Temperate Lianas Have More Acquisitive Strategies than Host Trees in Leaf and Stem Traits, but Not Root Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Species Selection
2.2. Plant Trait Measurement
2.3. Data Analyses
3. Results
3.1. Multivariate Analyses and Trait Associations
3.2. Bivariate Trait Associations
4. Discussion
4.1. Coordination among Leaf, Stem, and Root Traits
4.2. Resource Acquisition Strategies in Lianas and Host Trees
4.3. Dynamic Prediction of Temperate Lianas in the Context of Global Change
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cramer, W.; Bondeau, A.; Woodward, F.I.; Prentice, I.C.; Betts, R.A.; Brovkin, V.; Cox, P.M.; Fisher, V.; Foley, J.A.; Friend, A.D.; et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Chang. Biol. 2001, 7, 357–373. [Google Scholar] [CrossRef] [Green Version]
- Schnitzer, S.A.; Bongers, F. Increasing liana abundance and biomass in tropical forests: Emerging patterns and putative mechanisms. Ecol. Lett. 2011, 14, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivek, P.; Parthasarathy, N. Liana community and functional trait analysis in tropical dry evergreen forest of India. J. Plant Ecol. 2014, 8, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Buckton, G.; Cheesman, A.W.; Munksgaard, N.C.; Wurster, C.M.; Liddell, M.J.; Cernusak, L.A. Functional traits of lianas in an Australian lowland rainforest align with post-disturbance rather than dry season advantage. Austral Ecol. 2019, 44, 983–994. [Google Scholar] [CrossRef]
- Venegas-González, A.; Mello, F.N.A.; Schnitzer, S.A.; César, R.G.; Tomazello-Filho, M. The negative effect of lianas on tree growth varies with tree species and season. Biotropica 2020, 52, 836–844. [Google Scholar] [CrossRef]
- Birhane, E.; Fekensa, Z.; Tewolde-Berhan, S.; Rannestad, M.M.; Solomon, N. The diversity and distribution of lianas under various disturbance regimes in Chilimo dry Afromontane forest, Ethiopia. Glob. Ecol. Conserv. 2020, 23, e01045. [Google Scholar] [CrossRef]
- Zhu, S.-D.; Cao, K.-F. Contrasting cost–benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China. Oecologia 2010, 163, 591–599. [Google Scholar] [CrossRef]
- Collins, C.G.; Wright, S.J.; Wurzburger, N. Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees. Oecologia 2015, 180, 1037–1047. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef]
- Allen, B.P.; Sharitz, R.R.; Goebel, P.C. Are lianas increasing in importance in temperate floodplain forests in the southeastern United States? For. Ecol. Manag. 2007, 242, 17–23. [Google Scholar] [CrossRef]
- Mello, F.N.A.; Estrada-Villegas, S.; DeFilippis, D.M.; Schnitzer, S.A. Can Functional Traits Explain Plant Coexistence? A Case Study with Tropical Lianas and Trees. Diversity 2020, 12, 397. [Google Scholar] [CrossRef]
- Medina-Vega, J.A.; Bongers, F.; Poorter, L.; Schnitzer, S.A.; Sterck, F.J. Lianas have more acquisitive traits than trees in a dry but not in a wet forest. J. Ecol. 2021, 109, 2367–2384. [Google Scholar] [CrossRef]
- Werden, L.K.; Waring, B.; Smith-Martin, C.M.; Powers, J.S. Tropical dry forest trees and lianas differ in leaf economic spectrum traits but have overlapping water-use strategies. Tree Physiol. 2017, 38, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Smith-Martin, C.M.; Xu, X.; Medvigy, D.; Schnitzer, S.A.; Powers, J.S. Allometric scaling laws linking biomass and rooting depth vary across ontogeny and functional groups in tropical dry forest lianas and trees. New Phytol. 2019, 226, 714–726. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Liu, G.; Freschet, G.T.; Pan, X.; Cornelissen, J.H.C.; Li, Y.; Dong, M. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol. 2010, 188, 543–553. [Google Scholar] [CrossRef]
