Jacaranone Derivatives with Antiproliferative Activity from Crepis pulchra and Relevance of This Group of Plant Metabolites
Abstract
:1. Introduction
2. Results
2.1. Isolation of Compounds from C. pulchra
2.2. Antiproliferative Investigation of the Isolated Jacaranones
3. Discussion
3.1. Occurrence of Jacaranones in Nature
3.2. Antiproliferative Activity of Jacaranones
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Plant Material
4.3. Extraction and Isolation
4.4. Antiproliferative (MTT) Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogura, M.; Cordell, G.A.; Farnsworth, N.R. Potential anticancer agents. III. Jacaranone, a novel phytoquinoid from Jacaranda caucana. J. Nat. Prod. 1976, 39, 255–257. [Google Scholar]
- Hirukawa, M.; Zhang, M.; Echenique-Díaz, L.M.; Mizota, K.; Ohdachi, S.; Begué-Quiala, G.; Delgado-Labañino, J.L.; Gámez-Díez, J.; Alvarez-Lemus, J.; Machado, L.G.; et al. Isolation and structure–activity relationship studies of jacaranones: Anti-inflammatory quinoids from the Cuban endemic plant Jacaranda arborea (Bignoniaceae). Tetrahedron Lett. 2020, 61, 152005. [Google Scholar] [CrossRef]
- Yi, X.X.; Chen, Y.; Xie, W.P.; Xu, M.B.; Chen, Y.N.; Gao, C.H.; Huang, R.M. Four new jacaranone analogs from the fruits of a Beibu Gulf mangrove Avicennia marina. Mar. Drugs 2014, 12, 2515–2525. [Google Scholar] [CrossRef] [Green Version]
- Lozada-Lechuga, J.; Villarreal, M.L.; Fliniaux, M.A.; Bensaddek, L.; Mesnard, F.; del Gutiérrez, M.C.; Cardoso-Taketa, A.T. Isolation of jacaranone, a sedative constituent extracted from the flowers of the Mexican tree Ternstroemia pringlei. J. Ethnopharmacol. 2010, 127, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Suh, J.; Shin, M.H.; Jung, J.H.; Im, K.S. Jacaranone and related compounds from the fresh fruits of Ternstroemia japonica and their antioxidative activity. Arch. Pharm. Res. 2005, 28, 885–888. [Google Scholar] [CrossRef]
- Gomes, K.S.; Tamayose, C.I.; Ferreira, M.J.; Murakami, C.; Young, M.C.; Antar, G.M.; Camilo, F.F.; Sartorelli, P.; Lago, J.H. Isolation of antifungal quinoid derivatives from leaves of Pentacalia desiderabilis (Vell.) Cuatre. (Asteraceae) using ionic liquid in the microwave assisted extraction. Quim. Nova 2019, 42, 156–158. [Google Scholar] [CrossRef]
- Morais, T.R.; Romoff, P.; Fávero, O.A.; Reimão, J.Q.; Lourenço, W.C.; Tempone, A.G.; Hristov, A.D.; Di Santi, S.M.; Lago, J.H.; Sartorelli, P.; et al. Anti-malarial, anti-trypanosomal, and anti-leishmanial activities of jacaranone isolated from Pentacalia desiderabilis (Vell.) Cuatrec. (Asteraceae). Parasitol. Res. 2011, 110, 95–101. [Google Scholar] [CrossRef]
- Fraga, B.M.; Díaz, C.E.; Amador, L.J.; Reina, M.; Santana, O.; González-Coloma, A. Bioactive compounds from transformed root cultures and aerial parts of Bethencourtia hermosae. Phytochemistry 2014, 108, 220–228. [Google Scholar] [CrossRef]
- Eliáš, P.; Turisová, I.; Ťavoda, O. Occurrence of small flower hawksbeard (Crepis pulchra L.) in Slovakia. Thaiszia J. Bot. 2010, 20, 127–135. [Google Scholar]
