Nitrogen Footprint of a Recycling System Integrated with Cropland and Livestock in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goals and Functional Units
2.2. System Characteristics
2.2.1. Separated System
2.2.2. Crop-Swine Integrated System Introduction
2.3. Field Experiments
2.3.1. Study Sites and Experimental Design
2.3.2. Sampling
Determination of Nitrous Oxide Emissions
Determination of Ammonia Volatilization
Determination of Nitrate Leaching
2.4. Nitrogen Footprint Calculation
2.4.1. Nitrogen Footprint of Crop Production System
2.4.2. Nitrogen Footprint of Swine Production System
2.4.3. Nitrogen Footprint of Separated System
2.4.4. Nitrogen Footprint of Integrated System
3. Results
3.1. Nitrogen Footprint of Crop Production Subsystem
3.2. Nitrogen Footprint of Pig Rearing for Separated and Integrated Crop-Swine System
3.3. Nitrogen Footprint of the Separated and Integrated Crop-Swine System
4. Discussions
4.1. Impactions of Circular Agriculture on Reactive Nitrogen of Crop Production System
4.2. Impactions of Nitrogen Footprint on Separated and Crop-Swine Integrated System
4.3. Limitations and Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lassaletta, L.; Billen, G.; Garnier, J.; Bouwman, L.; Velazquez, E.; Mueller, N.D.; Gerber, J.S. Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 2016, 11, 095007. [Google Scholar] [CrossRef]
- UNEP. Frontiers 201819 Emerging Issues of Environmental Concern; United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar]
- Ames, N.; Galloway, A.R.T.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar]
- Gu, B.; Ge, Y.; Ren, Y.; Xu, B.; Luo, W.; Jiang, H.; Gu, B.; Chang, J. Atmospheric reactive nitrogen in China: Sources, recent trends, and damage costs. Environ. Sci. Technol. 2012, 46, 9420–9427. [Google Scholar] [CrossRef]
- Sutton, M.A.; Oenema, O.; Erisman, J.W.; Leip, A.; van Grinsven, H.; Winiwarter, W. Too much of a good thing. Nature 2011, 472, 159–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, D.; Hou, S.; Wang, X.; Liang, G.; Zhou, W. Nutrient resource quantity of animal manure and its utilization potential in China. J. Plant Nutr. Fertitizer 2018, 24, 1131–1148. [Google Scholar]
- Dong, H.; Zuo, L.; Wei, S.; Zhu, Z.; Yin, F. Establish Manure Nutrient Management Plan to Promote Green Development of Integrated Crop-livestock Production System. Bull. Chin. Acad. Sci. 2019, 34, 180–189. [Google Scholar]
- Yan, X.; Xia, L.; Ti, C. Win-win Nitrogen Management Practices for Improving Crop Yield and Environmental Sustainability. Bull. Chin. Acad. Sci. 2018, 33, 177–183. [Google Scholar]
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.; Van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Z.; Long, P.; Yan, L.; Gao, W.; Chen, Y.; Sui, P. Sustainability evaluation of recycling in agricultural systems by emergy accounting. Resour. Conserv. Recycl. 2017, 117, 114–124. [Google Scholar] [CrossRef]
- Gao, W.; Chen, Y.; Dong, W. Circular agriculture as an important way to low-carbon economy. Chin. J. Eco-Agric. 2010, 18, 1106–1109. [Google Scholar] [CrossRef]
- Gao, W. Circular agriculture with Chinese characteristics and science and technology innovation. Res. Agric. Mod. 2010, 31, 129–133. [Google Scholar]
- Gao, W.; Chen, Y.; Liang, L. Basic principles and technology supporting for circular agriculture development. Res. Agric. Mod. 2007, 28, 731–734. [Google Scholar]
- Ryschawy, J.; Joannon, A.; Choisis, J.P.; Gibon, A.; Le Gal, P.Y. Participative assessment of innovative technical scenarios for enhancing sustainability of French mixed crop-livestock farms. Agric. Syst. 2014, 129, 1–8. [Google Scholar] [CrossRef]
- Bonaudo, T.; Bendahan, A.B.; Sabatier, R.; Ryschawy, J.; Bellon, S.; Leger, F.; Magda, D.; Tichit, M. Agroecological principles for the redesign of integrated crop–livestock systems. Eur. J. Agron. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D.; Kirkegaard, J.A. Evolution in crop–livestock integration systems that improve farm productivity and environmental performance in Australia. Eur. J. Agron. 2014, 57, 10–20. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; de Faccio Carvalho, P.C.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Martin, G.; Moraine, M.; Ryschawy, J.; Magne, M.-A.; Asai, M.; Sarthou, J.-P.; Duru, M.; Therond, O. Crop–livestock integration beyond the farm level: A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef]
- Garrett, R.D.; Niles, M.T.; Gil, J.D.B.; Gaudin, A.; Chaplin-Kramer, R.; Assmann, A.; Assmann, T.S.; Brewer, K.; de Faccio Carvalho, P.C.; Cortner, O.; et al. Social and ecological analysis of commercial integrated crop livestock systems: Current knowledge and remaining uncertainty. Agric. Syst. 2017, 155, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Leach, A.M.; Galloway, J.N.; Bleeker, A.; Erisman, J.W.; Kohn, R.; Kitzes, J. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ. Dev. 2012, 1, 40–66. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.J.; Leach, A.M.; Dale, S.; Gallowayb, J.N. Personal nitrogen footprint tool for the United Kingdom. Environ. Sci. Process Impacts 2014, 16, 1563–1569. [Google Scholar] [CrossRef] [Green Version]