- Londré, R.A.; Schnitzer, S.A. The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology 2006, 87, 2973–2978. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhao, P.; Bu, J.; Yue, M. The differential responses of woody and herbaceous climbers to selective logging and supporter structure in a temperate forest of Xiaolong Mountain, China. Plant Ecol. 2019, 220, 293–304. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, P.; Zhou, Z.; Yi, J.; Chai, Y.; Yue, M. Coexistence of three common species in a temperate mixed forest: Linking seedling microhabitats and functional traits. For. Ecol. Manag. 2020, 465, 118057. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, Y.; Yi, J.J.; Yue, M. Species Richness and Altitudinal Gradient Distribution Pattern of Climbing Plants in the Taibai Mountain. J. Northwest For. Univ. 2020, 35, 60–65, (In Chinese with English abstract). [Google Scholar]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef]
- Aggarwal, R.; Ranganathan, P. Common pitfalls in statistical analysis: The use of correlation techniques. Perspect. Clin. Res. 2016, 7, 187. [Google Scholar] [PubMed]
- Kleyer, M.; Minden, V. Why functional ecology should consider all plant organs: An allocation-based perspective. Basic Appl. Ecol. 2015, 16, 1–9. [Google Scholar] [CrossRef]
- Freschet, G.T.; Cornelissen, J.H.C.; van Logtestijn, R.S.P.; Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 2010, 98, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Sterck, F.; Markesteijn, L.; Schieving, F.; Poorter, L. Functional traits determine trade-offs and niches in a tropical forest community. Proc. Natl. Acad. Sci. USA 2011, 108, 20627–20632. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, M.V.; Blanuša, T.; Verhoef, A.; Hadley, P.; Cameron, R.W. Relative importance of transpiration rate and leaf mor-phological traits for the regulation of leaf temperature. Aust. J. Bot. 2016, 64, 32–44. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Chapin, T.; Cornelissen, J.H.; Diemer, M.; Villar, R.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Shane, M.W.; Lambers, H. Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol. Plant. 2005, 124, 441–450. [Google Scholar] [CrossRef]
- Lusk, C.H.; Laughlin, D.C. Regeneration patterns, environmental filtering and tree species coexistence in a temperate forest. New Phytol. 2016, 213, 657–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taseski, G.M.; A Keith, D.; Dalrymple, R.L.; Cornwell, W.K. Shifts in fine root traits within and among species along a fine-scale hydrological gradient. Ann. Bot. 2020, 127, 473–481. [Google Scholar] [CrossRef]
- Liese, R.; Alings, K.; Meier, I.C. Root Branching Is a Leading Root Trait of the Plant Economics Spectrum in Temperate Trees. Front. Plant Sci. 2017, 8, 315. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.-L.; Zhang, Y.-B.; Liu, Q.; Wang, Y.-S.; Yang, D.; Zhang, J.-L. Leaf and Stem Traits are Linked to Liana Growth Rate in a Subtropical Cloud Forest. Forests 2020, 11, 1120. [Google Scholar] [CrossRef]
- Zhang, K.-Y.; Yang, D.; Zhang, Y.-B.; Ellsworth, D.S.; Xu, K.; Zhang, Y.-P.; Chen, Y.-J.; He, F.; Zhang, J.-L. Differentiation in stem and leaf traits among sympatric lianas, scandent shrubs and trees in a subalpine cold temperate forest. Tree Physiol. 2021, 41, 1992–2003. [Google Scholar] [CrossRef] [PubMed]
