Characterization and Control of Thielaviopsis punctulata on Date Palm in Saudi Arabia
Abstract
:1. Introduction
2. Results
2.1. Morphological Characterization of Thielaviopsis punctulata as Causing Agent of Black Scorch Disease
2.2. Molecular Characterization of Thielaviopsis punctulata
2.3. In Vitro and In Vivo Growth Inhibition Efficiency of Fungicides against Thielaviopsis punctulata
3. Discussion
4. Materials and Methods
4.1. Collection of Symptomatic Date Palm Plant Samples
4.2. Isolation of the Root Rot Fungal Pathogens
4.3. Pathogenicity Test and Disease Assays
4.4. Molecular Characterization of the Purified Isolates of Thielaviopsis punctulata
4.5. In Vitro Evaluation of Fungicides against Thielaviopsis punctulata
4.6. In Vivo Evaluation of Fungicides to Control Black Scorch Disease
4.7. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, Z.; Sattar, M.N.; Al-Khayri, J.M. Whole-Genome Mapping of Date Palm (Phoenix dactylifera L.). In The Date Palm Genome; Springer: Cham, Switzerland, 2021; Volume 1, pp. 181–199. [Google Scholar]
- Krueger, R.R. Date Palm (Phoenix dactylifera L.) Biology and Utilization. In The Date Palm Genome; Springer: Cham, Switzerland, 2021; Volume 1, pp. 3–28. [Google Scholar]
- Saboori, S.; Noormohammadi, Z.; Sheidai, M.; Marashi, S. Insight into date palm diversity: Genetic and morphological investigations. Plant Mol. Biol. Rep. 2021, 39, 137–145. [Google Scholar] [CrossRef]
- Abdelmonem, A.; Rasmy, M. Major diseases of date palm and their control. Commun. Inst. For. Bohem 2007, 23, 9–23. [Google Scholar]
- Saeed, E.E.; Sham, A.; El-Tarabily, K.; Abu Elsamen, F.; Iratni, R.; AbuQamar, S.F. Chemical control of black scorch disease on date palm caused by the fungal pathogen Thielaviopsis punctulata in United Arab Emirates. Plant Dis. 2016, 100, 2370–2376. [Google Scholar] [CrossRef] [Green Version]
- De Beer, Z.W.; Duong, T.A.; Barnes, I.; Wingfield, B.D.; Wingfield, M.J. Redefining Ceratocystis and allied genera. Stud. Mycol. 2014, 79, 187–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbenoun, M.; De Beer, Z.W.; Wingfield, M.J.; Wingfield, B.D.; Roux, J. Reconsidering species boundaries in the Ceratocystis paradoxa complex, including a new species from oil palm and cacao in Cameroon. Mycologia 2014, 106, 757–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Raisi, Y.; B’Chir, M.; Al-Mandhari, A.; Deadman, M.; Gowen, S. First report of Ceratocystis radicicola associated with date palm disease in Oman. New Dis. Rep. 2011, 23, 23. [Google Scholar] [CrossRef] [Green Version]
- Al-Sadi, A. Phylogenetic and population genetic analysis of Ceratocystis radicicola infecting date palms. J. Plant Pathol. 2013, 95, 49–57. [Google Scholar]
- Demiray, S.T.; Akcali, E.; Uysal, A.; Kurt, S. First report of Thielaviopsis paradoxa causing main stalk rot on banana in Turkey. Plant Dis. 2020, 104, 2733–2734. [Google Scholar] [CrossRef]
- Gaitan-Chaparro, S.; Navia-Rodriguez, E.; Romero, H.M. Assessment of inoculation methods of Thielaviopsis paradoxa (de seynes) Hohn into oil palm seedlings under greenhouse conditions. J. Fungi 2021, 7, 910. [Google Scholar] [CrossRef]
