Evolution of Physicochemical Properties and Phenolic Maturity of Vilana, Vidiano, Kotsifali and Mandilari Wine Grape Cultivars (Vitis vinifera L.) during Ripening
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties of Grapes and must Characteristics
2.2. Phenolic and Antioxidants in Skin and Seeds at Harvest Time
2.3. Evolution of Total Phenolic in Skin and Seeds during Ripening
2.4. Evolution of Antioxidant Activity in Skin and Seeds during Ripening
2.5. Evolution of Anthocyanins in Skin during Ripening
2.6. Evolution of Total Flavanols (Flavan-3-ols) in Skin and Seeds during Ripening
2.7. Evolution of Total Flavonols in Skin and Seeds during Ripening
2.8. Evolution of Trans-Resveratrol in the Skin during Ripening
3. Materials and Methods
3.1. Sample Preparation
3.2. Physical Properties of Grapes and must Characteristics
3.3. Total Phenolic Content
3.4. Total Anthocyanin Content
3.5. Total Flavanols (Flavan-3-ols)
3.6. Total Flavonols
3.7. Antioxidant Activity
3.8. Resveratrol Content
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eurostat. Vineyards in the EU—Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Vineyards_in_the_EU_-_statistics (accessed on 21 May 2022).
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Adaptive capacity of winegrape varieties cultivated in Greece to climate change: Current trends and future projections. OENO One 2020, 54, 1201–1219. [Google Scholar] [CrossRef]
- FAO; OIV. Table and Dried Grapes. Available online: http://www.fao.org/3/a-i7042e.pdf (accessed on 21 May 2022).
- Cosme, F.; Gonçalves, B.; Inês, A.; Jordão, A.M.; Vilela, A. Grape and wine metabolites: Biotechnological approaches to improve wine quality. In Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; IntechOpen: London, United Kingdom, 2016; pp. 187–214. [Google Scholar]
- Shalaby, S.; Horwitz, B.A. Plant phenolic compounds and oxidative stress: Integrated signals in fungal–plant interactions. Curr. Genet. 2015, 61, 347–357. [Google Scholar] [CrossRef]
- Ververidis, F.; Trantas, E.; Douglas, C.; Vollmer, G.; Kretzschmar, G.; Panopoulos, N. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnol. J. 2007, 2, 1214–1234. [Google Scholar] [CrossRef]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Blancquaert, E.; Oberholster, A.; Ricardo-da-Silva, J.; Deloire, A. Effects of abiotic factors on phenolic compounds in the Grape Nerry-a review. S. Afr. J. Enol. Vitic. 2019, 40, 1–14. [Google Scholar]
- Rienth, M.; Vigneron, N.; Darriet, P.; Sweetman, C.; Burbidge, C.; Bonghi, C.; Walker, R.P.; Famiani, F.; Castellarin, S.D. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario–A Review. Front. Plant Sci. 2021, 12, 643258. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.D.; Gerós, H. Berry phenolics of grapevine under challenging environments. Int. J. Mol. Sci. 2013, 14, 18711–18739. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.-Y.; Zhao, P.-T.; Wang, X.-Y.; Zhang, J.; Wang, X.-H.; Tian, C.-R.; Ren, M.-M.; Chen, T.-G.; Yuan, H.-H. Evaluation of the potential astringency of the skins and seeds of different grape varieties based on polyphenol/protein binding. Food Sci. Technol. 2019, 39, 930–938. [Google Scholar] [CrossRef] [Green Version]
- Pirie, A.J.; Mullins, M.G. Concentration of phenolics in the skin of grape berries during fruit development and ripening. Am. J. Enol. Vitic. 1980, 31, 34–36. [Google Scholar]
- Allegro, G.; Pastore, C.; Valentini, G.; Filippetti, I. The Evolution of Phenolic Compounds in Vitis vinifera L. Red Berries during Ripening: Analysis and Role on Wine Sensory—A Review. Agronomy 2021, 11, 999. [Google Scholar] [CrossRef]
