Field Evaluation of Wheat Varieties Using Canopy Temperature Depression in Three Different Climatic Growing Seasons
Abstract
:1. Introduction
2. Plant Materials and Methods
2.1. Plant Materials and Field Planting
2.2. Planting and Management of Field Trials
2.3. Determination of Canopy Temperature
2.4. Determination of Canopy Structural Traits
2.5. Determination of Photosynthetic Parameters
2.6. Determination of Yield Traits
2.7. Data Analysis
3. Results
3.1. Climatic Conditions of the Three Growing Seasons
3.2. Variations in CTD among the Wheat Varieties
3.3. CTD and Canopy Structure
3.4. CTD and Photosynthetic Traits
3.5. CTD and Yield Traits
3.6. Comparisons among Clusters of Varieties
4. Discussions
4.1. CTD Variation at Different Growth Stages and Climatic Conditions
4.2. CTD and Canopy Structure
4.3. CTD and Photosynthetic Traits
4.4. CTD and Yield Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Novelty Statement
References
- Randell, H.; Gray, C.; Elizabeth, H. Climatic conditions and household food security: Evidence from Tanzania. Food Policy 2022, 112, 0306–9192. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, L.; Zhang, Z.; Chen, Y. Climate warming outweighed agricultural managements in affecting wheat phenology across China during 1981–2018. Agr. Forest Meteorol. 2022, 316, 0168–1923. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, T.; Xu, K.; Chen, C. The impact of high temperature and drought stress on the yield of major staple crops in northern China. J. Environ. Manage. 2022, 314, 0301–4797. [Google Scholar] [CrossRef] [PubMed]
- Cavus, Y.; Aksoy, H. Critical drought severity/intensity-duration-frequency curves based on precipitation deficit. J. Hydrol. 2020, 584, 124312. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, L.; Asseng, S.; Xia, Y.; Tang, L.; Liu, B.; Cao, W.; Zhu, Y. Estimating spring frost and its impact on yield across winter wheat in China. Agr. Forest Meteorol. 2018, 260–261, 154–164. [Google Scholar] [CrossRef]
- Liu, B.; Asseng, S.; Müller, C.; Ewert, F.; Elliott, J.; Lobell, D.B.; Martre, P.; Ruane, A.C.; Wallach, D.; Jones, J.W.; et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 2016, 6, 1130–1136. [Google Scholar] [CrossRef]
- Chen, S.; Mao, X.; Shang, S. Response and contribution of shallow groundwater to soil water/salt budget and crop growth in layered soils. Agr. Water Manage. 2022, 266, 0378–3774. [Google Scholar] [CrossRef]
- Reynolds, M.; Chapman, S.; Crespo-Herrera, L.; Molero, G.; Mondal, S.; Pequeno, D.N.L.; Pinto, F.; Pinera-Chavez, F.J.; Poland, J.; Rivera-Amado, C.; et al. Breeder friendly phenotyping. Plant Sci. 2020, 295, 110396. [Google Scholar] [CrossRef]
