Antioxidant Capacity Determination of Hungarian-, Slovak-, and Polish-Origin Goldenrod Honeys †
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Honey Samples
4.2. Melissopalynological Analysis
4.3. Color Intensity
4.4. DPPH Method
4.5. ABTS Method
4.6. FRAP Method
4.7. Quantification of Total Polyphenolic Compounds Expressed as Gallic Acid
4.8. Quantification of Flavonoid Expressed as Hyperoside
4.9. Quantification of Phenolic Acid Expressed as Caffeic Acid
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plants of the World Online, Royal Botanic Gardens Kew. Available online: https://powo.science.kew.org/results?q=Solidago (accessed on 10 January 2022).
- Trimboli, J.S. Plants Honey Bees Use in the Ohio and Tennessee Valleys, 1st ed.; Solidago Press: Glasgow, UK, 2018; p. 302. [Google Scholar]
- Csiszár, Á. Inváziós növényfajok Magyarországon, 1st ed.; Nyugat-Magyarországi Egyetem Kiadó: Sopron, Hungary, 2012; pp. 213–217. [Google Scholar]
- Nepôvodné a Invázne Druhy Rastlín. Štátna Ochrana Prírody ŠOP SR. Available online: http://maps.sopsr.sk/mapy/invazne.php (accessed on 1 April 2021).
- Guzikowa, M.; Maycock, P.F. The invasion and expansion of three North American species of goldenrod (Solidago canadensis L. sensu lato, S. gigantea Ait. and S. graminifolia (L.) Salisb.). Acta Soc. Bot. Pol. 1986, 55, 367–384. [Google Scholar] [CrossRef] [Green Version]
- Inwazyjne Gatunki Obce—Solidago canadensis. Geoserwis Mapy. Generalna Dyrekcja Ochrony Środowiska GDOŚ. Available online: http://geoserwis.gdos.gov.pl/mapy/?openedAdd=iasAdd&openedAddSelection=63 (accessed on 10 November 2021).
- Inwazyjne Gatunki Obce—Solidago gigantea. Geoserwis Mapy. Generalna Dyrekcja Ochrony Środowiska GDOŚ. Available online: http://geoserwis.gdos.gov.pl/mapy/?openedAdd=iasAdd&openedAddSelection=64 (accessed on 10 November 2021).
- Kemendi, Á. Festés Növényekkel, Fonalak, Textíliák, 1st ed.; CSER Kiadó: Budapest, Hungary, 2014; p. 70. [Google Scholar]
- Amtmann, M. The chemical relationship between the scent features of goldenrod (Solidago canadensis L.) flower and its unifloral honey. J. Food Compos. Anal. 2010, 23, 122–129. [Google Scholar] [CrossRef]
- Nagy, M.; Mučaji, P.; Grančai, D. Farmakognózia—Biologicky Aktívne Rastlinné Metabolity a ich Zdroje, 2nd ed.; Herba: Bratislava, Slovakia, 2017; p. 399. [Google Scholar]
- Hiller, K.; Melzig, M.F. Lexikon der Arzneipflanzen und Drogen, 2nd ed.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2010; pp. 553–554. [Google Scholar]
- Lans, C. Possible similarities between the folk medicine historically used by first nations and American Indians in North America and the ethnoveterinary knowledge currently used in British Columbia, Canada Cheryl Lans. J. Ethnopharmacol. 2016, 192, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Khajuria, A.K.; Manhas, R.K.; Kumar, H.; Bisht, N.S. Ethnobotanical study of traditionally used medicinal plants of Pauri district of Uttarakhand, India. J. Ethnopharmacol. 2021, 276, 114204. [Google Scholar] [CrossRef]
- Gairola, S.; Sharma, J.; Bedi, Y.S. A cross-cultural analysis of Jammu, Kashmir and Ladakh (India) medicinal plant use. J. Ethnopharmacol. 2014, 155, 925–986. [Google Scholar] [CrossRef]
- Jarić, S.; Mačukanović-Jocić, M.; Djurdjević, L.; Mitrović, M.; Kostić, O.; Karadžić, B.; Pavlović, P. An ethnobotanical survey of traditionally used plants on Suva planina mountain (south-eastern Serbia). J. Ethnopharmacol. 2015, 175, 93–108. [Google Scholar] [CrossRef]
- Jarić, S.; Popović, Z.; Mačukanović-Jocić, M.; Djurdjević, L.; Mijatović, M.; Karadžić, B.; Mitrović, M.; Pavlović, P. An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). J. Ethnopharmacol. 2007, 111, 160–175. [Google Scholar] [CrossRef]
- Jarić, S.; Kostić, O.; Mataruga, Z.; Pavlović, D.; Pavlović, M.; Mitrović, M.; Pavlović, P. Traditional wound-healing plants used in the Balkan region (Southeast Europe). J. Ethnopharmacol. 2018, 211, 311–328. [Google Scholar] [CrossRef]
