15N Natural Abundance of C3 and C4 Herbaceous Plants and Its Response to Climatic Factors along an Agro-Pastoral Zone of Northern China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of Foliar δ15N between C3 and C4 Herbs
2.2. Responses of Foliar δ15N of C3 and C4 Herbs to Climatic Factors
2.2.1. Response of Foliar δ15N Values of Herbs to MAP
2.2.2. Response of Foliar δ15N Values of Herbs to MAT
3. Methods
3.1. Sample Collection, Processing and Nitrogen Isotope Determination
3.2. Meteorological Data of Sample Sites
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craine, J.M.; Brookshire, E.N.J.; Cramer, M.D.; Hasselquist, N.J.; Koba, K.; Marin-Spiotta, E.; Wang, L.X. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 2015, 396, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.H.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human alteration of the global nitrogen cycle: Source and consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Aranibar, J.N.; Anderson, I.C.; Epstein, H.E.; Feral, C.J.W.; Swap, R.J.; Ramontsho, J.; Macko, S.A. Nitrogen isotope composition of soils, C3 and C4 plants along land use gradients in southern Africa. J. Arid Environ. 2008, 72, 326–337. [Google Scholar] [CrossRef]
- Ariz, I.; Cruz, C.; Neves, T.; Irigoyen, J.J.; Garcia-Olaverri, C.; Nogués, S.; Aparicio-Tejo, P.M.; Aranjuelo, I. Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated CO2, temperature and low water availability. Front. Plant Sci. 2015, 6, 574. [Google Scholar] [CrossRef] [PubMed]
- Gerhart, L.M.; McLauchlan, K.K. Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood. Biogeochemistry 2014, 120, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Handley, L.L.; Raven, J.A. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ. 2006, 15, 965–985. [Google Scholar] [CrossRef]
- Hobbie, E.A.; Högberg, P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol. 2012, 196, 367–382. [Google Scholar] [CrossRef]
- Templer, P.H.; Arthur, M.A.; Lovett, G.M.; Weathers, K.C. Plant and soil natural abundance 15N: Indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia 2007, 153, 399–406. [Google Scholar] [CrossRef]
- Craine, J.M.; Elmore, A.J.; Aidar, M.P.; Bustamante, M.; Dawson, T.E.; Hobbie, E.A.; Kahmen, A.; Mack, M.C.; McLauchlan, K.K.; Michelsen, A.; et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 2009, 183, 980–992. [Google Scholar] [CrossRef]
- Ma, J.Y.; Sun, W.; Liu, X.N.; Chen, F.H. Variation in the stable carbon and nitrogen isotope composition of plants and soil along a precipitation gradient in Northern China. PLoS ONE 2012, 7, e51894. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, B.; Chen, D.M. Regional-scale patterns of δ13C and δ15N associated with multiple ecosystem functions along an aridity gradient in grassland ecosystems. Plant Soil 2018, 432, 107–118. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, X.L.; Wang, F.; Greenberg, I.; Liu, M.; Che, R.X.; Zhang, L.; Cui, X.Y. Climatic, edaphic and biotic controls over soil δ13C and δ15N in temperate grasslands. Forests 2020, 11, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Amundson, R.; Austin, A.T.; Schuur, E.A.G.; Yoo, K. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 2003, 17, 1031. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhao, L.J.; Menassie, G.; Gao, D.Y.; Qin, D.H.; Ren, J.W. Foliar δ13C and δ15N values of C3 plants in the Ethiopia Rift Valley and their environmental controls. Chin. Sci. Bull. 2007, 52, 1265–1273. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Piccolo, M.C.; Townsend, A.R.; Vitousek, P.M.; Cuevas, E.; Mcdowell, W.; Robertson, G.P.; Santos, O.C.; Treseder, K. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 1999, 46, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Ladd, B.; Pepper, D.A.; Bonser, S.P.; Laffan, S.W.; Peri, P.L.; Amelung, W. Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia’s native forests. Global Change Biol. 2012, 18, 311–321. [Google Scholar] [CrossRef]