- Liu, L.; Gao, X.C.; Cheng, X.; Zhou, Y.; Huang, H.; Zhang, J.; Ba, Y. Applicability of the crop water stress index based on canopy–air temperature differences for monitoring water status in a cork oak plantation, northern China. Agr. Forest Meteorol. 2022, 327, 109226. [Google Scholar] [CrossRef]
- Fuchs, M.; Tanner, C.B. Infrared Thermometry of Vegetation 1. Agron. J. 1966, 58, 597–601. [Google Scholar] [CrossRef]
- Shu, F.; Jaquie, M. Role of canopy temperature depression in rice. Crop Environ. 2022, 1, 198–213. [Google Scholar] [CrossRef]
- Rebetzke, G.J.; Rattey, A.R.; Farquhar, G.D.; Richards, R.A.; Condon, A.T.G. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Funct. Plant Biol. 2013, 40, 14–33. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Y.; Peng, S. Nighttime transpirational cooling enabled by circadian regulation of stomatal conductance is related to stomatal anatomy and leaf morphology in rice. Planta 2021, 254, 12. [Google Scholar] [CrossRef]
- Henrique, D.R.; James, L.H.; Kevin, J.M.; William, L.R.; Katie, L. Epicuticular wax and its effect on canopy temperature and water use of Sorghum. Agr. Forest Meteorol. 2020, 284, 107893. [Google Scholar] [CrossRef]
- Anderegg, J.; Aasen, H.; Perich, G.; Roth, L.; Walter, A.; Hund, A. Temporal trends in canopy temperature and greenness are potential indicators of late-season drought avoidance and functional stay-green in wheat. Field Crops Res. 2021, 274, 0378–4290. [Google Scholar] [CrossRef]
- Hu, W.; Lu, Z.; Meng, F.; Li, X.; Cong, R.; Ren, T.; Lu, T. Potassium fertilization reduces silique canopy temperature variation in Brassica napus to enhance seed yield. Ind. Crops Prod. 2021, 168, 113604. [Google Scholar] [CrossRef]
- Monnens, D.M.; Smith, K.P.; Sadok, W. Canopy cooling traits associated with yield performance in heat-stressed oat. Eur. J. Agron. 2022, 139, 126555. [Google Scholar] [CrossRef]
- Mahmud, A.; Hossain, M.M.; Karim, M.A.; Mian, M.A.K.; Zakaria, M.; Kadian, M.S. Plant water relations and canopy temperature depression for assessing water stress tolerance of potato. J. Plant Physiol. 2016, 21, 56–63. [Google Scholar] [CrossRef]
- Pinto, R.S.; Reynolds, M.P. Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theor. Appl. Genet. 2015, 128, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Prashar, A.; Yildiz, J.; McNicol, J.W.; Bryan, G.J.; Jones, H.G. Infra-red Thermography for High Throughput Field Phenotyping in Solanum tuberosum. PLoS ONE 2013, 8, e65816. [Google Scholar] [CrossRef]
- Bonari, A.; Edalat, M.; Ghadiri, H.; Kazemeini, S.A.; Modarresi, M. The study of temperature depression and its association with grain yield in six wheat cultivars under heat stress conditions and salicylic acid application. Iran Agric. Res. 2020, 39, 99–108. [Google Scholar] [CrossRef]
