Effect of Induced Mechanical Leaf Damage on the Yield and Content of Bioactive Molecules in Leaves and Seeds of Tepary Beans (Phaseolus acutifolius)
Abstract
:1. Introduction
2. Results
2.1. Mechanical Damage and Seed Yield
2.2. Lectins and Protease Inhibitors
2.3. Phenolic Compounds and Antioxidant Capacity in Leaves
3. Discussion
4. Materials and Methods
4.1. Reagents and Instruments
4.2. Location and Soil Preparation
4.3. Crop Management and Source of Biological Material
4.4. Obtaining, Extracting and Characterizing Lectins and Protease Inhibitors from Tepary Bean Seeds
4.4.1. Lectin Extraction and Purification
4.4.2. Electrophoretic Profile SDS-PAGE
4.4.3. Identification of Glycoproteins
4.4.4. Agglutination Activity
4.4.5. Enzyme Activity
4.4.6. Inhibition Zymogram
4.5. Extraction of Phenolic Compounds from Leaves
4.6. Determination of Total Phenolic Compounds
4.7. Determination of Total Flavonoids
4.8. Determination of Condensed Tannins
4.9. Determination of Anthocyanins
4.10. Antioxidant Capacity
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reynoso-Camacho, R.; González De Mejía, E.; Loarca-Piña, G. Purification and Acute Toxicity of a Lectin Extracted from Tepary Bean (Phaseolus acutifolius). Food Chem. Toxicol. 2003, 41, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Mhlaba, Z.B.; Mashilo, J.; Shimelis, H.; Assefa, A.B.; Modi, A.T. Progress in Genetic Analysis and Breeding of Tepary Bean (Phaseolus acutifolius A. Gray): A Review. Sci. Hortic. 2018, 237, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Suárez, J.C.; Contreras, A.T.; Anzola, J.A.; Vanegas, J.I.; Rao, I.M. Physiological Characteristics of Cultivated Tepary Bean (Phaseolus acutifolius A. Gray) and Its Wild Relatives Grown at High Temperature and Acid Soil Stress Conditions in the Amazon Region of Colombia. Plants 2022, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- García-Gasca, T.; García-Cruz, M.; Hernandez-Rivera, E.; Ĺopez-Matínez, J.; Castañeda-Cuevas, A.L.; Yllescas-Gasca, L.; Mendiola-Olaya, E.; Castro-Guilĺen, J.L.; Blanco-Labra, A. Effects of Tepary Bean (Phaseolus acutifolius) Protease Inhibitor and Semipure Lectin Fractions on Cancer Cells. Nutr. Cancer 2012, 64, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Sharon, N. Lectins: Past, Present and Future. Biochem. Soc. Trans. 2008, 36, 1457–1460. [Google Scholar] [CrossRef]
- Estrada-Martínez, L.; Moreno-Celis, U.; Cervantes-Jiménez, R.; Ferriz-Martínez, R.; Blanco-Labra, A.; García-Gasca, T. Plant Lectins as Medical Tools against Digestive System Cancers. Int. J. Mol. Sci. 2017, 18, 1403. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zuo, R.; He, Y.; Zhou, C.; Yang, L.; Gill, R.A.; Bai, Z.; Zhang, X.; Liu, Y.; Cheng, X.; et al. Analysis of Tissue-Specific Defense Responses to Sclerotinia Sclerotiorum in Brassica Napus. Plants 2022, 11, 2001. [Google Scholar] [CrossRef]
- Castillo-Villanueva, A.; Abdullaev, F. Lectinas Vegetales y Sus Efectos En El Cáncer. Rev. Investig. Clin. 2005, 57, 55–64. [Google Scholar]