- Pardo, L.H.; Templer, P.H.; Goodate, C.L.; Duke, S.; Wessel, W. Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 2006, 80, 143–171. [Google Scholar] [CrossRef]
- Sah, S.P.; Rita, H.; Ilvesniemi, H. 15N natural abundance of foliage and soil across boreal forests of Finland. Biogeochemistry 2006, 80, 277–288. [Google Scholar] [CrossRef]
- Feng, J.; Yang, F.; Wu, J.J.; Chen, Q.; Zhang, Q.; Cheng, X.L. Contrasting soil C and N dynamics inferred from δ13C and δ15N values along a climatic gradient in southern China. Plant Soil 2020, 452, 217–231. [Google Scholar] [CrossRef]
- Liu, W.G.; Wang, Z. Nitrogen isotopic composition of plant-soil in the Loess Plateau and its responding to environmental change. Chin. Sci. Bull. 2009, 54, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.Z.; Liu, C.J.; Yu, W.J.; Wu, L.L.; Chen, D.M.; Sun, X.; Ma, X.P.; Hu, H.B.; Zhu, X.L. Variation in foliar δ15N among oriental oak stands over eastern China: Patterns and interactions. J. Geochem. Explor. 2011, 110, 8–14. [Google Scholar] [CrossRef]
- Ruiz-Navarro, A.; Barberá, G.G.; Albaladejo, J.; Querejeta, J.I. Plant δ15N reflects the high landscape-scale heterogeneity of soil fertility and vegetation productivity in a Mediterranean semiarid ecosystem. New Phytol. 2016, 212, 1030–1043. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xiao, H.; Cheng, G.; Liu, X.; Yang, Q.; Yin, L.; Li, C.Z. Correlation between δ13C and δ15N in C4 and C3 plants of natural and artificial sand-binding microhabitats in the Tengger Desert of China. Ecol. Inf. 2010, 5, 177–186. [Google Scholar] [CrossRef]
- Wooller, M.J.; Johnson, B.J.; Wilkie, A.; Fogel, M.L. Stable isotope characteristics across narrow savanna/woodland ecotones in Wolfe Creek meteorite crater, Western Australia. Oecologia 2005, 145, 100–112. [Google Scholar] [CrossRef]
- Swap, R.J.; Aranibar, J.N.; Dowty, P.R.; Gilhooly III, W.P.; Macko, S.A. Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: Patterns and implications. Glob. Change Biol. 2004, 10, 359–373. [Google Scholar] [CrossRef]
- Xia, J.Y.; Wan, S.Q. Global response patterns of terrestrial plant species to nitrogen addition. New Phytol. 2008, 179, 428–439. [Google Scholar] [CrossRef]
- Hartman, G.; Danin, A. Isotopic values of plants in relation to water availability in the eastern Mediterranean region. Oecologia 2010, 162, 837–852. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Z.; Wang, G.A.; Li, J.Z.; Wang, W.W.; Zhao, L.L.; Li, B.J. Relationship between temperature and δ13C values of C3 herbaceous plants and its implications of WUE in farming-pastoral zone in North China. Acta Ecol. Sin 2011, 31, 123–136. (In Chinese) [Google Scholar]
- Liu, Y.J.; Xu, N.; Niu, H.S. Response patterns of foliar δ13C and δ15N to environmental factors for the dominant plants in Inner Mongolia steppe, China. Acta Ecologica Sinica. 2016, 36, 235–243. (In Chinese) [Google Scholar]
- Xu, Y.; He, J.C.; Cheng, W.X.; Xing, Y.R.; Li, L.T. Natural 15N abundance in soils and plants in relation to N cycling in a rangeland in Inner Mongolia. J. Plant Ecol. 2010, 3, 201–207. [Google Scholar] [CrossRef]
- Ometto, J.P.H.B.; Ehleringer, J.R.; Domingues, T.F.; Berry, J.A.; Martinelli, L.A. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 2006, 79, 251–274. [Google Scholar] [CrossRef]
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable Isotopes in Plant Ecology. Annu. Rev. Ecol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- Zhang, L.; He, X.H. Nitrogen utilization mechanism in C3 and C4 plants. Chin. Bull. Bot. 2020, 55, 228–239. (In Chinese) [Google Scholar] [CrossRef]