- Namukobe, J.; Kasenene, J.M.; Kiremire, B.T.; Byamukama, R.; Kamatenesi-Mugisha, M.; Krief, S.; Dumontet, V.; Kabasa, J.D. Traditional plants used for medicinal purposes by local communities around the Northern sector of Kibale National Park, Uganda. J. Ethnopharmacol. 2011, 136, 236–245. [Google Scholar] [CrossRef]
- Fleurentin, J.; Hoefler, C.; Lexa, A.; Mortier, F.; Pelt, J.M. Hepatoprotective properties of Crepis rueppellii and Anisotes trisulcus: Two traditional medicinal plants of Yemen. J. Ethnopharmacol. 1986, 16, 105–111. [Google Scholar] [CrossRef]
- Hartwell, J.L. Plants used against cancer. A survey. Lloydia 1968, 31, 71–170. [Google Scholar]
- Bakar, F.; Acikara, Ö.B.; Ergene, B.; Nebioğlu, S.; Çitoğlu, G.S. Antioxidant activity and phytochemical screening of some Asteraceae plants. Turk. J. Pharm. Sci. 2015, 12, 36–45. [Google Scholar] [CrossRef]
- Dalar, A. Plant taxa used in the treatment of diabetes in Van Province, Turkey. Int. J. Second. Metab. 2018, 5, 170–184. [Google Scholar] [CrossRef]
- Genç, G.E.; Özhatay, N. An ethnobotanical study in Çatalca (European part of İstanbul) II. Turk. J. Pharm. Sci. 2006, 3, 73–89. [Google Scholar]
- Kilic, O.; Bagci, E. An ethnobotanical survey of some medicinal plants in Keban (Elazığ-Turkey). J. Med. Plant Res. 2013, 7, 1675–1684. [Google Scholar] [CrossRef]
- Sansanelli, S.; Tassoni, A. Wild food plants traditionally consumed in the area of Bologna (Emilia Romagna region, Italy). J. Ethnobiol. Ethnomed. 2014, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Guarrera, P.M.; Savo, V. Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. J. Ethnopharmacol. 2013, 146, 659–680. [Google Scholar] [CrossRef]
- González-Tejero, M.R.; Molero-Mesa, J.; Casares-Porcel, M.; Lirola, M.J.M. New contributions to the ethnopharmacology of Spain. J. Ethnopharmacol. 1995, 45, 157–165. [Google Scholar] [CrossRef]
- Rahman, M. An ethnobotanical investigation on Asteraceae family at Rajshahi, Bangladesh. Acad. J. Med. Plants 2013, 1, 92–100. [Google Scholar]
- Ndom, J.C.; Mbafor, J.T.; Wansi, J.D.; Kamdem, A.W.; Meva’a, L.M.; Vardamides, J.C.; Toukam, F.; Pegyemb, D.; Ngando, T.M.; Laatsch, H.; et al. Sesquiterpene lactones from Crepis cameroonica (Asteraceae). Nat. Prod. Res. 2006, 20, 435–442. [Google Scholar] [CrossRef]
- Michalska, K.; Kisiel, W.; Zidorn, C. Sesquiterpene lactones from Crepis aurea (Asteraceae, Cichorieae). Biochem. Syst. Ecol. 2013, 46, 1–3. [Google Scholar] [CrossRef]
- Ebada, S.S.; El-Kashef, D.H.; Müller, W.E.G.; Proksch, P. Cytotoxic eudesmane sesquiterpenes from Crepis sancta. Phytochem. Lett. 2019, 33, 46–48. [Google Scholar] [CrossRef]
- Mañez, S.; Recio, M.C.; Giner, R.M.; Sanz, M.J.; Terencio, M.C.; Peris, J.B.; Stübing, G.; Rios, J.L. A chematoxonomic review of the subtribe Crepidinase based on its phenol constituents. Biochem. Syst. Ecol. 1994, 22, 297–305. [Google Scholar] [CrossRef]
- Zidorn, C.; Schubert, B.; Stuppner, H. Phenolics as chemosystematic markers in and for the genus Crepis (Asteraceae, Cichorieae). Sci. Pharm. 2008, 76, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Ooi, L.S.; Wang, H.; Luk, C.W.; Ooi, V.E. Anticancer and antiviral activities of Youngia japonica (L.) DC (Asteraceae, Compositae). J. Ethnopharmacol. 2004, 94, 117–122. [Google Scholar] [CrossRef]