- Moreno-Celis, U.; López-Martínez, J.; Blanco-Labra, A.; Cervantes-Jiménez, R.; Estrada-Martínez, L.E.; García-Pascalin, A.E.; De Jesús Guerrero-Carrillo, M.; Rodríguez-Méndez, A.J.; Mejía, C.; Ferríz-Martínez, R.A.; et al. Phaseolus acutifolius Lectin Fractions Exhibit Apoptotic Effects on Colon Cancer: Preclinical Studies Using Dimethilhydrazine or Azoxi-Methane as Cancer Induction Agents. Molecules 2017, 22, 1670. [Google Scholar] [CrossRef] [Green Version]
- López-Martinez, J.; Castañeda-Cuevas, A.L.; Yllescas-Gasca, L.; Mendiola-Olaya, E.; Blanco-Labra, A.; Garcia-Gasca, T. Cytotoxic Effect of a Tepary Bean (Phaseolus acutifolius) Lectin on Human Cancer Cell Lines. FASEB J. 2008, 22, 1136.4. [Google Scholar] [CrossRef]
- Valadez-Vega, C.; Alvarez-Manilla, G.; Riverón-Negrete, L.; García-Carrancá, A.; Morales-González, J.A.; Zuniga-Pérez, C.; Madrigal-Santillán, E.; Esquivel-Soto, J.; Esquivel-Chirino, C.; Villagómez-Ibarra, R.; et al. Detection of Cytotoxic Activity of Lectin on Human Colon Adenocarcinoma (Sw480) and Epithelial Cervical Carcinoma (C33-A). Molecules 2011, 16, 2107–2118. [Google Scholar] [CrossRef] [PubMed]
- Im, S.Y.; Bonturi, C.R.; Nakahata, A.M.; Nakaie, C.R.; Pott, A.; Pott, V.J.; Oliva, M.L.V. Differences in the Inhibitory Specificity Distinguish the Efficacy of Plant Protease Inhibitors on Mouse Fibrosarcoma. Plants 2021, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Clemente, M.; Corigliano, M.G.; Pariani, S.A.; Sánchez-López, E.F.; Sander, V.A.; Ramos-Duarte, V.A. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int. J. Mol. Sci. 2019, 20, 1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferriz-Martínez, R.; Torres-Arteaga-Arteaga, I.C.; Blanco-Labra, A.; García-Gasca, T. The Role of Plant Lectins in Cancer Treatment. In New Approaches in the Treatment of Cancer; Mejia-Vazquez, C., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2010; pp. 71–89. [Google Scholar]
- Martínez-Alarcón, D.; Mora-Avilés, A.; Espinoza-Núñez, A.; Serrano Jamaica, L.M.; Cruz-Hernández, A.; Rodríguez-Torres, A.; Castro-Guillen, J.L.; Blanco-Labra, A.; García-Gasca, T. Rhizosecretion of a Cisgenic Lectin by Genetic Manipulation of Tepary Bean Plants (Phaseolus acutifolius). J. Biotechnol. 2019, 306, 100013. [Google Scholar] [CrossRef] [PubMed]
- Moreira, X.; Lundborg, L.; Zas, R.; Carrillo-Gavilán, A.; Borg-Karlson, A.K.; Sampedro, L. Inducibility of Chemical Defences by Two Chewing Insect Herbivores in Pine Trees Is Specific to Targeted Plant Tissue, Particular Herbivore and Defensive Trait. Phytochemistry 2013, 94, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Torres, N.; Goicoechea, N.; Antolín, M.C. Antioxidant Properties of Leaves from Different Accessions of Grapevine (Vitis vinifera L.) Cv. Tempranillo after Applying Biotic and/or Environmental Modulator Factors. Ind. Crops Prod. 2015, 76, 77–85. [Google Scholar] [CrossRef]
- Mencin, M.; Abramovič, H.; Jamnik, P.; Mikulič Petkovšek, M.; Veberič, R.; Terpinc, P. Abiotic Stress Combinations Improve the Phenolics Profiles and Activities of Extractable and Bound Antioxidants from Germinated Spelt (Triticum spelta L.) Seeds. Food Chem. 2021, 344, 128704. [Google Scholar] [CrossRef]
- Rehman, S.; Aziz, E.; Akhtar, W.; Ilyas, M.; Mahmood, T. Structural and Functional Characteristics of Plant Proteinase Inhibitor-II (PI-II) Family. Biotechnol. Lett. 2017, 39, 647–666. [Google Scholar] [CrossRef]