- Feyissa, A.; Yang, F.; Feng, J.; Wu, J.; Chen, Q.; Cheng, X. Soil labile and recalcitrant carbon and nitrogen dynamics in relation to functional vegetation groups along precipitation gradients in secondary grasslands of South China. Environ. Sci. Pollut. Res. 2020, 27, 10528–10540. [Google Scholar] [CrossRef] [PubMed]
- Houlton, B.Z.; Sigman, D.M.; Hedin, L.O.; Hedin, L.O. A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc. Natl. Acad. Sci. USA 2007, 104, 8902–8906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahmen, A.; Wanek, W.; Buchmann, N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 2008, 156, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.; Huang, M.; Suo, L.; Zhao, X.; Wu, L. Composition and variation of soil δ15N stable isotope in natural ecosystems. Catena 2019, 183, 104236. [Google Scholar] [CrossRef]
- Stevenson, B.A.; Parfitt, R.L.; Schipper, L.A.; Baisden, W.T.; Mudge, P. Relationship between soil δ15N, C: N and N losses across land uses in New Zealand. Agric. Ecosyst. Environ. 2010, 139, 736–741. [Google Scholar] [CrossRef]
- Cook, G.D. Effects of frequent fires and grazing on stable nitrogen isotope ratios of vegetation in northern Australia. Austral Ecol. 2001, 26, 630–636. [Google Scholar] [CrossRef]
- Murphy, B.P.; Bowman, D.M.J.S. The carbon and nitrogen isotope composition of Australian grasses in relation to climate. Funct. Ecolo. 2009, 23, 1040–1049. [Google Scholar] [CrossRef]
- Cheng, S.L.; Fang, H.J.; Yu, G.R.; Zhu, T.H.; Zheng, J.J. Foliar and soil 15N natural abundances provide field evidence on nitrogen dynamics in temperate and boreal forest ecosystems. Plant Soil 2010, 337, 285–297. [Google Scholar] [CrossRef]
- Sutton, M.A.; Schjorring, J.K.; Wyers, G.P. Plant-atmosphere exchange of ammonia. Philos. Trans. R. Soc. London. Ser. A Phys. Eng. Sci. 1995, 351, 261–278. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Liu, D.; Wu, H.; Lü, X.; Fang, Y.; Cheng, W.; Luo, W.; Jiang, P.; Shi, J.; et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. 2014, 5, 4799. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Z.; Wang, G.A.; Li, J.Z.; Wang, Q. Nitrogen isotope composition characteristics of modern plants and their variations along an altitudinal gradient in Dongling Mountain in Beijing. Sci. China Earth Sci. 2010, 53, 128–140. [Google Scholar] [CrossRef]
- Liu, X.Z.; Wang, G.A. Measurements of nitrogen isotope composition of plants and surface soils along the altitudinal transect of the eastern slope of Mount Gongga in southwest China. Rapid Commun. Mass Spectrom. 2010, 24, 3063–3071. [Google Scholar] [CrossRef]
- Cheng, W.X.; Chen, Q.S.; Xu, Y.Q.; Han, X.G.; Li, L.H. Climate and ecosystem 15N natural abundance along a transect of Inner Mongolian grasslands: Contrasting regional patterns and global patterns. Glob. Biogeochem. Cycles 2009, 23, GB2005. [Google Scholar] [CrossRef]
- Bai, E.; Boutton, T.W.; Liu, F.; Wu, X.B.; Archer, S.R.; Hallmark, C.T. Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna. Oecologia 2009, 159, 493–503. [Google Scholar] [CrossRef]
- Craine, J.M.; Morrow, C.; Stock, W.D. Nutrient concentration ratios and co-limitation in South African grasslands. New Phytol. 2008, 179, 829–836. [Google Scholar] [CrossRef]
- Yi, X.F.; Yang, Y.Q. Enrichment of stable carbon and nitrogen isotopes of plant populations and plateau pikas along altitudes. J. Anim. Feed Sci. 2006, 15, 661–667. [Google Scholar] [CrossRef]
Variable Name | MAT(x1) | MAP(x2) | Multiple Regression Equation | ||
---|---|---|---|---|---|
SCC | PCC | SCC | PCC | ||
δ15N of C3 herbs (y) | −0.368 ** | −0.365 ** | −0.188 * | −0.183 * | y = −0.386x1 − 0.035x2 + 18.98 *** |
δ15N of C4 herbs (y) | −0.381 ** | −0.337 ** | −0.361 ** | −0.313 ** | y = −0.310x1 − 0.053x2 + 27.91 *** |