- Zengin, G.; Sarikurkcu, C.; Uyar, P.; Aktumsek, A.; Uysal, S.; Kocak, M.S.; Ceylan, R. Crepis foetida L. subsp. rhoeadifolia (Bieb.) Celak. as a source of multifunctional agents: Cytotoxic and phytochemical evaluation. J. Funct. Foods 2015, 17, 698–708. [Google Scholar] [CrossRef]
- Barda, C.; Grafakou, M.E.; Kalpoutzakis, E.; Heilmann, J.; Skaltsa, H. Chemical composition of Crepis foetida L. and C. rubra L. volatile constituents and evaluation of the in vitro anti-inflammatory activity of salicylaldehyde rich volatile fraction. Biochem. Syst. Ecol. 2021, 96, 104256. [Google Scholar] [CrossRef]
- Holub, J. Crepis pulchra L. In Červená Kniha Ohrozených a Vzácnych Druhov Rastlín a Živočíchov SR a ČR; Čeřovský, J., Feráková, V., Holub, J., Maglocký, Š., Procházka, F., Eds.; Vyššie Rastliny; Príroda a.s.: Bratislava, Slovakia, 1999; Volume 5, p. 355. (In Czech) [Google Scholar]
- Bogler, D.J. Crepis L. In Flora of North America: North of Mexico; Oxford University Press: New York, NY, USA, 2006; Volume 19, pp. 222–239. [Google Scholar]
- Kisiel, W.; Gromek, D. Guaianolides from Crepis pulchra. Pol. J. Chem. 1994, 68, 535–538. [Google Scholar] [CrossRef]
- Lee, E.H.; Kim, H.J.; Song, Y.S.; Jin, C.; Lee, K.T.; Cho, J.; Lee, Y.S. Constituents of the stems and fruits of Opuntia ficus-indica var. saboten. Arch. Pharm. Res. 2003, 26, 1018–1023. [Google Scholar] [CrossRef]
- Kurashina, Y.; Miura, A.; Enomoto, M.; Kuwahara, S. Stereoselective synthesis of malyngic acid and fulgidic acid. Tetrahedron 2011, 67, 1649–1653. [Google Scholar] [CrossRef]
- Adfa, M.; Yoshimura, T.; Komura, K.; Koketsu, M. Antitermite activities of coumarin derivatives and scopoletin from Protium javanicum Burm. f. J. Chem. Ecol. 2010, 36, 720–726. [Google Scholar] [CrossRef]
- Ersöz, T.; Harput, Ü.Ş.; Saracoğlu, İ.; Ҫaliş, İ. Phenolic compounds from Scutellaria pontica. Turk. J. Chem. 2002, 26, 581–588. [Google Scholar]
- Tian, Y.Q.; Niu, Y.F.; Shen, T.; Weng, C.W.; Xie, W.D.; Row, K.H. Cyclohexanone derivatives from Senecio argunensis. J. Chem. Res. 2010, 34, 25–27. [Google Scholar] [CrossRef]
- Gachet, M.S.; Kunert, O.; Kaiser, M.; Brun, R.; Muñoz, R.A.; Bauer, R.; Schühly, W. Jacaranone-derived glucosidic esters from Jacaranda glabra and their activity against Plasmodium falciparum. J. Nat. Prod. 2010, 73, 553–556. [Google Scholar] [CrossRef]
- Santos, C.A.; Raslan, D.S.; Chiari, E.; Oliveira, A.B. Bioguided assay of Jacaranda Macrantha Cham. (Bignoniaceae). Acta Hortic. 1999, 501, 151–154. [Google Scholar] [CrossRef]
- Rana, A.; Bhangalia, S.; Singh, H.P. A new phenylethanoid glucoside from Jacaranda mimosifolia. Nat. Prod. Res. 2013, 27, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.V.; Duarte, L.P.; Silva, R.R.; Takahashi, J.A. New jacaranone glucoside from Jacaranda oxyphylla leaves. Nat. Prod. Res. 2016, 30, 2421–2428. [Google Scholar] [CrossRef] [PubMed]