- Blancquaert, E.H.; Oberholster, A.; Ricardo-da-Silva, J.M.; Deloire, A.J. Grape flavonoid evolution and composition under altered light and temperature conditions in Cabernet Sauvignon (Vitis vinifera L.). Front. Plant Sci. 2019, 10, 1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, M.A.; Al-Qurashi, A.D.; Alrashdi, A.M.; Mohamed, S.A.; Faidi, F. Developmental changes in phenolic compounds, antioxidant capacity and enzymes activity in skin of ‘El-Bayadi’table grapes. Sci. Hortic. 2017, 224, 219–225. [Google Scholar] [CrossRef]
- Yoruk, R.; Marshall, M.R. Physicochemical properties and function of plant polyphenol oxidase: A review. J. Food Biochem. 2003, 27, 361–422. [Google Scholar] [CrossRef]
- He, F.; Mu, L.; Yan, G.-L.; Liang, N.-N.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stervbo, U.; Vang, O.; Bonnesen, C. A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chem. 2007, 101, 449–457. [Google Scholar] [CrossRef]
- Mavrakis, T.; Agalias, A.; Skaltsounis, A.; Ververidis, F. Application of bioactive plant substances from olive tissues and grapes pomace in non-chemical disease control. Planta Med. 2008, 74, PE6. [Google Scholar] [CrossRef]
- Kontaxakis, E.; Trantas, E.; Ververidis, F. Resveratrol: A Fair Race Towards Replacing Sulfites in Wines. Molecules 2020, 25, 2378. [Google Scholar] [CrossRef]
- Kontoudakis, N.; Esteruelas, M.; Fort, F.; Canals, J.M.; De Freitas, V.; Zamora, F. Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food Chem. 2011, 124, 767–774. [Google Scholar] [CrossRef]
- Cagnasso, E.; Rolle, L.; Caudana, A.; Gerbi, V. Relationship between grape phenolic maturity and red wine phenolic composition. Ital. J. Food Sci. 2008, 20, 365–380. [Google Scholar]
- Cuthbertson, D.; Andrews, P.K.; Reganold, J.P.; Davies, N.M.; Lange, B.M. Utility of metabolomics toward assessing the metabolic basis of quality traits in apple fruit with an emphasis on antioxidants. J. Agric. Food Chem. 2012, 60, 8552–8560. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Li, X.; Xiong, X.; Cai, X.; Ren, X.; Kong, Q. An investigation on polyphenol composition and content in skin of grape (Vitis vinifera L. cv. Hutai No. 8) fruit during ripening by UHPLC-MS2 technology combined with multivariate statistical analysis. Food Biosci. 2021, 43, 101276. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Liang, Z.; Sang, M.; Fan, P.; Wu, B.; Wang, L.; Yang, S.; Li, S. CIELAB coordinates in response to berry skin anthocyanins and their composition in Vitis. J. Food Sci. 2011, 76, C490–C497. [Google Scholar] [CrossRef] [PubMed]
- Geroyiannaki, M.; Komaitis, M.; Stavrakas, D.; Polysiou, M.; Athanasopoulos, P.; Spanos, M. Evaluation of acetaldehyde and methanol in greek traditional alcoholic beverages from varietal fermented grape pomaces (Vitis vinifera L.). Food Control 2007, 18, 988–995. [Google Scholar] [CrossRef]
- Biniari, K.; Xenaki, M.; Daskalakis, I.; Rusjan, D.; Bouza, D.; Stavrakaki, M. Polyphenolic compounds and antioxidants of skin and berry grapes of Greek Vitis vinifera cultivars in relation to climate conditions. Food Chem. 2020, 307, 125518. [Google Scholar] [CrossRef]
- Boss, P.; Davies, C. Molecular biology of sugar and anthocyanin accumulation in grape berries. In Molecular Biology & Biotechnology of the Grapevine; Roubelakis-Angelakis, K.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1–33. [Google Scholar]
- Hasan, M.; Bae, H. An Overview of Stress-Induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-Enriched Grape Products. Molecules 2017, 22, 294. [Google Scholar] [CrossRef] [Green Version]
- Melzoch, K.; Hanzlíková, I.; Filip, V.; Buckiová, D.; Šmidrkal, J. Resveratrol in parts of vine and wine originating from Bohemian and Moravian vineyard regions. Agric. Conspec. Sci. 2001, 66, 53–57. [Google Scholar]