- European Medicinal Agency. Community Herbal Monograph on Solidago virgaurea L. Herba (EMEA/HMPC/285758); European Medicinal Agency: London, UK, 2007; p. 5. [Google Scholar]
- European Pharmacopoeia Commision. Solidaginis herba (04/2014:1892). In European Pharmacopoeia, 10th ed.; EDQM: Strasburg, France, 2014; p. 1459. [Google Scholar]
- European Pharmacopoeia Commision. Solidaginis virgaureae herba (01/2013:1893). In European Pharmacopoeia, 10th ed.; EDQM: Strasburg, France, 2013; pp. 1460–1461. [Google Scholar]
- Gyergyák, K.; Boros, B.; Marton, K.; Felinger, A.; Papp, N.; Farkas, Á. Bioactive constituents and antioxidant activity of some Carpathian Basin honeys. Nat. Prod. Res. 2015, 11, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxid. Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef]
- Ceremuga, M.; Stela, M.; Janik, E.; Gorniak, L.; Synowiec, E.; Sliwinski, T.; Sitarek, P.; Saluk-Bijak, J.; Bijak, M. Melittin—A natural peptide from bee venom which induces apoptosis in human leukaemia cells. Biomolecules 2020, 10, 247. [Google Scholar] [CrossRef] [Green Version]
- Dźugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant activity as biomarker of honey variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirivibulkovit, K.; Nouanthavong, S.; Sameenoi, Y. Paper-based DPPH assay for antioxidant activity analysis. Anal. Sci. 2018, 34, 795–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- von der Ohe, W.; Persano Oddo, L.; Piana, M.L.; Morlot, M.; Martin, P. Harmonized methods of melissopalynology. Apidologie 2004, 35, 18–25. [Google Scholar] [CrossRef]
- Barkociová, M.; Tóth, J.; Sutor, K.; Drobnicka, N.; Wybraniec, S.; Dudík, B.; Bilková, A.; Czigle, S. Betalains in Edible Fruits of Three Cactaceae Taxa—Epiphyllum, Hylocereus, and Opuntia —Their LC-MS/MS and FTIR Identification and Biological Activities Evaluation. Plants 2021, 10, 2669. [Google Scholar] [CrossRef]
- Bonciu, E. Aspects of the pollen grains diameter variability and the pollen viability to some sunflower genotypes. J. Hortic. Sci. Biotechnol. 2013, 17, 161–165. [Google Scholar]
- Jasicka-Misiak, I.; Makowicz, E.; Stanek, N. Chromatographic fingerprint, antioxidant activity, and colour characteristic of polish goldenrod (Solidago virgaurea L.) honey and flower. Eur. Food Res. Technol. 2018, 244, 1169–1184. [Google Scholar] [CrossRef]
- Kocsis, M.; Bodó, A.; Kőszegi, T.; Csepregi, R.; Filep, R.; Hoffmann, G.; Farkas, Á. Quality assessment of goldenrod, milkweed and multifloral honeys based on botanical origin, antioxidant capacity and mineral content. Int. J. Mol. Sci. 2022, 23, 769. [Google Scholar] [CrossRef]
- Jachuła, J.; Denisow, B.; Strzałkowska-Abramek, M. Does an invader have a bright side? Floral reward in two Solidago species. J. Apic. Res. 2020, 59, 599–608. [Google Scholar] [CrossRef]
- Miller, J. Goldenrod Honey: From Weed to Wonderful. Mother Earth News. Available online: https://motherearthnews.com/homesteading-and-livestock/goldenrod-honey-from-weed-zbcz1310/ (accessed on 20 February 2022).
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef] [Green Version]
- Kuś, P.M.; Congiu, F.; Teper, D.; Sroka, Z.; Jerković, I.; Tuberoso, C.I.G. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT Food Sci. Technol. 2014, 55, 124–130. [Google Scholar] [CrossRef]
- Piljac-Žegarac, J.; Stipčević, T.; Belščak, A. Antioxidant properties and phenolic content of different floral origin honeys. JAAS 2009, 1, 43–50. [Google Scholar] [CrossRef]
- Oddo, L.P.; Piro, R.; Bruneau, É.; Guyot-Declerck, C.; Ivanov, T.; Piskulová, J.; Flamini, C.; Lheritier, J.; Morlot, M.; Russmann, H. Main European unifloral honeys: Descriptive sheets. Apidologie 2004, 35, S38–S81. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Honey Colours. Pfund Scale. Available online: https://www.sizes.com/units/pfund_scale.htm (accessed on 1 April 2021).