- Sharon, N.; Lis, H. Legume Lectins—A Large Family of Homologous Proteins. FASEB J. 1990, 4, 3198–3208. [Google Scholar] [CrossRef]
- Chrispeels, M.J.; Raikhel, N.V. Lectins, Lectin Genes, and Their Role in Plant Defense. Plant Cell 1991, 3, 1–9. [Google Scholar]
- Tajima, Y.; Loo, E.P.-i.; Saijo, Y. Plant Physiological and Molecular Mechanisms in Cross-Regulation of Biotic-Abiotic Stress Responses. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 21–34. [Google Scholar]
- Qazi, H.A.; Jan, N.; Ramazan, S.; John, R. Protein Modification in Plants in Response to Abiotic Stress. In Molecular Nutrition: Vitamins; Elsevier: Amsterdam, The Netherlands, 2019; pp. 171–201. [Google Scholar]
- Shao, C.; Zhang, C.; Lv, Z.; Shen, C. Pre- and Post-Harvest Exposure to Stress Influence Quality-Related Metabolites in Fresh Tea Leaves (Camellia Sinensis). Sci. Hortic. 2021, 281, 109984. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global and High-Resolution Assessment of the Green, Blue and Grey Water Footprint of Wheat. Hydrol. Earth Syst. Sci. 2010, 14, 1259–1276. [Google Scholar] [CrossRef]
- Aslani, M.; Souri, M.K. Growth and Quality of Green Bean (Phaseolus vulgaris L.) under Foliar Application of Organic-Chelate Fertilizers. Open Agric. 2018, 3, 146–154. [Google Scholar] [CrossRef]
- McBeath, T.M.; Facelli, E.; Peirce, C.A.E.; Arachchige, V.K.; McLaughlin, M.J. Assessment of Foliar-Applied Phosphorus Fertiliser Formulations to Enhance Phosphorus Nutrition and Grain Production in Wheat. Crop. Pasture Sci. 2020, 71, 795–806. [Google Scholar] [CrossRef]
- Talaverano, M.I.; Moreno, D.; Rodríguez-Pulido, F.J.; Valdés, M.E.; Gamero, E.; Jara-Palacios, M.J.; Heredia, F.J. Effect of Early Leaf Removal on Vitis vinifera L. Cv. Tempranillo Seeds during Ripening Based on Chemical and Image Analysis. Sci. Hortic. 2016, 209, 148–155. [Google Scholar] [CrossRef]
- Dinssa, F.F.; Yang, R.Y.; Ledesma, D.R.; Mbwambo, O.; Hanson, P. Effect of Leaf Harvest on Grain Yield and Nutrient Content of Diverse Amaranth Entries. Sci. Hortic. 2018, 236, 146–157. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, Y.; Wang, B.; Li, S.; Guo, F.; Hua, H.; Zhao, Y.; Yu, Z. Comparison of Phenolic Compounds, Antioxidant and Antidiabetic Activities between Selected Edible Beans and Their Different Growth Periods Leaves. J. Funct. Foods 2017, 35, 694–702. [Google Scholar] [CrossRef]
- Rochín-Medina, J.J.; Mora-Rochín, S.; Navarro-Cortez, R.O.; Tovar-Jimenez, X.; Quiñones-Reyes, G.; Ayala-Luján, J.L.; Rojas, J.A. Contenido de Compuestos Fenólicos y Capacidad Antioxidante de Variedades de Frijol Sembradas En El Estado de Zacatecas. Acta Univ. 2021, 31, 1–13. [Google Scholar]
- Zheng, Y.L.; Xu, L.; Wu, J.C.; Liu, J.L.; DuanMu, H.L. Time of Occurrence of Hopperburn Symptom on Rice Following Root and Leaf Cutting and Fertilizer Application with Brown Planthopper, Nilaparvata Lugens (Stål) Infestation. Crop Prot. 2007, 26, 66–72. [Google Scholar] [CrossRef]
- Gijsman, F.; González, Y.; Guevara, M.; Amador-Vargas, S. Short-Term Plasticity and Variation in Acacia Ant-Rewards under Different Conditions of Ant Occupancy and Herbivory. Sci. Nat. 2021, 108, 31. [Google Scholar] [CrossRef]