- Melandri, G.; Prashar, A.; McCouch, S.R.; Linden, G.; Jones, H.G.; Kadam, N.; Jagadish, K.; Bouwmeester, H.; Ruyter-Spira, C. Association mapping and genetic dissection of drought-induced canopy temperature differences in rice. J. Exp. Bot. 2020, 71, 1614–1627. [Google Scholar] [CrossRef] [PubMed]
- Perich, G.; Hund, A.; Anderegg, J.; Roth, L.; Boer, M.P.; Walter, A.; Liebisch, F.; Aasen, H. Assessment of Multi-Image Unmanned Aerial Vehicle Based High-Throughput Field Phenotyping of Canopy Temperature. Front Plant Sci. 2020, 11, 150. [Google Scholar] [CrossRef]
- Deery, D.M.; Rebetzke, G.J.; Jimenez-Berni, J.A.; Bovill, W.D.; James, R.A.; Condon, A.G.; Furbank, R.T.; Chapman, S.C.; Fischer, R.A. Evaluation of the phenotypic repeatability of canopy temperature in wheat using continuous-terrestrial and airborne measurements. Front. Plant Sci. 2019, 10, 875. [Google Scholar] [CrossRef] [PubMed]
- Royo, C.; Villegas, D.; del Moral, L.F.G.; Elhani, S.; Aparicio, N.; Rharrabti, Y.; Araus, J.L. Comparative performance of carbon isotope discrimination and canopy temperature depression as predictors of genotype differences in durum wheat yield in Spain. Aust. J. Agr. Res. 2002, 53, 561. [Google Scholar] [CrossRef]
- Pask, A.; Pietragalla, J.; Mullan, D. Physiological Breeding II: A Field Guide to Wheat Phenotyping; CIMMYT: Mexico City, Mexico, 2012. [Google Scholar]
- Lepekhov, S.B.; Khlebovav, L.P. Association of canopy temperature depression with yield and morphological traits of spring soft wheat under Siberian conditions. Aust. J. Crop Sci. 2019, 9, 389–392. [Google Scholar] [CrossRef]
- Thapa, S.; Jessup, K.E.; Pradhan, G.P.; Rudd, J.C.; Liu, S.; Mahan, J.R.; Devkota, R.N.; Baker, J.A.; Xue, Q. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. Southern High Plains. Field Crops Res. 2018, 217, 11–19. [Google Scholar] [CrossRef]
- Frederiks, T.M.; Christopher, J.T.; Sutherland, M.W.; Borrell, A.K. Post-head-emergence frost in wheat and barley: Defining the problem, assessing the damage, and identifying resistance. J. Exp. Bot. 2015, 66, 3487–3498. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.; Singh, R.; Ibrahim, A.; Larque, S.A.; Quick, J.S. Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica 1997, 100, 85–94. [Google Scholar] [CrossRef]
- Sohail, M.; Hussain, I.; Qamar, M.; Tanveer, S.K.; Abbas, S.H.; Ali, Z.; Imtiaz, M. Evaluation of Spring Wheat Genotypes for Climatic Adaptability using Canopy Temperature as Physiological Indicator. Pak. J. Agric. Res. 2020, 33, 527–534. [Google Scholar] [CrossRef]
- Li, X.; Pu, H.; Liu, F.; Zhou, Q.; Cai, J.; Dai, T.; Cao, W.; Jiang, D. Winter wheat photosynthesis and grain yield responses to spring freeze. Agron. J. 2015, 107, 1002–1010. [Google Scholar] [CrossRef]