- Zanotelli, P.; Locateli, G.; Vecchia, C.D.; Gomes, D.B.; Oliveira, B.M.M.; Lutinski, J.A.; Predebom, A.J.; Miorando, D.; Zanatta, M.E.C.; Steffler, A.M.; et al. Gastroprotective potential of the hydroalcoholic extract from Jacaranda puberula in mice. Rev. Bras. Farmacogn. 2020, 30, 838–843. [Google Scholar] [CrossRef]
- Yvin, J.C.; Chevolot, L.; Chevolot-Magueur, A.M.; Cochard, J.C. First isolation of jacaranone from an alga, Delesseria sanguinea. A metamorphosis inducer of Pecten larvae. J. Nat. Prod. 1985, 48, 814–816. [Google Scholar] [CrossRef]
- Winiewski, V.; Serain, A.F.; de Sa, E.S.; Salvador, M.J.; Stefanello, M.E.A. Chemical constituents of Sinningia mauroana and screening of its extracts for antimicrobial, antioxidant and cytotoxic activities. Quim. Nova 2020, 43, 181–187. [Google Scholar] [CrossRef]
- Silva, A.S.; Amorim, M.S.; Fonseca, M.M.; Salvador, M.J.; de Sa, E.L.; Stefanello, M.E.A. A new cytotoxic naphthoquinone and other chemical constituents of Sinningia reitzii. J. Braz. Chem. Soc. 2019, 30, 2060–2065. [Google Scholar] [CrossRef]
- Yan, X.J.; Bai, X.Y.; Liu, Q.B.; Liu, S.; Gao, P.Y.; Li, L.Z.; Song, S.J. Two new glycosides from the fruits of Forsythia suspense. J. Asian Nat. Prod. Res. 2014, 16, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Mezache, N.; Derbré, S.; Akkal, S.; Laouer, H.; Séraphin, D.; Richomme, P. Fast counter current chromatography of n-butanolic fraction from Senecio giganteus (Asteraceae). Nat. Product Commun. 2009, 4, 1357–1362. [Google Scholar] [CrossRef] [Green Version]
- Loizzo, M.R.; Tundis, R.; Statti, G.A.; Menichini, F. Jacaranone: A cytotoxic constituent from Senecio ambiguus subsp. ambiguus (Biv.) DC. against renal adenocarcinoma ACHN and prostate carcinoma LNCaP cells. Arch. Pharm. Res. 2007, 30, 701–707. [Google Scholar] [CrossRef]
- Gelbaum, L.T.; Zalkow, L.H.; Hamilton, D. Cytotoxic agent from Senecio anonymus Wood. J. Nat. Prod. 1982, 45, 370–372. [Google Scholar] [CrossRef]
- Xie, W.D.; Weng, C.W.; Gao, X.; Zhao, H.; Row, K.H. A new farnesene derivative and other constituents from Senecio Cannabifolius. J. Chin. Chem. Soc. 2010, 57, 436–438. [Google Scholar] [CrossRef]
- Lajide, L.; Escoubas, P.; Mizutani, J. Cyclohexadienones-insect growth inhibitors from the foliar surface and tissue extracts of Senecio cannabifolius. Experientia 1996, 52, 259–263. [Google Scholar] [CrossRef]
- Ma, H.Y.; Yang, L.; Zhang, M.; Wang, C.H.; Wang, Z.T. A new compound from Senecio cannabifolius var. integrilifolius. Yao Xue Xue Bao 2008, 43, 626–629. [Google Scholar]
- Bohlmann, F.; Zdero, C.; King, R.M.; Robinson, H. The first acetylenic monoterpene and other constituents from Senecio clevelandii. Phytochemistry 1981, 20, 2425–2427. [Google Scholar] [CrossRef]
- Wu, C.H.; Zhang, L.; Zhou, P.P.; Sun, M.; Gao, K. Three new jacaranone derivatives from the aerial parts of Senecio chrysanoides DC. with their cytotoxic activity. Phytochem. Lett. 2015, 14, 245–248. [Google Scholar] [CrossRef]