- Mirzaee, M.; Tajali, H.; Javadmosavi, S. Thielaviopsis paradoxa causing neck bending disease of date palm in Iran. J. Plant Pathol. 2014, 96, 4–122. [Google Scholar]
- Abbas, I.; Al-Izi, M.; Aboud, H.; Saleh, H. Neck bending: A new disease affecting date palm in Iraq. In Proceedings of the Sixth Arab Congress of Plant Protection; Arab Plant Protection Society: Beirut, Lebanon, 1997. [Google Scholar]
- Polizzi, G.; Castello, I.; Vitale, A.; Catara, V.; Sofia, V.S.; Tamburino, V. First report of Thielaviopsis trunk rot of date palm in Italy. Plant Dis. 2006, 90, 972. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, H.; Riaz, M.; As-Saeed, I.; Hameed, J. Physiological studies and chemical control of black scorch disease of date palm caused by Thielaviopsis (Ceratocystis) paradoxa in Kuwait. Pak. J. Phytopathol. 1994, 6, 7–12. [Google Scholar]
- Al-Naemi, F.A.; Nishad, R.; Ahmed, T.A.; Radwan, O. First report of Thielaviopsis punctulata causing black scorch disease on date palm in Qatar. Plant Dis. 2014, 98, 1437. [Google Scholar] [CrossRef] [PubMed]
- Al-Sharidy, A.; Molan, Y. Survey of fungi associated with black scorch and leaf spots of date palm in Riyadh Area. Saudi J. Biol. Sci. 2008, 15, 113–118. [Google Scholar]
- Ammar, M.; El-Naggar, M. Date palm (Phoenix dactylifera L.) fungal diseases in Najran, Saudi Arabia. Int. J. Plant Pathol. 2011, 2, 126–135. [Google Scholar] [CrossRef]
- Garofalo, J.F.; McMillan, R.T. Thielaviopsis diseases of palms. In Proceedings of the Florida State Horticultural Society; Florida State Horticultural Society: Sarasota, FL, USA, 2004; pp. 324–325. [Google Scholar]
- Al-Sadi, A.M.; Al-Jabri, A.H.; Al-Mazroui, S.S.; Al-Mahmooli, I.H. Characterization and pathogenicity of fungi and oomycetes associated with root diseases of date palms in Oman. Crop Protect. 2012, 37, 1–6. [Google Scholar] [CrossRef]
- Suleman, P.; Al-Musallam, A.; Menezes, C. The effect of biofungicide Mycostop on Ceratocystis radicicola, the causal agent of black scorch on date palm. BioControl 2002, 47, 207–216. [Google Scholar] [CrossRef]
- Percival, G.C.; Graham, S. The potential of resistance inducers and synthetic fungicide combinations for management of foliar diseases of nursery stock. Crop Protect. 2021, 145, 105636. [Google Scholar] [CrossRef]
- Prasertsan, P.; Nutongkaew, T.; Leamdum, C.; Suyotha, W.; Boukaew, S. Direct biotransformation of oil palm frond juice to ethanol and acetic acid by simultaneous fermentation of co-cultures and the efficacy of its culture filtrate as an antifungal agent against black seed rot disease. Biomass Convers. Biorefin. 2021, 1–10. [Google Scholar] [CrossRef]
- El Bouhssini, M. Date Palm Pests and Diseases: Integrated Management Guide; International Center for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2018. [Google Scholar]