- Kozlov, M.V.; Zverev, V.; Zvereva, E.L. Leaf Size Is More Sensitive than Leaf Fluctuating Asymmetry as an Indicator of Plant Stress Caused by Simulated Herbivory. Ecol. Indic. 2022, 140, 108970. [Google Scholar] [CrossRef]
- Oliveira, J.T.A.; Rios, F.J.B.; Vasconcelos, I.M.; Ferreira, F.V.A.; Nojosa, G.B.A.; Medeiros, D.A. Cratylia Argentea Seed Lectin, a Possible Defensive Protein against Plant-Eating Organisms: Effects on Rat Metabolism and Gut Histology. Food Chem. Toxicol. 2004, 42, 1737–1747. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Jiménez, R.; Sánchez-Segura, L.; Estrada-Martínez, L.E.; Topete-Camacho, A.; Mendiola-Olaya, E.; Rosas-Escareño, A.N.; Saldaña-Gutiérrez, C.; Figueroa-Cabañas, M.E.; Dena-Beltrán, J.L.; Kuri-García, A.; et al. Quantum Dot Labelling of Tepary Bean (Phaseolus acutifolius) Lectins by Microfluidics. Molecules 2020, 25, 1041. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.M. Nondenaturing Polyacrylamide Gel Electrophoresis of Proteins. In Basic Protein and Peptide Protocols. Methods in Molecular Biology; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 1994; Volume 32, pp. 17–22. [Google Scholar]
- Jaffé, W.G. Hemagglutinins (Lectins). In Toxic Constituents of Plant Foodstuffs; Liener, I.E., Ed.; Academic Press Inc: New York, NY, USA, 1980; pp. 73–102. [Google Scholar]
- Schwert, G.W.; Takenaka, Y. A Spectrophotometric Determination of Trypsin and Chymotrypsin. Biochim. Biophys. Acta 1955, 16, 570–575. [Google Scholar] [CrossRef]
- Erlanger, B.F.; Kokowsky, N.; Cohen, W. The Preparation and Properties of Two New Chromogenic Substrates of Trypsin. Arch. Biochem. Biophys. 1961, 95, 271–278. [Google Scholar] [CrossRef]
- Ohlsson, B.G.; Weström, B.R.; Karlsson, B.W. Enzymoblotting: A Method for Localizing Proteinases and Their Zymogens Using Para-Nitroanilide Substrates after Agarose Gel Electrophoresis and Transfer to Nitrocellulose. Anal. Biochem. 1986, 152, 239–244. [Google Scholar] [CrossRef]
- Vinokurov, K.S.; Oppert, B.; Elpidina, E.N. An Overlay Technique for Postelectrophoretic Analysis of Proteinase Spectra in Complex Mixtures Using P-Nitroanilide Substrates. Anal. Biochem. 2005, 337, 164–166. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, S.S.; Cheryan, M. Evaluation of Vanillin Assay for Tannin Analysis of Dry Beans. J. Food Sci. 1985, 50, 905–910. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Hucl, P. A Rapid Method for Quantifying Total Anthocyanins in Blue Aleurone and Purple Pericarp Wheats. Cereal Chem. 1999, 76, 350–354. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying and Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- R-Project R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 18 January 2021).
Treatment (Mechanical Damage) | Total Leaves/Plant | Treated Leaves/Plant | Fresh Pods/Plant | Dried Pods/Plant |
---|---|---|---|---|
T1 (0%) | 58.8 ± 38.5 a | 0 | 11.2 ± 10.01 a | 29.2 ± 27.4 a |
T2 (50%) | 60.4 ± 27.4 a | 30.2 ± 13.7 | 8.5 ± 8.3 ab | 28.9 ± 17.4 a |
T3 (80%) | 57.9 ± 32.5 a | 46.3 ± 26.02 | 6.0 ± 96.9 b | 27.1 ± 20.7 a |
Treatment (Mechanical Damage) | Total Fresh Pods | Diff. | Total Dry Pods | Diff. | Fresh and Dried Pods | Diff. | Seeds (g) | Diff. Quantity (%) |
---|---|---|---|---|---|---|---|---|
T1 (0%) | 1285 | 0 (100%) | 3468 | 0 (100%) | 4753 | 0 (100%) | 1890 | 0 (100%) |