- Pettit, G.R.; Einck, J.J.; Brown, P.; Harvey, T.B.; Ode, R.H.; Pase, C.P. Antineoplastic agents. 67. Senecio fendleri Gray. J. Nat. Prod. 1980, 43, 609–616. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Statti, G.A.; Menichini, F.; Houghton, P.J. In-vitro antiproliferative effects on human tumour cell lines of extracts and jacaranone from Senecio leucanthemifolius Poiret. J. Pharm. Pharmacol. 2005, 57, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.; Grande, C.; Anaya, J.; Grande, M. Secondary metabolites from Senecio minutus and Senecio boissieri: A new jacaranone derivative. Fitoterapia 2000, 71, 91–93. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, N.; Casida, J.E. Insecticides in Chinese medicinal plants: Survey leading to jacaranone, a neurotoxicant and glutathione-reactive quinol. J. Agric. Food Chem. 2003, 51, 2544–2547. [Google Scholar] [CrossRef]
- Yang, X.; Yang, L.; Xiong, A.; Li, D.; Wang, Z. Authentication of Senecio scandens and S. vulgaris based on the comprehensive secondary metabolic patterns gained by UPLC–DAD/ESI-MS. J. Pharm. Biomed. Anal. 2011, 56, 165–172. [Google Scholar] [CrossRef]
- Tian, X.Y.; Wang, Y.H.; Yang, Q.Y.; Yu, S.S.; Fang, W.S. Jacaranone analogs from Senecio scandens. J. Asian Nat. Prod. Res. 2009, 11, 63–68. [Google Scholar] [CrossRef]
- Tian, X.Y.; Wang, Y.H.; Yang, Q.Y.; Liu, X.; Fang, W.S.; Yu, S.S. Jacaranone glycosides from Senecio scandens. J. Asian Nat. Prod. Res. 2006, 8, 125–132. [Google Scholar] [CrossRef]
- Wang, W.S.; Lu, P.; Duan, C.H.; Feng, J.C. A new jacaranone derivative from Senecio scandens var. incisus. Nat. Prod. Res. 2010, 24, 370–374. [Google Scholar] [CrossRef]
- Mandić, B.; Gođevac, D.; Vujisić, L.; Trifunović, S.; Tesević, V.; Vajs, V.; Milosavljević, S. Semiquinol and phenol compounds from seven Senecio species. Chem. Pap. 2011, 65, 90–92. [Google Scholar] [CrossRef]
- Pérez-Castorena, A.L.; Arciniegas, A.; Martinez, F.; Marquez, C.; Villaseñor, J.L.; Romo de Vivar, A. Chemical constituents of Packera coahuilensis and Packera bellidifolia. Biochem. Syst. Ecol. 2001, 29, 203–206. [Google Scholar] [CrossRef]
- Ogura, M.; Cordell, G.A.; Farnsworth, N.R. Potential anticancer agents. IV. Constituents of Jacaranda caucana Pittier (Bignoniaceae). Lloydia 1977, 40, 157–168. [Google Scholar] [PubMed]
- Massaoka, M.H.; Matsuo, A.L.; Figueiredo, C.R.; Farias, C.F.; Girola, N.; Arruda, D.C.; Scutti, J.A.; Romoff, P.; Favero, O.A.; Ferreira, M.J.; et al. Jacaranone induces apoptosis in melanoma cells via ROS-mediated downregulation of Akt and p38 MAPK activation and displays antitumor activity in vivo. PLoS ONE 2012, 7, e38698. [Google Scholar] [CrossRef] [Green Version]
- Presser, A.; Lainer, G.; Kretschmer, N.; Schuehly, W.; Saf, R.; Kaiser, M.; Kalt, M.M. Synthesis of jacaranone-derived nitrogenous cyclohexadienones and their antiproliferative and antiprotozoal activities. Molecules 2018, 23, 2902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | IC50 (µM) [95% Confidence Intervals] | |||
---|---|---|---|---|
MCF-7 | MDA-MB-231 | HeLa | C33A | |
jacaranone | 10.22 [8.96–11.66] | 6.89 [6.29–7.55] | 14.61 [13.40–15.93] | 6.27 [5.66–6.95] |