- Dharmaputra, O.S.; Hasbullah, R.; Fransiscus, J. Use of calcium chloride and chitosan to control Thielaviopsis paradoxa in salak pondoh fruit during storage. J. Fitopatol. Indones. 2021, 17, 131–140. [Google Scholar] [CrossRef]
- Degani, O.; Dor, S. Trichoderma biological control to protect sensitive maize hybrids against late wilt disease in the field. J. Fungi 2021, 7, 315. [Google Scholar] [CrossRef]
- Sattar, M.N.; Iqbal, Z.; Al-Khayri, J.M.; Jain, S.M. Induced genetic variations in fruit trees using new breeding tools: Food security and climate resilience. Plants 2021, 10, 1347. [Google Scholar] [CrossRef]
- Sattar, M.N.; Iqbal, Z.; Tahir, M.N.; Shahid, M.S.; Khurshid, M.; Al-Khateeb, A.A.; Al-Khateeb, S.A. CRISPR/Cas9: A practical approach in date palm genome editing. Front. Plant Sci. 2017, 8, 1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattar, M.N.; Iqbal, Z.; Al-Khayri, J.M. CRISPR-Cas Based Precision Breeding in Date Palm: Future Applications. In The Date Palm Genome; Springer: Cham, Switzerland, 2021; Volume 2, pp. 169–199. [Google Scholar]
- Saleh, A.A.; Sharafaddin, A.H.; El Komy, M.H.; Ibrahim, Y.E.; Hamad, Y.K. Molecular and physiological characterization of Fusarium strains associated with different diseases in date palm. PLoS ONE 2021, 16, e0254170. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Sharafaddin, A.H.; El Komy, M.H.; Ibrahim, Y.E.; Hamad, Y.K.; Molan, Y.Y. Fusarium species associated with date palm in Saudi Arabia. Eur. J. Plant Pathol. 2017, 148, 367–377. [Google Scholar] [CrossRef]
- Molan, Y.; Al-Obeed, R.; Harhash, M.; El-Husseini, S. Decline of date-palm offshoots with Chalara paradoxa in Riyadh region. J. King Saud. Univ. 2004, 16, 79–86. [Google Scholar]
- Alwahshi, K.J.; Saeed, E.E.; Sham, A.; Alblooshi, A.A.; Alblooshi, M.M.; El-Tarabily, K.A.; AbuQamar, S.F. Molecular identification and disease management of date palm sudden decline syndrome in the United Arab Emirates. Int. J. Mol. Sci. 2019, 20, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, S.K.; Lorca, L.; Jansson, H. Diseases of date palms (Phoenix dactylifera L.). Basrah J. Date Palm Res 2010, 9, 1–44. [Google Scholar]
- Santos, Á.F.D.; Inácio, C.A.; Guedes, M.V.; Tomaz, R. First report of Thielaviopsis paradoxa causing stem rot in Dracaena marginata in Brazil. Summa Phytopathol. 2012, 38, 345–346. [Google Scholar] [CrossRef] [Green Version]
- Gepp, V.; Hernández, L.; Alaniz, S.; Zaccari, F. First report of Thielaviopsis paradoxa causing palm fruit rot of Butia capitata in Uruguay. New Dis. Rep 2013, 27, 12. [Google Scholar] [CrossRef] [Green Version]
- Soytong, K.; Pongak, W.; Kasiolarn, H. Biological control of Thielaviopsis bud rot of Hyophorbe lagenicaulis in the field. J. Agric. Technol. 2005, 1, 235–245. [Google Scholar]
- Pinho, D.B.; Dutra, D.C.; Pereira, O.L. Notes on Ceratocystis paradoxa causing internal post-harvest rot disease on immature coconut in Brazil. Trop. Plant Pathol. 2013, 38, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Saeed, E.E.; Sham, A.; Salmin, Z.; Abdelmowla, Y.; Iratni, R.; El-Tarabily, K.; AbuQamar, S. Streptomyces globosus UAE1, a potential effective biocontrol agent for black scorch disease in date palm plantations. Front. Microbiol. 2017, 8, 1455. [Google Scholar] [CrossRef]