- Frémont, L. Biological effects of resveratrol. Life Sci. 2000, 66, 663–673. [Google Scholar] [CrossRef]
- Samah, M.; Sahar, S.; Khaled, A.; Hoda, M. Phenolic compounds and antioxidant activity of white, red, black grape skin and white grape seeds. Life Sci. J. 2012, 9, 3464–3474. [Google Scholar] [CrossRef]
- Brighenti, E.; Casagrande, K.; Cardoso, P.Z.; Pasa, M.d.S.; Ciotta, M.N.; Brighenti, A.F. Total polyphenols contents in different grapevine varieties in highlands of southern brazil. BIO Web Conf. 2017, 9, 01024. [Google Scholar] [CrossRef] [Green Version]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chem. 2016, 208, 228–238. [Google Scholar] [CrossRef]
- DeBolt, S.; Cook, D.R.; Ford, C.M. L-Tartaric acid synthesis from vitamin C in higher plants. Proc. Natl. Acad. Sci. USA 2006, 103, 5608–5613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razungles, A.; Bayonove, C.L.; Cordonnier, R.E.; Sapis, J.C. Grape Carotenoids: Changes During the Maturation Period and Localization in Mature Berries. Am. J. Enol. Vitic. 1988, 39, 44–48. [Google Scholar]
- Doshi, P.; Adsule, P.; Banerjee, K. Phenolic composition and antioxidant activity in grapevine parts and berries (Vitis vinifera L.) cv. Kishmish Chornyi (Sharad Seedless) during maturation. Int. J. Food Sci. Technol. 2006, 41, 1–9. [Google Scholar] [CrossRef]
- Benbouguerra, N.; Richard, T.; Saucier, C.; Garcia, F. Voltammetric Behavior, Flavanol and Anthocyanin Contents, and Antioxidant Capacity of Grape Skins and Seeds during Ripening (Vitis vinifera var. Merlot, Tannat, and Syrah). Antioxidants 2020, 9, 800. [Google Scholar] [CrossRef] [PubMed]
- Kallithraka, S.; Aliaj, L.; Makris, D.P.; Kefalas, P. Anthocyanin profiles of major red grape (Vitis vinifera L.) varieties cultivated in Greece and their relationship with in vitro antioxidant characteristics. Int. J. Food Sci. Technol. 2009, 44, 2385–2393. [Google Scholar] [CrossRef]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Sousa, M.J.; Agasse, A.; Delrot, S.; Gerós, H. Biochemical changes throughout grape berry development and fruit and wine quality. Food 2007, 1, 1–22. [Google Scholar]
- Lanaridis, P.; Bena-Tzourou, I. Study of anthocyanins’ variations during the ripening of five vine red varieties cultivated in Greece. OENO One 1997, 31, 205–212. [Google Scholar] [CrossRef]
- Kyraleou, M.; Gkanidi, E.; Koundouras, S.; Kallithraka, S. Tannin content and antioxidant capacity of five Greek red grape varieties. Vitis-J. Grapevine Res 2019, 58, 69–75. [Google Scholar]
- Vitrac, X.; Larronde, F.; Krisa, S.; Decendit, A.; Deffieux, G.; Mérillon, J.-M. Sugar sensing and Ca2+–calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry 2000, 53, 659–665. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Saucier, C.; Glories, Y. Grape and wine phenolics: History and perspective. Am. J. Enol. Vitic. 2006, 57, 239–248. [Google Scholar] [CrossRef]
- Adams, D.O. Phenolics and ripening in grape berries. Am. J. Enol. Vitic. 2006, 57, 249–256. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Matthews, M.A.; Waterhouse, A.L. Effect of Maturity and Vine Water Status on Grape Skin and Wine Flavonoids. Am. J. Enol. Vitic 2002, 53, 268–274. [Google Scholar] [CrossRef]
- Downey, M.; Harvey, J.; Robinson, S. Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Aust. J. Grape Wine Res. 2003, 9, 110–121. [Google Scholar] [CrossRef]
- Vincenzi, S.; Tomasi, D.; Gaiotti, F.; Lovat, L.; Giacosa, S.; Torchio, F.; Segade, S.R.; Rolle, L. Comparative study of the resveratrol content of twenty-one Italian red grape varieties. S. Afr. J. Enol. Vitic. 2013, 34, 30–35. [Google Scholar] [CrossRef] [Green Version]
- ISO 11664-2:2007; International Commission on Illumination. Standard Illuminants for Colorimetry. CIE: Vienna, Austria, 2007.