- Dewalt, S.J.; Schnitzer, S.A.; Denslow, J.S. Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. J. Trop. Ecol. 2000, 16, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Kitching, R.L.; Cao, M. Lianas as structural parasites: A re-evaluation. Chin. Sci. Bull. 2011, 57, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Bazzaz, F.; Pickett, S. Physiological ecology of tropical succession: A comparative review. Annu. Rev. Ecol. Syst. 1980, 11, 287–310. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E. Contrasting leaf chemical traits in tropical lianas and trees: Implications for future forest composition. Ecol. Lett. 2012, 15, 1001–1007. [Google Scholar] [CrossRef]
- Nicotra, A.; Cosgrove, M.; Cowling, A.; Schlichting, C.; Jones, C. Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species. Oecologia 2008, 154, 625–635. [Google Scholar] [CrossRef]
- Kitajima, K.; Poorter, L. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol. 2010, 186, 708–721. [Google Scholar] [CrossRef]
- Parkhurst, D.F.; Loucks, O. Optimal leaf size in relation to environment. J. Ecol. 1972, 60, 505–537. [Google Scholar] [CrossRef]
- IPCC. Climate change 2007: The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 131–234. [Google Scholar]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
Traits | Abbreviation | Units |
---|---|---|
Leaf thickness | Lth | mm |
Leaf area | LA | cm2 |
Leaf dry matter content | LDMC | g g−1 |
Leaf mass per area | LMA | g cm−2 |
Specific leaf area | SLA | cm2 g−1 |
Leaf nitrogen content | LNC | mg g−1 |
Leaf carbon content | LCC | mg g−1 |
Wood density | WD | g cm−3 |
Specific root length | SRL | cm g−1 |
Root nitrogen content | RNC | mg g−1 |
Root carbon content | RCC | mg g−1 |
Functional Traits | PC1 | PC2 | PC3 |
---|---|---|---|
Lth | –0.28 | 0.11 | –0.28 |
LA | 0.24 | −0.27 | 0.06 |
LDMC | 0.43 | 0.07 | 0.19 |
LMA | 0.36 | 0.34 | –0.42 |
SLA | –0.38 | −0.31 | 0.39 |
LNC | 0.27 | −0.28 | 0.17 |
LCC | 0.38 | −0.08 | 0.13 |
WD | 0.41 | −0.09 | 0.25 |
SRL | 0.12 | −0.17 | −0.45 |
RNC | −0.05 | 0.53 | 0.35 |
RCC | 0.03 | 0.53 | 0.33 |
% Total | 36.5 | 16.5 | 10.4 |
Lth | LA | LDMC | LMA | SLA | LNC | LCC | WD | SRL | RNC | |
---|---|---|---|---|---|---|---|---|---|---|
LA | −0.216 * | |||||||||
LDMC | −0.6911 ** | 0.283 ** | ||||||||
LMA | −0.128 | 0.174 | 0.602 ** | |||||||
SLA | −0.128 | −0.172 | −0.604 ** | −0.997 ** | ||||||
LNC | −0.147 | 0.417 ** | 0.295 * | 0.224 * | −0.226 ** | |||||
LCC | −0.316 ** | 0.452** | 0.554 ** | 0.452 * | −0.455 ** | 0.484 ** | ||||
WD | −0.514 ** | 0.478 ** | 0.734 ** | 0.434 ** | −0.43 ** | 0.468 ** | 0.561 ** | |||
SRL | −0.206 * | 0.153 | 0.17 | 0.123 | 0.114 | 0.044 | 0.087 | 0.097 | ||
RNC | 0.087 | −0.152 | −0.067 | 0.07 | −0.08 | −0.198 * | −0.113 | −0.138 | −0.16 | |
RCC | 0.032 | −0.075 | 0.072 | 0.177 | −0.182 | 0.118 | 0.016 | 0.04 | −0.093 | 0.46 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Chen, B.; Zhao, H.; Yi, J.; Liu, S.; Tie, D.; Xu, J.; Hu, S.; Guo, Y.; Yue, M. Temperate Lianas Have More Acquisitive Strategies than Host Trees in Leaf and Stem Traits, but Not Root Traits. Plants 2022, 11, 3543. https://doi.org/10.3390/plants11243543
Zhou Z, Chen B, Zhao H, Yi J, Liu S, Tie D, Xu J, Hu S, Guo Y, Yue M. Temperate Lianas Have More Acquisitive Strategies than Host Trees in Leaf and Stem Traits, but Not Root Traits. Plants. 2022; 11(24):3543. https://doi.org/10.3390/plants11243543
Chicago/Turabian StyleZhou, Zhe, Binzhou Chen, Hongru Zhao, Junjie Yi, Shiqiang Liu, Dan Tie, Jinshi Xu, Shu Hu, Yaoxin Guo, and Ming Yue. 2022. "Temperate Lianas Have More Acquisitive Strategies than Host Trees in Leaf and Stem Traits, but Not Root Traits" Plants 11, no. 24: 3543. https://doi.org/10.3390/plants11243543
APA StyleZhou, Z., Chen, B., Zhao, H., Yi, J., Liu, S., Tie, D., Xu, J., Hu, S., Guo, Y., & Yue, M. (2022). Temperate Lianas Have More Acquisitive Strategies than Host Trees in Leaf and Stem Traits, but Not Root Traits. Plants, 11(24), 3543. https://doi.org/10.3390/plants11243543