- Vundać, V.B.; Brantner, A.H.; Plazibat, M. Content of polyphenolic constituents and antioxidant activity of some Stachys taxa. Food Chem. 2007, 104, 1277–1281. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- European Pharmacopoeia Commision. Betulae folium (01/2017:1174). In European Pharmacopoeia, 10th ed.; EDQM: Strasburg, France, 2017; pp. 1345–1347. [Google Scholar]
- Petitjean-Freytet, C.; Carnat, A.; Lamaison, J.L. Teneurs en flavonoides et en dérivés hydrocynnamiques de la fleur de Sambucus nigra L. J. Pharm. Belg. 1991, 46, 241–246. [Google Scholar]
Sample Code | Geographical Origin | Country | Pollen Type—Relative Frequency (%) a | |||||
---|---|---|---|---|---|---|---|---|
Solidago | Robinia | Brassica | Taraxacum | Helianthus | Other | |||
HU01 | Osli | Hungary | 47.61 | 2.38 | - | - | 40.47 | 9.52 |
HU02 | Nyárád | Hungary | 40.50 | 5.30 | 3.03 | - | 3.03 | 48.10 |
HU03 | Csikóstőttős | Hungary | 40.11 | 4.93 | - | - | 2.69 | 52.09 |
SK01 | Kechnec | Slovakia | 70.58 | - | - | - | 9.80 | 19.60 |
SK02 | Mužla | Slovakia | 1.53 | 31.28 | - | - | 1.84 | 57.66 |
SK03 | Baloň | Slovakia | 42.85 | 17.85 | - | - | 14.28 | 25.00 |
PL01 | Mikołów | Poland | 57.01 | 1.86 | 3.33 | 4.93 | - | 32.84 |
PL02 | Kraków | Poland | 49.98 | 4.59 | 4.26 | 0.32 | - | 40.78 |
PL03 | Kolbuszowa | Poland | 84.02 | 0.27 | 0.82 | - | - | 14.87 |
Sample Code | Geographical Origin | Country | Weight [g] | A | Pfund Scale a (Color Intensity) | Color Name |
---|---|---|---|---|---|---|
HU01 | Osli | Hungary | 2.5023 | 0.254 | 55.63 | light amber |
HU02 | Nyárád | Hungary | 2.5008 | 0.177 | 27.04 | white |
HU03 | Csikóstőttős | Hungary | 2.5049 | 0.325 | 82.00 | light amber |
SK01 | Kechnec | Slovakia | 2.5025 | 0.197 | 34.46 | extra light amber |
SK02 | Mužla | Slovakia | 2.5052 | 0.208 | 38.55 | extra light amber |
SK03 | Baloň | Slovakia | 2.4996 | 0.120 | 5.87 | water white |
PL01 | Mikołów | Poland | 2.5011 | 0.124 | 7.35 | water white |
PL02 | Kraków | Poland | 2.5034 | 0.108 | 1.41 | water white |
PL03 | Kolbuszowa | Poland | 2.5031 | 0.105 | 0.30 | water white |
Sample Code | Geographical Origin | Country | DPPH a SC50 (mg/mL) | ABTS b SC50 (mg/mL) | FRAP c,d (µmol/L) |
---|---|---|---|---|---|
HU01 | Osli | Hungary | 392.39 ± 11.24 * | 381.66 ± 12,22 ** | 13.22 ± 0.23 * |
HU02 | Nyárád | Hungary | 302.18 ± 10.22 * | 308.38 ± 10,10 * | 13.81 ± 0.20 * |
HU03 | Csikóstőttős | Hungary | 176.78 ± 6.88 *** | 107.68 ± 6.04 *** | 31.61 ± 1.01 ** |
SK01 | Kechnec | Slovakia | 328.84 ± 12.04 * | 329.97 ± 12.45 * | 12.46 ± 0.56 * |
SK02 | Mužla | Slovakia | 317.46 ± 11.22 * | 300.05 ± 10.28 * | 13.05 ± 0.32 * |
SK03 | Baloň | Slovakia | 548.77 ± 14.66 ** | 482.25 ± 12.22 ** | 7.03 ± 0.23 ** |
PL01 | Mikołów | Poland | 510.78 ± 13.65 * | 566.88 ± 13.88 * | 7.71 ± 0.28 *,** |