- Tzelepis, G.; Bejai, S.; Sattar, M.N.; Schwelm, A.; Ilbäck, J.; Fogelqvist, J.; Dixelius, C. Detection of Verticillium species in Swedish soils using real-time PCR. Arch. Microbiol. 2017, 199, 1383–1389. [Google Scholar] [CrossRef] [Green Version]
- Croft, A.R. Improving germination of sugarcane and the control of pineapple disease. Proc. Aust. Soc. Sugarcane Technol. 1998, 20, 300–306. [Google Scholar]
- Dellaporta, S.; Wood, J.; Hicks, J. A rapid method for DNA extraction from plant tissue. Plant Mol. Biol. Rep. 1983, 1, 19–21. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Jacobs, K.; Bergdahl, D.R.; Wingfield, M.J.; Halik, S.; Seifert, K.A.; Bright, D.E.; Wingfield, B.D. Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol. Res. 2004, 108, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef]
- Jonathan, S.; Udoh, E.; Ojomo, E.; Olawuyi, O.; Babalola, B. Efficacy of Jatropha curcas Linn. as fungicides in the control of Ceratocystis paradoxa (Chalara anamorph) IMI 501775 associated with bole rot of Cocos nucifera Linn. seedlings. Rep. Opin 2012, 4, 48–60. [Google Scholar]
Species Name | * Isolate | GenBank Accession Numbers | Host | Origin | ||
---|---|---|---|---|---|---|
ITS | β-Tubulin | TEF1-α | ||||
Thielaviopsis cerberus | CBS 130763 | JX518355 | JX518387 | JX518323 | Theobroma cacao | Cameroon |
CMW 35024 | JX518356 | JX518388 | JX518324 | T. cacao | Cameroon | |
CMW 36641 | JX518345 | JX518377 | JX518313 | Elaeis guineensis | Cameroon | |
CBS 130764 | JX518349 | JX518381 | JX518317 | E. guineensis | Cameroon | |
CBS 130765 | JX518348 | JX518380 | JX518316 | E. guineensis | Cameroon | |
T. ethacetica | CBS 374.83 | JX518329 | JX518361 | JX518297 | Phoenix canariensis | Spain |
CBS 601.70 | JX518331 | JX518363 | JX518299 | Ananas comosus | Brazil | |
CBS 453.66 | JX518332 | JX518364 | JX518300 | Cocos nucifera | Nigeria | |
CMW 36662 | JX518353 | JX518385 | JX518321 | E. guineensis | Cameroon | |
CMW 36771 | JX518330 | JX518362 | JX518298 | Saccharum sp. | South Africa | |
IMI 50560 | JX518341 | JX518373 | JX518309 | A. comosus | Malaysia | |
IMI 344082 | JX518339 | JX518371 | JX518307 | C. nucifera | Tanzania | |
IMI 378943 | JX518340 | JX518372 | JX518308 | E. guineensis | Papua New Guinea | |
T. euricoi | CMW 8788 | JX518326 | JX518358 | JX518294 | C. nucifera | Indonesia |
CMW 8790 | JX518327 | JX518359 | JX518295 | C. nucifera | Indonesia | |
CBS 893.70 | JX518335 | JX518367 | JX518303 | C. nucifera | Brazil | |
T. paradoxa. | CBS 130760 | JX518346 | JX518378 | JX518314 | E. guineensis | Cameroon |
CBS 130762 | JX518352 | JX518384 | JX518320 | E. guineensis | Cameroon | |
CBS 130761 | JX518342 | JX518374 | JX518310 | T. cacao | Cameroon | |
CMW 36754 | JX518344 | JX518376 | JX518312 | E. guineensis | Cameroon | |
CBS 101054 | JX518333 | JX518365 | JX518301 | Rosa sp. | Netherlands | |