- Lu, Y.; Yan, Z.; Li, L.; Gao, C.; Shao, L. Selecting traits to improve the yield and water use efficiency of winter wheat under limited water supply. Agric. Water Manag. 2020, 242, 106410. [Google Scholar] [CrossRef]
- Mohammed, S.; Huggins, T.; Mason, E.; Beecher, F.; Chick, C.; Sengodon, P.; Paudel, A.; Ibrahim, A.; Tilley, M.; Hays, D. Mapping the genetic loci regulating leaf epicuticular wax, canopy temperature and drought susceptibility index in Triticum aestivum L. Crop Sci. 2021, 61, 2294–2305. [Google Scholar] [CrossRef]
- Mason, R.E.; Hays, D.B.; Mondal, S.; Ibrahim, A.M.H.; Basnet, B.R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica 2013, 194, 243–259. [Google Scholar] [CrossRef]
- Li, X.; Ingvordsen, C.H.; Weiss, M.; Rebetzke, G.J.; Condon, A.G.; James, R.A.; Richards, R.A. Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water. J. Exp. Bot. 2019, 70, 4963–4974. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.; Rane, J.; Nankar, A.N. Comparative Analysis of Canopy Cooling in Wheat under High Temperature and Drought Stress. Agronomy 2022, 12, 978. [Google Scholar] [CrossRef]
- Lepekhov, S.B. Canopy temperature depression for drought and heat stress tolerance in wheat breeding. Vavilov J. Genet. Breed. 2022, 26, 196–201. [Google Scholar] [CrossRef]
Growing Seasons | 2016–2017 (Normal) | 2017–2018 (Freezing) | 2018–2019 (Drought) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
HD | EF | MF | HD | EF | MF | HD | EF | MF | ||
2016–2017 (Normal) | HD | 1 | 0.704 ** | 0.750 ** | −0.093 | 0.04 | −0.106 | 0.062 | 0.012 | 0.199 ** |
EF | 1 | 0.647 ** | −0.132 | 0.07 | −0.068 | 0.079 | 0.028 | 0.150 * | ||
MF | 1 | −0.14 | −0.023 | −0.189 ** | 0.124 | 0 | 0.259 ** | |||
2017–2018 (Freezing) | HD | 1 | 0.372 ** | 0.382 ** | −0.123 | 0.210 ** | −0.278 ** | |||
EF | 1 | 0.313 ** | −0.028 | −0.105 | −0.173 * | |||||
MF | 1 | −0.197 ** | −0.059 | −0.388 ** | ||||||
2018–2019 (Drought) | HD | 1 | 0.547 ** | 0.616 ** | ||||||
EF | 1 | 0.284 ** | ||||||||
MF | 1 |
Growing Season | A (µmol m−2 s−1) | E (mol m−2 s−1) | Ci (µmol mol−1) | ||||
---|---|---|---|---|---|---|---|
Stages | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | |
2016−2017 (Normal) | HD | 21.47 ± 2.29 | 10.67% | 4.01 ± 0.62 | 15.46% | 247.88 ± 23.39 | 9.44% |
EF | 19.55 ± 2.39 | 12.23% | 4.75 ± 0.84 | 17.68% | 233.1 ± 23.69 | 10.16% | |
MF | 10.17 ± 4.38 | 43.07% | 4.11 ± 0.93 | 22.63% | 322.71 ± 36.36 | 11.27% | |
2017−2018 (Freezing) | HD | 17.84 ± 3.51 | 19.67% | 5.85 ± 1.46 | 24.96% | 267.98 ± 19.32 | 7.21% |
EF | 18.02 ± 2.23 | 12.38% | 5.28 ± 1.07 | 20.27% | 291.75 ± 23.24 | 7.97% | |