PL02 | Kraków | Poland | 772.87 ± 25.88 ** | 1 090.31 ± 45.22 ** | 7.12 ± 0.57 ** |
PL03 | Kolbuszowa | Poland | 463.51 ± 12.22 *** | 527.68 ± 14.11 *** | 8.73 ± 0.24 *,*** |
ascorbic acid | 0.02 ± 0.00 | 0.02 ± 0.00 | – | ||
Trolox | 0.02 ± 0.00 | 0.28 ± 0.00 | – | ||
hyperoside | – | 18.44 ± 1.42 | 5.44 ± 0.42 e |
Sample Code | Geographical Origin | Country | Total Polyphenols as Gallic Acid (%) | Flavonoids as Hyperoside (%) | Phenolic Acids as Caffeic Acid (%) |
---|---|---|---|---|---|
HU01 | Osli | Hungary | 1.19 ± 0.12 * | 1.07 ± 0.10 * | 0.55 ± 0.04 * |
HU02 | Nyárád | Hungary | 1.54 ± 0.12 * | 0.87 ± 0.06 * | 0.48 ± 0.04 * |
HU03 | Csikóstőttős | Hungary | 1.51 ± 0.13 * | 2.21 ± 0.15 ** | 1.76 ± 0.10 ** |
SK01 | Kechnec | Slovakia | 2.12 ± 0.18 * | 0.86 ± 0.08 ** | 0.46 ± 0.04 * |
SK02 | Mužla | Slovakia | 2.11± 0.18 * | 0.89 ± 0.07 * | 0.45 ± 0.04 * |
SK03 | Baloň | Slovakia | 1.61 ± 0.13 * | 0.59 ± 0.06 ** | 0.39 ± 0.04 * |
PL01 | Mikołów | Poland | 2.37 ± 0.19 * | 0.56 ± 0.04 * | 0.36 ± 0.03 * |
PL02 | Kraków | Poland | 2.61 ± 0.18 * | 0.53 ± 0.04 * | 0.23 ± 0.01 ** |
PL03 | Kolbuszowa | Poland | 6.16 ± 0.54 ** | 0.62 ± 0.05 * | 0.32 ± 0.03 * |
Antioxidant Methods | Pearson’s Correlation Index (r) with | |||
---|---|---|---|---|
Color Intensity | Total Polyphenols as Gallic Acid (%) | Flavonoids as Hyperoside (%) | Phenolic Acids as Caffeic Acid (%) | |
DPPH | 0.446591 | −0.719830 | 0.270690 | 0.203474 |
ABTS | 0.534654 | −0.661663 | 0.323427 | 0.229375 |
FRAP | −0.471335 | 0.988781 | −0.322422 | −0.299204 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czigle, S.; Filep, R.; Balažová, E.; Szentgyörgyi, H.; Balázs, V.L.; Kocsis, M.; Purger, D.; Papp, N.; Farkas, Á. Antioxidant Capacity Determination of Hungarian-, Slovak-, and Polish-Origin Goldenrod Honeys. Plants 2022, 11, 792. https://doi.org/10.3390/plants11060792
Czigle S, Filep R, Balažová E, Szentgyörgyi H, Balázs VL, Kocsis M, Purger D, Papp N, Farkas Á. Antioxidant Capacity Determination of Hungarian-, Slovak-, and Polish-Origin Goldenrod Honeys. Plants. 2022; 11(6):792. https://doi.org/10.3390/plants11060792
Chicago/Turabian StyleCzigle, Szilvia, Rita Filep, Ema Balažová, Hajnalka Szentgyörgyi, Viktória Lilla Balázs, Marianna Kocsis, Dragica Purger, Nóra Papp, and Ágnes Farkas. 2022. "Antioxidant Capacity Determination of Hungarian-, Slovak-, and Polish-Origin Goldenrod Honeys" Plants 11, no. 6: 792. https://doi.org/10.3390/plants11060792
APA StyleCzigle, S., Filep, R., Balažová, E., Szentgyörgyi, H., Balázs, V. L., Kocsis, M., Purger, D., Papp, N., & Farkas, Á. (2022). Antioxidant Capacity Determination of Hungarian-, Slovak-, and Polish-Origin Goldenrod Honeys. Plants, 11(6), 792. https://doi.org/10.3390/plants11060792