CBS 116770 | JX518334 | JX518366 | JX518302 | Palm sp. | Ecuador | |
T. musarum | CMW 1546 | JX518325 | JX518357 | JX518293 | Musa sp. | New Zealand |
T. punctulata | CBS 114.47 | KF612023 | KF612025 | KF612024 | P. dactylifera | USA |
CBS 167.67 | KF953932 | KF953931 | KF917202 | Lawsonia inermis | Mauritania | |
IMI 316225 | JX518338 | JX518370 | JX518306 | P. dactylifera | Iraq | |
TP1 | MZ701784 | MZ703651 | MZ703648 | P. dactylifera | Saudi Arabia | |
TP2 | MZ701785 | MZ703652 | MZ703649 | |||
TP3 | MZ701786 | MZ703653 | MZ703650 | |||
Davidsoniella virescens | CMW 11164 | AY528984 | AY528990 | AY528991 | Quercus sp. | USA |
Fungicide | TP1 | TP2 | TP3 |
---|---|---|---|
Aliette- 80% WG | 100 a | 100 a | 100 a |
Infinito 687.5 SC | 3.33 d | 36.67 b | 6.00 bc |
Ridomil Gold- 480 SL | 0.00 d | 41.11 b | 5.33 bc |
Score 250 EC | 100 a | 100 a | 100 a |
Tachigazol- 30% SL | 86.67 b | 100 a | 100 a |
Teldor 50 SC | 23.78 c | 1.78 c | 8.22 b |
Uniform-446 SE | 0.00 d | 0.00 d | 2.44 cd |
Control | 0.00 d | 0.00 d | 0.00 d |
Locus Name | Primer | Sequence (5′-3′) | PCR Program * | Reference |
---|---|---|---|---|
ITS region | ITS4 | TCCTCCGCTTATTGATATGC | 35 cycles at 94 °C for 30 s, 52 °C for 30 s, 72 °C for 30 s | [43] |
ITS5 | GGAAGTAAAAGTCGTAACAAGG | |||
TEF1-α | EF1F | TGCGGTGGTATCGACAAGCGT | 35 cycles at 94 °C for 30 s, 58 °C for 60 s, 72 °C for 90 s | [44] |
EF1R | AGCATGTTGTCGCCGTT GAAG | |||
β-tubulin | Bt1a | TTCCCCCGTCTCCACTTCTTCATG | 34 cycles at 94 °C for 60 s, 58 °C for 60 s, 72 °C for 60 s | [45] |
Bt1b | GACGAGATCGTTCATGTTGAACTC |
Fungicides | Active Ingredient | Chemical Group | Dose/L |
---|---|---|---|
Aliette- 80% WG | Fosetyl-Al | Organophosphate | 2.5 g |
INFINITO 687.5 SC | Fluopicolide + Propamocarb HCL | Acylpicolide + Carbamate | 1.5 mL |
RIDOMIL GOLD- 480 SL | Metalaxyl-M | Phenylamide | 2 mL |
Score 250 EC | Difenoconazole | Triazole | 0.5 |
TACHIGAZOL- 30% SL | Hymexazol | Oxazoles | 1.5 mL |
Teldor 50 SC | Fenhexamid | Anilide | 0.5 mL |
UNIFORM-446 SE | Metalaxyl-M + Azoxystrobin | Phenylamide + Strobilurin | 0.5 mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhudaib, K.A.; El-Ganainy, S.M.; Almaghasla, M.I.; Sattar, M.N. Characterization and Control of Thielaviopsis punctulata on Date Palm in Saudi Arabia. Plants 2022, 11, 250. https://doi.org/10.3390/plants11030250
Alhudaib KA, El-Ganainy SM, Almaghasla MI, Sattar MN. Characterization and Control of Thielaviopsis punctulata on Date Palm in Saudi Arabia. Plants. 2022; 11(3):250. https://doi.org/10.3390/plants11030250
Chicago/Turabian StyleAlhudaib, Khalid A., Sherif M. El-Ganainy, Mustafa I. Almaghasla, and Muhammad N. Sattar. 2022. "Characterization and Control of Thielaviopsis punctulata on Date Palm in Saudi Arabia" Plants 11, no. 3: 250. https://doi.org/10.3390/plants11030250
APA StyleAlhudaib, K. A., El-Ganainy, S. M., Almaghasla, M. I., & Sattar, M. N. (2022). Characterization and Control of Thielaviopsis punctulata on Date Palm in Saudi Arabia. Plants, 11(3), 250. https://doi.org/10.3390/plants11030250