Chemical Constituents of the Roots of Polygala tenuifolia and Their Anti-Inflammatory Effects
Abstract
:1. Introduction
2. Results
2.1. Isolation and Identification of Compounds 1–23 from the Roots of P. tenuifolia
2.2. Effects of Compounds 1–23 on NO and PGE2 Production in RAW 264.7 Macrophages
2.3. Effects of TCMB on iNOS and COX-2 Protein Level in RAW 264.7 Macrophages
2.4. Effects of TCMB on iNOS and COX-2 mRNA Expression Levels in LPS-Stimulated RAW 264.7 Macrophages
2.5. Effects of TCMB on TNF-α, IL-1β, and IL-6 mRNA Expression Levels in LPS-Stimulated RAW 264.7 Macrophages
2.6. Molecular Docking with TCMB and iNOS/COX-2 Proteins
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction and Isolation of Compounds from P. tenuifolia
4.3. Cell Culture and Cell Viability Assay
4.4. Measurement of NO and PGE2 Production
4.5. Western Blot Analysis
4.6. Preparation of RNA and qRT-PCR
4.7. Statistical Analysis
4.8. Molecular Docking Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiss, U. Inflammation. Nature 2008, 454, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oishi, Y.; Manabe, I. Macrophages in inflammation, repair and regeneration. Int. Immunol. 2018, 30, 511–528. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Cervera, A.; Soehnlein, O.; Kenne, E. Neutrophils in chronic inflammatory diseases. Cell. Mol. Immunol. 2022, 19, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Brodzikowska, A.; Ciechanowska, M.; Kopka, M.; Stachura, A.; Włodarski, P.K. Role of Lipopolysaccharide, Derived from Various Bacterial Species, in Pulpitis—A Systematic Review. Biomolecules 2022, 12, 138. [Google Scholar] [CrossRef]
- Posadas, I.; Terencio, M.C.; Guillén, I.; Ferrándiz, M.L.; Coloma, J.; Payá, M.; Alcaraz, M.J. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2000, 361, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Petros, A.; Bennett, D.; Vallance, P. Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet 1991, 338, 1557–1558. [Google Scholar] [CrossRef]
- Razavi, H.M.; Hamilton, J.A.; Feng, Q. Modulation of apoptosis by nitric oxide: Implications in myocardial ischemia and heart failure. Pharmacol. Ther. 2005, 106, 147–162. [Google Scholar] [CrossRef]
- Abramson, S.B. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Res. Ther. 2008, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-Y.; Yao, Y.-D.; Luo, J.-F.; Liu, Z.-Q.; Huang, Y.-M.; Wu, F.-C.; Sun, Q.-H.; Liu, J.-X.; Zhou, H. Microsomal prostaglandin E2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol. Res. 2022, 175, 105977. [Google Scholar] [CrossRef]
- Lacaille-Dubois, M.-A.; Delaude, C.; Mitaine-Offer, A.-C. A review on the phytopharmacological studies of the genus Polygala. J. Ethnopharmacol. 2020, 249, 112417. [Google Scholar] [CrossRef]
- Cheong, M.-H.; Lee, S.-R.; Yoo, H.-S.; Jeong, J.-W.; Kim, G.-Y.; Kim, W.-J.; Jung, I.-C.; Choi, Y.H. Anti-inflammatory effects of Polygala tenuifolia root through inhibition of NF-κB activation in lipopolysaccharide-induced BV2 microglial cells. J. Ethnopharmacol. 2011, 137, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Xin, T.; Zhang, F.; Jiang, Q.; Chen, C.; Huang, D.; Li, Y.; Shen, W.; Jin, Y. Extraction, purification and antitumor activity of a water-soluble polysaccharide from the roots of Polygala tenuifolia. Carbohydr. Polym. 2012, 90, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Zhao, S.; Liu, X.; Han, L.; Wang, R.; Hao, H.; Jiao, Y.; Han, S.; Bai, C. Polygala tenuifolia: A source for anti-Alzheimer’s disease drugs. Pharm. Biol. 2020, 58, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.-C.; Li, C.-Y.; Ko, H.-C.; Ko, F.-N.; Lin, Y.-L.; Wu, T.-S. Antidepressant principles of the roots of Polygala tenuifolia. J. Nat. Prod. 2006, 69, 1305–1309. [Google Scholar] [CrossRef]