MF | 17.31 ± 2.43 | 14.04% | 2.88 ± 0.8 | 27.78% | 237.87 ± 23.91 | 10.05% | |
2018−2019 (Drought) | HD | 27.5 ± 4.05 | 14.73% | 8.32 ± 1.58 | 18.99% | 259.25 ± 49.19 | 18.97% |
EF | 27.67 ± 4.22 | 15.25% | 7.37 ± 1.53 | 20.76% | 284.43 ± 17 | 5.98% | |
MF | 22.38 ± 2.19 | 9.79% | 4.72 ± 0.91 | 19.28% | 270.6 ± 19.31 | 7.14% | |
Growing Season | Gs (µmol m−2 s−1) | A/E | Ci/Ca | ||||
Stages | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | |
2016−2017 (Normal) | HD | 0.34 ± 0.07 | 20.59% | 5.46 ± 0.81 | 14.84% | 0.66 ± 0.06 | 9.09% |
EF | 0.26 ± 0.06 | 23.08% | 4.23 ± 0.79 | 18.68% | 0.62 ± 0.06 | 9.68% | |
MF | 0.31 ± 0.08 | 25.81% | 4.23 ± 0.79 | 18.68% | 0.82 ± 0.09 | 10.98% | |
2017−2018 (Freezing) | HD | 0.32 ± 0.07 | 21.88% | 3.17 ± 0.67 | 21.14% | 0.7 ± 0.05 | 7.14% |
EF | 0.31 ± 0.05 | 16.13% | 3.43 ± 0.82 | 23.91% | 0.73 ± 0.05 | 6.85% | |
MF | 0.22 ± 0.07 | 31.82% | 6.11 ± 1.13 | 18.49% | 0.62 ± 0.07 | 11.29% | |
2018−2019 (Drought) | HD | 0.42 ± 0.16 | 38.10% | 3.34 ± 0.42 | 12.57% | 0.66 ± 0.12 | 18.18% |
EF | 0.47 ± 0.1 | 21.28% | 3.83 ± 0.51 | 13.32% | 0.71 ± 0.04 | 5.63% | |
MF | 0.34 ± 0.07 | 20.59% | 4.91 ± 0.84 | 17.11% | 0.69 ± 0.05 | 7.25% |
Growing Season | Traits | GPS | SN | TKW | GY | BM | HI |
---|---|---|---|---|---|---|---|
2016–2017 (Normal) | HD | 0.04 | −0.112 | 0.234 ** | 0.102 | −0.065 | 0.232 ** |
EF | −0.042 | −0.193 * | 0.066 | −0.073 | −0.238 ** | 0.184 * | |
MF | −0.1 | −0.1 | 0.059 | 0.034 | −0.074 | 0.147 * | |
2017–2018 (Freezing) | HD | −0.167 | 0.054 | −0.136 | −0.039 | 0.102 | −0.218 ** |
EF | −0.023 | −0.024 | 0.094 | −0.021 | 0.096 | −0.155 * | |
MF | −0.059 | 0.076 | 0.021 | −0.002 | 0.063 | −0.071 | |
2018–2019 (Drought) | HD | −0.279 ** | −0.05 | 0.012 | 0.129 | 0.031 | 0.198 ** |
EF | −0.102 | 0.086 | −0.114 | 0.116 | 0.150 * | −0.122 | |
MF | −0.284 ** | −0.165 * | 0.072 | 0.08 | −0.055 | 0.278 ** |
Growing Season | Cluster | No. of Varieties | CTD (°C) | SL (cm) | DSL (cm) | PL (cm) | PH (cm) | LFL (cm) | WFL (cm) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
HD | EF | MF | |||||||||
2016–2017 (Normal) | 1 | 85 | −1.6 ± 0.81 a | −0.89 ± 0.64 a | −1.9 ± 1.24 a | 9.7 ± 0.84 a | 10 ± 2.1 b | 27.1 ± 2.6 b | 84.5 ± 5.2 b | 19.3 ± 2.2 b | 2.0 ± 0.15 a |
2 | 75 | −4.0 ± 1.1 b | −3.0 ± 1.3 b | −4.6 ± 1.0 b | 9.5 ± 0.83 a | 9.4 ± 2.1 b | 26.4 ± 2.7 b | 82.7 ± 6.8 b | 19.8 ± 2.3 b | 1.9 ± 0.2 a | |
3 | 26 | −4.2 ± 1.2 b | −2.8 ± 1.2 b | −5 ± 0.89 b | 9.0 ± 1 b | 14.4 ± 4 a | 32.7 ± 4.3 a | 97.7 ± 11.9 a | 21.5 ± 3.3 a | 1.7 ± 0.2 b | |
2017–2018 (Freezing) | 1 | 18 | −2.4 ± 0.77 a | −2 ± 0.46 a | −1.2 ± 1.2 a | 8.8 ± 1.1 | 14.3 ± 3.7 a | 31.1 ± 3.9 a | 79.1 ± 8.3 a | 16.0 ± 2.1 a | 1.5 ± 0.19 c |