2,3-dihydro-2-hydroxyjacaranone | >30 | 26.49 [21.61–32.41] | >30 | 21.56 [18.86–24.64] |
2,3-dihydro-2-methoxyjacaranone | 21.30 [19.44–23.35] | 17.85 [15.39–20.70] | 23.47 [21.36–25.78] | 12.52 [11.27–13.92] |
cisplatin | 6.01 [5.33–6.79] | 18.65 [16.67–20.85] | 14.02 [12.65–15.56] | 3.69 [3.22–3.95] |
Family | Species | Compound | Ref. |
---|---|---|---|
Asteraceae | Bethencourtia hermosa | 3, 17 | [8] |
Jacobaea gigantea = Senecio giganteus | 2, 26 | [46] | |
Packera bellidifolia | 2, 21 | [63] | |
Pentacalia desiderabilis | 1–3, 21 | [6,7] | |
Senecio ambiguous subsp. ambiguus | 2 | [47] | |
Senecio anonymus | 3 | [48] | |
Senecio argunensis | 2, 18, 19, 21, 24, 25 | [36] | |
Senecio cannabifolius | 2, 3, 18, 19, 24 | [49,50] | |
Senecio cannabifolius var. integrilifolius | 21 | [51] | |
Senecio carpathicus | 2, 4 | [62] | |
Senecio clevelandii | 2, 21 | [52] | |
Senecio chrysanoides | 13–15, 23 | [53] | |
Senecio erucifolius | 2, 4 | [62] | |
Senecio fendleri | 3 | [54] | |
Senecio leucanthemifolius | 2 | [55] | |
Senecio minutus | 2, 24 | [56] | |
Senecio othonnae | 2, 4 | [62] | |
Senecio palmatus | 2 | [57] | |
Senecio paludosus | 2, 4 | [62] | |
Senecio scandens | 1–3, 5–7, 9, 17, 20, 27, 28 | [58,59,60] | |
Senecio scandens var. incisus | 6, 7, 12 | [61] | |
Senecio subalpinus | 2, 4 | [62] | |
Senecio wagneri | 2, 4 | [62] | |
Acanthaceae | Avicennia marina | 10, 11, 34, 35 | [3] |
Bignoniaceae | Jacaranda arborea | 2, 3 | [2] |
Jacaranda caucana | 2 | [1] | |
Jacaranda glabra | 2, 29–32 | [37] | |
Jacaranda macrantha | 2 | [38] | |
Jacaranda mimosifolia | 2, 33 | [39] | |
Jacaranda oxyphylla | 8 | [40] | |
Jacaranda puberula | 2 | [41] | |
Delesseriaceae | Delesseria sanguineu | 2 | [42] |
Gesneriaceae | Sinningia mauroana | 2 | [43] |
Sinningia reitzii | 2 | [44] | |
Oleaceae | Forsythia suspensa | 22 | [45] |
Theaceae | Ternstroemia japonica | 2, 16, 18 | [5] |
Ternstroemia pringlei | 2 | [4] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dávid, C.Z.; Kúsz, N.; Pinke, G.; Kulmány, Á.; Zupkó, I.; Hohmann, J.; Vasas, A. Jacaranone Derivatives with Antiproliferative Activity from Crepis pulchra and Relevance of This Group of Plant Metabolites. Plants 2022, 11, 782. https://doi.org/10.3390/plants11060782
Dávid CZ, Kúsz N, Pinke G, Kulmány Á, Zupkó I, Hohmann J, Vasas A. Jacaranone Derivatives with Antiproliferative Activity from Crepis pulchra and Relevance of This Group of Plant Metabolites. Plants. 2022; 11(6):782. https://doi.org/10.3390/plants11060782
Chicago/Turabian StyleDávid, Csilla Zsuzsanna, Norbert Kúsz, Gyula Pinke, Ágnes Kulmány, István Zupkó, Judit Hohmann, and Andrea Vasas. 2022. "Jacaranone Derivatives with Antiproliferative Activity from Crepis pulchra and Relevance of This Group of Plant Metabolites" Plants 11, no. 6: 782. https://doi.org/10.3390/plants11060782
APA StyleDávid, C. Z., Kúsz, N., Pinke, G., Kulmány, Á., Zupkó, I., Hohmann, J., & Vasas, A. (2022). Jacaranone Derivatives with Antiproliferative Activity from Crepis pulchra and Relevance of This Group of Plant Metabolites. Plants, 11(6), 782. https://doi.org/10.3390/plants11060782