T2 (50%) | 1015 | −270 (78.9%) | 3463 | −5 (99.9%) | 4478 | −275 (94.2%) | 1658 | −232 (87.7%) |
T3 (80%) | 717 | −568 (55.8%) | 3250 | −218 (93.7%) | 3967 | −786 (83.5%) | 1615 | −275 (85.4%) |
Treatment (Mechanical Damage) | mg CPE/100 g DRBF | mg P40/100 g DRBF | mg P70/100 g DRBF | LBUs from LIP-70/mg Protein | UEA against Trypsin from LIP-70/mg Protein |
---|---|---|---|---|---|
T1 (0%) | 990 ± 23 a | 640 ± 32 a | 490 ± 10 a | 1280 ± 760 a | 60.8 ± 26.9 a |
T2 (50%) | 850 ± 19 a | 655 ± 28 a | 455 ± 40 a | 2560 ± 1108 b | 60.6 ± 18.3 a |
T3 (80%) | 905 ± 18 a | 700 ± 28 a | 440 ± 32 a | 6542 ± 2893 c | 51.0 ± 19.3 a |
Treatment (Mechanical Damage) | Total Phenols (mg GAE/100 g DM) | Total Flavonoids (mg CE/100 g DM) | Condensed Tannins (mg CE/100 g DM) | Total Anthocyanins (mg C3GE/g DM) |
---|---|---|---|---|
T1 (0%) | 1374.45 ± 55.83 a | 797.27 ± 25.91 a | 1.51 ± 0.06 a | 0.79 ± 0.03 a |
T2 (50%) | 1103.88 ± 38.66 b | 574.20 ± 29.19 b | 1.49 ± 0.09 a | 0.81 ± 0.02 a |
T3 (80%) | 1285.13 ± 43.56 c | 767.15 ± 34.31 a | 1.48 ± 0.10 a | 0.73 ± 0.02 b |
Treatment (Mechanical Damage) | DPPH | ABTS | ||
---|---|---|---|---|
µmol TE/g DM | % of Inhibition | µmol TE/g DM | % of Inhibition | |
T1 (0%) | 249.79 ± 10.30 a | 31.64 ± 4.46 a | 334.56 ± 13.62 a | 59.03 ± 5.07 a |
T2 (50%) | 240.49 ± 4.58 b | 27.76 ± 1.92 b | 303.29 ± 13.61 b | 47.53 ± 4.97 b |
T3 (80%) | 263.76 ± 5.83 c | 37.78 ± 2.57 c | 318.31 ± 6.70 c | 53.04 ± 2.52 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervantes-Jiménez, R.; Martínez, M.M.; Mercado-Luna, A.; Chávez-Servín, J.L.; Ruiz, B.C.; Vargas-Madriz, Á.F.; Roldán-Padrón, O.; Cabañas, M.E.F.; Ferriz-Martínez, R.A.; García-Gasca, T. Effect of Induced Mechanical Leaf Damage on the Yield and Content of Bioactive Molecules in Leaves and Seeds of Tepary Beans (Phaseolus acutifolius). Plants 2022, 11, 3538. https://doi.org/10.3390/plants11243538
Cervantes-Jiménez R, Martínez MM, Mercado-Luna A, Chávez-Servín JL, Ruiz BC, Vargas-Madriz ÁF, Roldán-Padrón O, Cabañas MEF, Ferriz-Martínez RA, García-Gasca T. Effect of Induced Mechanical Leaf Damage on the Yield and Content of Bioactive Molecules in Leaves and Seeds of Tepary Beans (Phaseolus acutifolius). Plants. 2022; 11(24):3538. https://doi.org/10.3390/plants11243538
Chicago/Turabian StyleCervantes-Jiménez, Ricardo, Marisol Martínez Martínez, Adán Mercado-Luna, Jorge Luis Chávez-Servín, Bárbara Cabello Ruiz, Ángel Félix Vargas-Madriz, Octavio Roldán-Padrón, Mónica Eugenia Figueroa Cabañas, Roberto Augusto Ferriz-Martínez, and Teresa García-Gasca. 2022. "Effect of Induced Mechanical Leaf Damage on the Yield and Content of Bioactive Molecules in Leaves and Seeds of Tepary Beans (Phaseolus acutifolius)" Plants 11, no. 24: 3538. https://doi.org/10.3390/plants11243538
APA StyleCervantes-Jiménez, R., Martínez, M. M., Mercado-Luna, A., Chávez-Servín, J. L., Ruiz, B. C., Vargas-Madriz, Á. F., Roldán-Padrón, O., Cabañas, M. E. F., Ferriz-Martínez, R. A., & García-Gasca, T. (2022). Effect of Induced Mechanical Leaf Damage on the Yield and Content of Bioactive Molecules in Leaves and Seeds of Tepary Beans (Phaseolus acutifolius). Plants, 11(24), 3538. https://doi.org/10.3390/plants11243538