90 | 16.08 | 0.92 | 0.28 | 27.17 | 0.61 | 43.96 | 0.76 | 88.98 | 8.50 | 16.25 | 30.50 | 25.20 | 24.66 | 23.32 |
TR188 | 10.40 | 10.68 | 0 | 0.65 | 23.83 | 1.30 | 51.97 | 0.49 | 88.03 | 8.85 | 7.85 | 27.03 | 28.16 | 29.13 | 27.93 |
DRYSDALE | 10.03 | 12.70 | 0 | 0.64 | 28.77 | 0.55 | 46.43 | 0.60 | 95.94 | 8.85 | 18.25 | 29.97 | 28.06 | 28.79 | 27.81 |
EXCALIBUR | 7.87 | 26.25 | 0.18 | 0.23 | 19.67 | 0.32 | 25.35 | 0.70 | 80.50 | 7.58 | 18.50 | 24.50 | 24.66 | 25.66 | 23.61 |
RAC622 | 9.43 | 5.58 | 0 | 0.20 | 16.77 | 0.51 | 31.90 | 1.10 | 52.16 | 7.65 | 18.05 | 31.43 | 25.22 | 26.08 | 25.45 |
TR240 | 7.60 | 11.41 | 0 | 0.79 | 14.10 | 0.49 | 34.84 | 0.96 | 50.21 | 8.32 | 15.02 | 27.43 | 29.00 | 29.57 | 28.56 |
CM61981 | 7.00 | 20.42 | 0 | 0.27 | 14.10 | 0.38 | 29.28 | 0.84 | 49.83 | 8.35 | 18.25 | 27.97 | 25.63 | 25.84 | 24.38 |
WAGGA51 | 6.50 | 20.93 | 0 | 0.28 | 15.17 | 0.50 | 26.30 | 1.52 | 61.12 | 8.35 | 12.85 | 25.03 | 25.75 | 29.47 | 28.38 |
Low performing five genotypes | |||||||||||||||
KUKRI | 5.88 | 12.43 | 0 | 0.74 | 24.33 | 0.49 | 25.97 | 0.35 | 73.72 | 8.17 | 12.25 | 33.00 | 28.73 | 28.90 | 26.74 |
CM59443 | 2.74 | 12.23 | 0 | 0.78 | 7.43 | 0.25 | 16.62 | 0.43 | 31.78 | 7.35 | 11.25 | 22.63 | 28.72 | 29.01 | 27.37 |
TR274 | 1.90 | 20.27 | 0 | 0.66 | 4.77 | 0.09 | 15.16 | 0.65 | 15.65 | 7.15 | 18.05 | 26.10 | 28.61 | 29.18 | 27.80 |
CM78566 | 1.16 | 14.80 | 0 | 0.79 | 2.77 | 0.07 | 7.36 | 0.35 | 15.33 | 6.35 | 15.25 | 15.97 | 28.54 | 28.14 | 25.68 |
WH147 | 1.16 | 18.81 | 0 | 0.67 | 3.43 | 0.06 | 9.34 | 0.56 | 18.80 | 3.52 | 18.25 | 16.63 | 28.97 | 28.85 | 27.79 |
Drought Stress | Heat Stress | ||||
---|---|---|---|---|---|
Traits | PC-1 | PC-2 | Traits | PC-1 | PC-2 |
Tdry | 0.883 | 0.181 | GY | 0.899 | 0.218 |
Twet | 0.889 | 0.288 | SPS | 0.675 | 0.282 |
Tc | 0.944 | 0.266 | Tc | −0.298 | 0.832 |
Ig | −0.522 | −0.413 | CWSI | −0.382 | 0.644 |
CSWI | 0.568 | 0.576 | HI | 0.838 | 0.237 |
CTD | −0.944 | −0.266 | GPS | 0.907 | 0.164 |
GY | −0.061 | −0.341 | SL | 0.664 | 0.312 |
RWC | 0.272 | −0.419 | SF | 0.839 | 0.073 |
DLR | 0.446 | −0.530 | GWS | 0.834 | 0.284 |
GPS | 0.074 | −0.634 | Tdry | −0.267 | 0.915 |
Explained variance (eigenvalue) | 4.883 | 3.766 | Explained variance (eigenvalue) | 5.084 | 4.029 |
Proportion of total variance (%) | 34.879 | 26.903 | Proportion of total variance (%) | 39.110 | 30.989 |
Cumulative percent of variance (%) | 34.879 | 61.782 | Cumulative percent of variance (%) | 39.110 | 70.098 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashfaq, W.; Brodie, G.; Fuentes, S.; Gupta, D. Infrared Thermal Imaging and Morpho-Physiological Indices Used for Wheat Genotypes Screening under Drought and Heat Stress. Plants 2022, 11, 3269. https://doi.org/10.3390/plants11233269
Ashfaq W, Brodie G, Fuentes S, Gupta D. Infrared Thermal Imaging and Morpho-Physiological Indices Used for Wheat Genotypes Screening under Drought and Heat Stress. Plants. 2022; 11(23):3269. https://doi.org/10.3390/plants11233269
Chicago/Turabian StyleAshfaq, Waseem, Graham Brodie, Sigfredo Fuentes, and Dorin Gupta. 2022. "Infrared Thermal Imaging and Morpho-Physiological Indices Used for Wheat Genotypes Screening under Drought and Heat Stress" Plants 11, no. 23: 3269. https://doi.org/10.3390/plants11233269
APA StyleAshfaq, W., Brodie, G., Fuentes, S., & Gupta, D. (2022). Infrared Thermal Imaging and Morpho-Physiological Indices Used for Wheat Genotypes Screening under Drought and Heat Stress. Plants, 11(23), 3269. https://doi.org/10.3390/plants11233269