- Yao, Y.; Jia, M.; Wu, J.-G.; Zhang, H.; Sun, L.-N.; Chen, W.-S.; Rahman, K. Anxiolytic and sedative-hypnotic activities of polygalasaponins from Polygala tenuifolia in mice. Pharm. Biol. 2010, 48, 801–807. [Google Scholar] [CrossRef]
- SAKUMA, S.; SHOJI, J. Studies on the constituents of the root of Polygala tenuifolia Willdenow. II. On the structures of onjisaponins A, B and E. Chem. Pharm. Bull. 1982, 30, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.-G.; Kam-Wai Wong, V.; Zeng, W.; Liu, L.; Yuen-Kwan Law, B. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q) TOF-MS for degradation of neurodegenerative disease proteins. Sci. Rep. 2015, 5, 17199. [Google Scholar] [CrossRef] [Green Version]
- Chuang-Jun, L.; Jing-Zhi, Y.; Shi-Shan, Y.; Zhang, D.-M.; Wei, X.; Yu-He, Y.; Nai-Hong, C. Triterpenoid Saponins and Oligosaccharides from the roots of Polygala tenuifolia Willd. Chin. J. Nat. Med. 2011, 9, 321–328. [Google Scholar]
- Miyase, T.; Noguchi, H.; Chen, X.-M. Sucrose esters and xanthone C-glycosides from the roots of Polygala sibirica. J. Nat. Prod. 1999, 62, 993–996. [Google Scholar] [CrossRef]
- Ikeya, Y.; Sugama, K.; Okada, M.; Mitsuhashi, H. Four new phenolic glycosides from Polygala tenuifolia. Chem. Pharm. Bull. 1991, 39, 2600–2605. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Tu, P.; Chen, X.; Zhang, T. Isolation of two sucrose esters from Polygala tenuifolia by high speed countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1583–1592. [Google Scholar] [CrossRef]
- Miyase, T.; Ueno, A. Sucrose derivatives from the roots of Polygala tenuifolia. Jpn. J. Pharmacogn. 1993, 47, p267–p278. [Google Scholar]
- Jiang, Y.; Tu, P.-F. Xanthone O-glycosides from Polygala tenuifolia. Phytochemistry 2002, 60, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Ikeya, Y.; Sugama, K.; Okada, M.; Mitsuhashi, H. Two xanthones from Polygala tenuifolia. Phytochemistry 1991, 30, 2061–2065. [Google Scholar] [CrossRef]
- Fujita, M.; Inoue, T. Studies on the constituents of Iris florentina L. II. C-glucosides of xanthones and flavones from the leaves. Chem. Pharm. Bull. 1982, 30, 2342–2348. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Tu, P. Four new phenones from the cortexes of Polygala tenuifolia. Chem. Pharm. Bull. 2005, 53, 1164–1166. [Google Scholar] [CrossRef] [Green Version]
- Locksley, H.; Murray, I. Extractives from Guttiferae. Part XIX. The isolation and structure of two benzophenones, six xanthones and two biflavonoids from the heartwood of Allanblackia floribunda Oliver. J. Chem. Soc. 1971, 1332–1340. [Google Scholar] [CrossRef]
- Pyo, M.-K.; Koo, Y.-K.; YunChoi, H.-S. Anti-platelet effect of the phenolic constituents isolated from the leaves of Magnolia obovata. Nat. Prod. Sci. 2002, 8, 147–151. [Google Scholar]