Climate Parameters | Longitude (°) | Latitude (°) | ||
---|---|---|---|---|
Regression Equation | Correlation Coefficient | Regression Equation | Correlation Coefficient | |
MAT(°C) | y = −0.43x + 54.1 | −0.62 ** | y = −0.74x + 35.3 | −0.81 ** |
MAP(mm) | y = −0.25x + 425 | −0.06NS | y = −0.31x + 410 | −0.06 NS |
No. | Site | Longitude (°) | Latitude (°) | MAT (°C) | MAP (mm) | Sample Size (n) | Grassland Type | Species Names |
---|---|---|---|---|---|---|---|---|
1 | Jinhe | 121.29 | 48.20 | −6.1 | 428 | 9 (3) | Meadow grassland | 1, 2, 3, 4, 5, 6, 7, 8 |
2 | Hailar | 119.14 | 47.23 | −1.0 | 367 | 6 (4) | Meadow grassland | 3, 6, 7, 8, 9, 10, 11, 12 |
3 | Arshan | 119.93 | 47.14 | −2.7 | 392 | 8 (4) | Typical grassland | 3, 4, 5, 6, 7, 8, 10, 13, 14 |
4 | HRFB | 121.58 | 46.05 | 2.1 | 397 | 3 (5) | Meadow grassland | 2, 3, 6, 7, 8 |
5 | Ulanhot | 122.03 | 46.04 | 4.1 | 416 | 6 (6) | Meadow grassland | 3, 4, 5, 6, 7, 8, 13, 14, 15 |
6 | BYHS | 121.27 | 45.04 | 7.3 | 357 | 8 (5) | Typical grassland | 1, 3, 6, 8, 9, 14, 16, 17, 18 |
7 | Jarud Banner | 120.90 | 44.57 | 2.8 | 387 | 9 (4) | Meadow grassland | 2, 3, 5, 7, 8, 12, 13, 18, 19 |
8 | Bairin Zuoqi | 119.60 | 43.98 | 5.3 | 390 | 11 (4) | Typical grassland | 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 18 |
9 | Duolun | 116.47 | 42.18 | 2.4 | 407 | 14 (4) | Meadow grassland | 1, 3, 5, 6, 7, 8, 9, 13, 18 |
10 | Bai Banner | 115.12 | 42.24 | 2.0 | 363 | 4 (4) | Typical grassland | 3, 5, 6, 7, 8, 13, 14 |
11 | Fengzhen | 113.45 | 40.26 | 4.7 | 413 | 12 (3) | Meadow grassland | 1, 3, 4, 5, 6, 7, 8, 9, 12, 13 |
12 | Jungar Banner | 110.26 | 39.35 | 7.5 | 400 | 4 (1) | Meadow grassland | 3, 6, 8, 13, 16 |
13 | Ordos | 110.47 | 39.03 | 6.4 | 345 | 3 (1) | Typical grassland | 2, 6, 3, 7 |
14 | Horo Banner | 110.05 | 39.17 | 6.2 | 365 | 3 (1) | Typical grassland | 3, 5, 6, 7 |
15 | Dongsheng | 109.98 | 39.38 | 5.4 | 400 | 6 (4) | Typical grassland | 3, 4, 5, 6, 8, 10, 14 |
16 | Youyu | 112.27 | 39.03 | 8.6 | 443 | 8 (5) | Meadow grassland | 1, 2, 3, 5, 6, 7, 8, 13, 14 |
17 | Hequ | 111.15 | 39.02 | 8.8 | 426 | 6 (2) | Meadow grassland | 3, 6, 9, 12, 8, 13, 14, 15, |
18 | Shenmu | 109.54 | 38.24 | 8.9 | 393 | 3 (3) | Meadow grassland | 3, 4, 6, 7, 8, 13, 14 |
19 | Hengshan | 109.17 | 37.36 | 8.5 | 398 | 9 (4) | Typical grassland | 1, 3, 4, 6, 7, 8, 9, 11, 14 |
20 | Jingbian | 108.50 | 37.28 | 7.8 | 395 | 6 (4) | Typical grassland | 1, 2, 3, 6, 7, 8, 13, 14 |
21 | Xiji | 105.44 | 37.57 | 5.3 | 400 | 8 (5) | Meadow grassland | 2, 3, 5, 6, 8, 14, 18 |
22 | Yuzhong | 104.20 | 36.92 | 6.6 | 403 | 5 (4) | Meadow grassland | 3, 5, 6, 7, 8, 14, 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, Y.; Zhang, Y.; Su, Q.; Feng, T.; Song, Y. 15N Natural Abundance of C3 and C4 Herbaceous Plants and Its Response to Climatic Factors along an Agro-Pastoral Zone of Northern China. Plants 2022, 11, 3526. https://doi.org/10.3390/plants11243526
Liu X, Li Y, Zhang Y, Su Q, Feng T, Song Y. 15N Natural Abundance of C3 and C4 Herbaceous Plants and Its Response to Climatic Factors along an Agro-Pastoral Zone of Northern China. Plants. 2022; 11(24):3526. https://doi.org/10.3390/plants11243526
Chicago/Turabian StyleLiu, Xianzhao, Yang Li, Yong Zhang, Qing Su, Teng Feng, and Yan Song. 2022. "15N Natural Abundance of C3 and C4 Herbaceous Plants and Its Response to Climatic Factors along an Agro-Pastoral Zone of Northern China" Plants 11, no. 24: 3526. https://doi.org/10.3390/plants11243526
APA StyleLiu, X., Li, Y., Zhang, Y., Su, Q., Feng, T., & Song, Y. (2022). 15N Natural Abundance of C3 and C4 Herbaceous Plants and Its Response to Climatic Factors along an Agro-Pastoral Zone of Northern China. Plants, 11(24), 3526. https://doi.org/10.3390/plants11243526