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods Enzymol; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Poudel, P.R.; Tamura, H.; Kataoka, I.; Mochioka, R. Phenolic compounds and antioxidant activities of skins and seeds of five wild grapes and two hybrids native to Japan. J. Food Compost. Anal. 2008, 21, 622–625. [Google Scholar] [CrossRef]
- Arnous, A.; Makris, D.P.; Kefalas, P. Effect of Principal Polyphenolic Components in Relation to Antioxidant Characteristics of Aged Red Wines. J. Agric. Food Chem. 2001, 49, 5736–5742. [Google Scholar] [CrossRef]
- Cvetković, Ž.S.; Nikolić, V.D.; Savić, I.M.; Savić-Gajić, I.M.; Nikolić, L.B. Development and validation of an RP-HPLC method for quantification of trans-resveratrol in the plant extracts. Hem. Ind. 2015, 69, 679–687. [Google Scholar] [CrossRef]
Physical Properties of Berries | Must Characteristics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Period before Harvest (week) | Berry Weight (g) | Berry Volume (mL) | Seed Weight (g/berry) | Skin Weight (g/berry) | Lightness (L*) | Chroma (C*) | Hue Angle (h) | Soluble Solids (Brix %) | Total Acidity (g H2Ta/L) | pH | |
White cultivars | Vilana | 2 | 2.23 a | 2.09 a | 0.052 a | 0.226 b | 42.20 a | 14.18 a | 100.4 a | 20.20 c | 7.13 a | 3.46 b |
1 | 2.53 a | 2.05 a | 0.052 a | 0.279 a | 43.12 b | 11.80 b | 98.0 b | 21.48 b | 6.58 a | 3.70 a | ||
0 | 2.43 a | 2.09 a | 0.053 a | 0.265 a | 42.14 a | 12.04 b | 90.2 c | 23.08 a | 6.58 a | 3.71 a | ||
Vidiano | 2 | 1.88 b | 1.75 b | 0.047 a | 0.280 b | 41.47 a | 15.04 a | 105.2 b | 19.28 b | 7.32 a | 3.42 c | |
1 | 2.21 a | 1.89 ab | 0.051 a | 0.297 a | 41.73 a | 11.59 b | 109.1 a | 20.38 b | 7.03 a | 3.61 b | ||
0 | 2.17 a | 2.01 a | 0.048 a | 0.328 a | 41.09 a | 10.33 c | 106.3 b | 22.35 a | 7.00 a | 3.89 a | ||
Red cultivars | Kotsifali | 3 | 2.14 a | 2.00 a | 0.047 a | 0.229 b | 26.89 b | 4.01 a | 338.4 a | 18.85 b | 6.50 a | 3.58 b |
2 | 2.43 a | 2.25 a | 0.052 a | 0.295 a | 28.34 a | 3.50 b | 343.5 a | 20.05 b | 7.01 a | 3.52 b | ||
1 | 2.37 a | 2.25 a | 0.047 a | 0.278 a | 25.58 c | 2.32 c | 346.9 a | 23.28 a | 5.81 a | 3.67 b | ||
0 | 2.41 a | 2.17 a | 0.049 a | 0.316 a | 26.22 bc | 2.37 c | 338.9 a | 23.80 a | 5.98 a | 4.07 a | ||
Mandilari | 3 | 3.01 b | 2.85 b | 0.114 a | 0.279 b | 27.66 b | 4.31 a | 331.4 a | 12.63 c | 8.15 a | 3.09 b | |
2 | 3.06 b | 3.20 a | 0.104 a | 0.310 a | 29.81 a | 4.19 a | 353.8 a | 14.48 b | 6.19 b | 3.57 a | ||