- Peterson, J.R.; Russell, M.E.; Surjasasmita, I.B. Synthesis and experimental ionization energies of certain (E)-3-arylpropenoic acids and their methyl esters. J. Chem. Eng. Data 1988, 33, 534–537. [Google Scholar] [CrossRef]
- Zhang, Y.; Hua, J.-W.; Wang, X.-Y.; Cheng, W.-L.; Lei, H.-X.; Cheng, K.-J.; Yu, P.-Z. Chemical constituents of chloroform fraction from leaves of Chimonanthus salicifolius. China J. Chin. Mater. Med. 2013, 38, 2661–2664. [Google Scholar]
- Lv, H.; Ren, W.; Zheng, Y.; Wang, L.; Lu, G.; Yi, P.; Ci, X. Tenuigenin exhibits anti-inflammatory activity via inhibiting MAPK and NF-κB and inducing Nrf2/HO-1 signaling in macrophages. Food Funct. 2016, 7, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M. Role of cytokines and other inflammatory mediators. BJOG Int. J. Obstet. Gynaecol. 2003, 110, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Song, Z.; Li, Y.; Wang, H.; Zhang, H.; Bao, J.; Li, Y.; Cui, J.; Jin, D.-Q.; Wang, A. Natural iridoids from Patrinia heterophylla showing anti-inflammatory activities in vitro and in vivo. Bioorg. Chem. 2020, 104, 104331. [Google Scholar] [CrossRef] [PubMed]
- Garcin, E.D.; Arvai, A.S.; Rosenfeld, R.J.; Kroeger, M.D.; Crane, B.R.; Andersson, G.; Andrews, G.; Hamley, P.J.; Mallinder, P.R.; Nicholls, D.J. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat. Chem. Biol. 2008, 4, 700–707. [Google Scholar] [CrossRef]
- Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; iyashiro, J.M.; Penning, T.D.; Seibert, K.; et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1996, 384, 644–648. [Google Scholar] [CrossRef]
Compound | Inhibition Rate (%) a [IC50 (μM)] | Compound | Inhibition Rate (%) a [IC50 (μM)] | ||
---|---|---|---|---|---|
NO | PGE2 | NO | PGE2 | ||
1 | b ND | b ND | 13 | 13.63 | 40.11 |
2 | b ND | b ND | 14 | 15.98 | 47.02 |
3 | 67.58 [24.62] | c NE | 15 | 13.92 | 44.50 |
4 | c NE | 46.41 | 16 | 9.15 | 45.65 |
5 | c NE | 50.54 | 17 | 47.50 | 94.44 [13.56] |
6 | c NE | 7.26 | 18 | 16.97 | 41.73 |
7 | 1.46 | 61.23 | 19 | 38.12 | 91.17 [11.03] |
8 | c NE | 36.25 | 20 | 9.63 | 37.50 |
9 | 25.45 | 65.05 | 21 | 56.53 [32.92] | 79.39 [24.57] |
10 | 18.56 | 45.52 | 22 | 9.61 | 46.68 |
11 | 68.21 [46.08] | 93.39 [10.01] | 23 | 8.89 | 38.67 |
12 | 11.86 | 45.40 | L-NIL | 57.87 | b ND |
NS398 | b ND | 67.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, S.-R.; Yoon, Y.-S.; Hong, J.-P.; Kim, J.-M.; Lee, K.-T.; Jang, D.S. Chemical Constituents of the Roots of Polygala tenuifolia and Their Anti-Inflammatory Effects. Plants 2022, 11, 3307. https://doi.org/10.3390/plants11233307
Son S-R, Yoon Y-S, Hong J-P, Kim J-M, Lee K-T, Jang DS. Chemical Constituents of the Roots of Polygala tenuifolia and Their Anti-Inflammatory Effects. Plants. 2022; 11(23):3307. https://doi.org/10.3390/plants11233307
Chicago/Turabian StyleSon, So-Ri, Young-Seo Yoon, Joon-Pyo Hong, Jae-Min Kim, Kyung-Tae Lee, and Dae Sik Jang. 2022. "Chemical Constituents of the Roots of Polygala tenuifolia and Their Anti-Inflammatory Effects" Plants 11, no. 23: 3307. https://doi.org/10.3390/plants11233307
APA StyleSon, S.-R., Yoon, Y.-S., Hong, J.-P., Kim, J.-M., Lee, K.-T., & Jang, D. S. (2022). Chemical Constituents of the Roots of Polygala tenuifolia and Their Anti-Inflammatory Effects. Plants, 11(23), 3307. https://doi.org/10.3390/plants11233307