2 | 86 | −3.2 ± 0.71 b | −2 ± 0.54 a | −1.9 ± 0.88 b | 8.7 ± 0.63 | 9.8 ± 2 b | 24.3 ± 2.3 b | 67.3 ± 4.6 b | 13.9 ± 1.5 b | 1.7 ± 0.16 b | |
3 | 82 | −3.9 ± 0.58 b | −2.8 ± 0.51 b | −2.3 ± 0.59 c | 9.1 ± 1.4 | 7.3 ± 2.6 c | 21.8 ± 2.6 c | 63.0 ± 6.1 c | 14.3 ± 1.7 b | 1.8 ± 0.16 a | |
2018–2019 (Drought) | 1 | 84 | −0.64 ± 0.76 a | −5.4 ± 0.57 a | −1.1 ± 0.76 a | 8.7 ± 0.82 a | 6.0 ± 2 b | 22.0 ± 2.1 b | 69.6 ± 5.3 a | 17.4 ± 2.2 a | 1.9 ± 0.16 a |
2 | 14 | −1.7 ± 0.76 b | −5.2 ± 0.89 a | −3.0 ± 0.72 b | 8.9 ± 0.91 a | 14.5 ± 3.3 a | 32.8 ± 2.8 a | 93.2 ± 10.7 c | 18.4 ± 1.6 a | 1.7 ± 0.18 b | |
3 | 88 | −2.3 ± 0.9 c | −6.0 ± 0.77 b | −2.5 ± 0.75 b | 8.0 ± 0.76 b | 7.1 ± 2.3 b | 22.9 ± 3.4 b | 75.4 ± 7.8 b | 15.2 ± 2.3 b | 1.7 ± 0.18 b |
Growing Season | Cluster | GY (kg/hm−2) | BM (kg/hm−2) | SN (m−2) | TKW (g) | HI |
---|---|---|---|---|---|---|
2016–2017 (Normal) | 1 | 9406.9 ± 1895.4 a | 22348.8 ± 4156.3 | 702 ± 121.6 b | 39.5 ± 4.7 a | 0.42 ± 0.04 a |
2 | 8777.7 ± 1538 ab | 21158 ± 3303.5 | 665.1 ± 110.8 b | 38.7 ± 4.6 a | 0.41 ± 0.05 a | |
3 | 8047.5 ± 2462.4 b | 22241.2 ± 4817 | 762.9 ± 97 a | 35.7 ± 5.5 b | 0.35 ± 0.06 b | |
2017–2018 (Freezing) | 1 | 6893.7 ± 1149 | 15316.9 ± 2241.3 | 382.5 ± 121.7 a | 44.9 ± 5.9 b | 0.45 ± 0.04 |
2 | 6946 ± 1066.9 | 15316.9 ± 2315.8 | 347.5 ± 64.8 ab | 48.2 ± 4.1 a | 0.46 ± 0.05 | |
3 | 6983.3 ± 887.8 | 14840.3 ± 2099.8 | 338 ± 73.6 b | 48.5 ± 4.6 a | 0.47 ± 0.04 | |
2018–2019 (Drought) | 1 | 7297.9 ± 1259.6 | 14176.1 ± 2551.4 b | 394.1 ± 78.9 b | 48.4 ± 3.8 | 0.51 ± 0.05 a |
2 | 7789.8 ± 1783.9 | 16573.3 ± 4045 a | 495.2 ± 97.4 a | 46.6 ± 6.2 | 0.46 ± 0.03 b | |
3 | 7076.3 ± 1405.5 | 14319.6 ± 2880.9 b | 424.7 ± 82.6 b | 47.4 ± 4.8 | 0.49 ± 0.04 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, Y.; Zhao, Z.; Lu, S.; Chen, L.; Hu, Y. Field Evaluation of Wheat Varieties Using Canopy Temperature Depression in Three Different Climatic Growing Seasons. Plants 2022, 11, 3471. https://doi.org/10.3390/plants11243471
Chai Y, Zhao Z, Lu S, Chen L, Hu Y. Field Evaluation of Wheat Varieties Using Canopy Temperature Depression in Three Different Climatic Growing Seasons. Plants. 2022; 11(24):3471. https://doi.org/10.3390/plants11243471
Chicago/Turabian StyleChai, Yongmao, Zhangchen Zhao, Shan Lu, Liang Chen, and Yingang Hu. 2022. "Field Evaluation of Wheat Varieties Using Canopy Temperature Depression in Three Different Climatic Growing Seasons" Plants 11, no. 24: 3471. https://doi.org/10.3390/plants11243471
APA StyleChai, Y., Zhao, Z., Lu, S., Chen, L., & Hu, Y. (2022). Field Evaluation of Wheat Varieties Using Canopy Temperature Depression in Three Different Climatic Growing Seasons. Plants, 11(24), 3471. https://doi.org/10.3390/plants11243471