1 | 3.05 b | 3.29 a | 0.106 a | 0.299 a | 26.43 c | 2.56 b | 340.8 a | 15.53 b | 6.09 b | 3.54 a | ||
0 | 3.41 a | 3.18 a | 0.105 a | 0.297 a | 26.70 bc | 2.47 b | 326.3 a | 16.90 a | 4.89 c | 3.61 a |
Cultivar | Total Phenolics (Gallic Acid mg/g FW) | Antioxidant Activity (Trolox mmol/g FW) | Total Anthocyanins (Oenin mg/g FW) | Total Flavanols (Catechin mg/g FW) | Total Flavonols (Quercetin mg/g FW) | trans-Resveratrol (μg/g FW) |
---|---|---|---|---|---|---|
Vilana | 3.26 b | 60.17 a | 0.148 b | 0.640 b | 0.496 b | 17.24 c |
Vidiano | 3.19 b | 60.55 a | 0.150 b | 1.187 a | 0.474 b | 18.31 c |
Kotsifali | 6.41 a | 61.84 a | 5.324 a | 0.995 ab | 1.030 a | 36.58 b |
Mandilari | 6.75 a | 60.63 a | 4.645 a | 1.069 ab | 0.804 ab | 59.08 a |
Cultivar | Total Phenolics (Gallic Acid mg/g FW) | Antioxidant Activity (Trolox mmol/g FW) | Total Flavanols Catechin mg/g FW) | Total Flavonols (Quercetin mg/g FW) |
---|---|---|---|---|
Vilana | 32.30 b | 100.78 bc | 11.20 c | 0.897 a |
Vidiano | 32.26 b | 107.29 a | 16.47 a | 0.648 c |
Kotsifali | 39.37 a | 98.24 c | 11.18 c | 0.750 b |
Mandilari | 44.53 a | 104.49 ab | 13.76 b | 0.749 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontaxakis, E.; Atzemopoulos, A.; Alissandrakis, E.; Ververidis, F.; Trantas, E. Evolution of Physicochemical Properties and Phenolic Maturity of Vilana, Vidiano, Kotsifali and Mandilari Wine Grape Cultivars (Vitis vinifera L.) during Ripening. Plants 2022, 11, 3547. https://doi.org/10.3390/plants11243547
Kontaxakis E, Atzemopoulos A, Alissandrakis E, Ververidis F, Trantas E. Evolution of Physicochemical Properties and Phenolic Maturity of Vilana, Vidiano, Kotsifali and Mandilari Wine Grape Cultivars (Vitis vinifera L.) during Ripening. Plants. 2022; 11(24):3547. https://doi.org/10.3390/plants11243547
Chicago/Turabian StyleKontaxakis, Emmanouil, Achilleas Atzemopoulos, Eleftherios Alissandrakis, Filippos Ververidis, and Emmanouil Trantas. 2022. "Evolution of Physicochemical Properties and Phenolic Maturity of Vilana, Vidiano, Kotsifali and Mandilari Wine Grape Cultivars (Vitis vinifera L.) during Ripening" Plants 11, no. 24: 3547. https://doi.org/10.3390/plants11243547
APA StyleKontaxakis, E., Atzemopoulos, A., Alissandrakis, E., Ververidis, F., & Trantas, E. (2022). Evolution of Physicochemical Properties and Phenolic Maturity of Vilana, Vidiano, Kotsifali and Mandilari Wine Grape Cultivars (Vitis vinifera L.) during Ripening. Plants, 11(24), 3547. https://doi.org/10.3390/plants11243547