- Hutton, M.O.; Leach, A.M.; Leip, A.; Galloway, J.N.; Bekunda, M.; Sullivan, C.; Lesschen, J.P. Toward a nitrogen footprint calculator for Tanzania. Environ. Res. Lett. 2017, 12, 3. [Google Scholar] [CrossRef]
- Pierer, M.; Winiwarter, W.; Leach, A.M.; Galloway, J.N. The nitrogen footprint of food products and general consumption patterns in Austria. Food Policy 2014, 49, 128–136. [Google Scholar] [CrossRef]
- Xia, Y.L.; Liao, C.S.; Wu, D.M.; Liu, Y.Z. Dynamic Analysis and Prediction of Food Nitrogen Footprint of Urban and Rural Residents in Shanghai. Int. J. Environ. Res. Public Health 2020, 17, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.-F.; Pu, C.; Liu, S.-L.; Zhao, X.; Zhang, R.; Chen, F.; Xiao, X.-P.; Zhang, H.-L. Carbon and nitrogen footprint of double rice production in Southern China. Ecol. Indic. 2016, 64, 249–257. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.P.; Shibata, H.; Gu, B.J.; Wang, Y.W. Virtual nitrogen factors and nitrogen footprints associated with nitrogen loss and food wastage of China’s main food crops. Environ. Res. Lett. 2018, 13, 014017. [Google Scholar] [CrossRef]
- Liang, T.; Liao, D.; Wang, S.; Yang, B.; Zhao, J.; Zhu, C.; Tao, Z.; Shi, X.; Chen, X.; Wang, X. The nitrogen and carbon footprints of vegetable production in the subtropical high elevation mountain region. Ecol. Indic. 2021, 122, 107298. [Google Scholar] [CrossRef]
- Niccolucci, V.; Marchi, M.; Neri, E.; Pulselli, R.M.; Bastianoni, S.; Marchettini, N. Insights into nitrogen footprint accounting for products and application to an organic pig farm. Ecol. Indic. 2021, 133, 108411. [Google Scholar] [CrossRef]
- Xue, X.B.; Landis, A.E. Eutrophication Potential of Food Consumption Patterns. Environ. Sci. Technol. 2010, 44, 6450–6456. [Google Scholar] [CrossRef]
- FAO. World reference base for soil resources 2006: A framework for international classification, correlation and communication. World Soil Resour. Rep. 2006, 103. [Google Scholar]
- Zhao, Y.; Wang, L.; Lei, X.; Wang, B.; Cui, J.; Xu, Y.; Chen, Y.; Sui, P. Reducing carbon footprint without compromising grain security through relaxing cropping rotation system in the North China Plain. J. Clean Prod. 2021, 318, 128465. [Google Scholar] [CrossRef]
- Cui, J.; Sui, P.; Wright, D.L.; Wang, D.; Sun, B.; Ran, M.; Shen, Y.; Li, C.; Chen, Y. Carbon emission of maize-based cropping systems in the North China Plain. J. Clean Prod. 2019, 213, 300–308. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Ju, X.; Zhang, F. Field in situ determination of ammonia volatilization from soil: Venting method. Plant Nutr. Fertitizer Sci. 2002, 8, 205–209. [Google Scholar]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Xia, L.L.; Lam, S.K.; Yan, X.Y.; Chen, D.L. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef]
- Edmeades, D.C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosys 2003, 66, 165–180. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Wang, S.; Zhu, X.; Vereecken, H.; Bruggemann, N. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: A global meta-analysis. Glob. Chang. Biol. 2017, 23, 4068–4083. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Kasper, V.G.; Velthof, G.L.; Van den Pol-van Dasselaar, A.; Kuikman, P.J. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant Soil 2004, 263, 101–111. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef] [Green Version]
- Meijide, A.; Díez, J.A.; Sánchez-Martín, L.; López-Fernández, S.; Vallejo, A. Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. Agric. Ecosyst. Environ. 2007, 121, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Ti, C.; Xia, L.; Xia, Y.; Wei, Z.; Yan, X. Ecosystem services of partial organic substitution for chemical fertilizer in a peri-urban zone in China. J. Clean Prod. 2019, 224, 779–788. [Google Scholar] [CrossRef]
- Firestone, M.K.; Davidson, E.A. Microbiological basis of NO and N2O production and consumption in soil. In Exchange of Trace Gases between Terrestrial Ecosystems and the Amosphere; Wiley: New York, NY, USA, 1989; Volume 47, pp. 7–21. [Google Scholar]
- Li, Y.; Wu, W.; Yang, J.; Cheng, K.; Smith, P.; Sun, J.; Xu, X.; Yue, Q.; Pan, G. Exploring the environmental impact of crop production in China using a comprehensive footprint approach. Sci. Total Environ. 2022, 824, 153898. [Google Scholar] [CrossRef]
- Niraula, S.; Rahman, S.; Chatterjee, A. Can manure Application Reduce Nitrous Oxide Emission and Ammonia Volatilization from Silty-Clay Soils of the Red River Valley? ASABE: Spokane, Washington, DC, USA, 2017. [Google Scholar]
- Zhang, T.; Liu, H.; Luo, J.; Wang, H.; Zhai, L.; Geng, Y.; Zhang, Y.; Li, J.; Lei, Q.; Bashir, M.A.; et al. Long-term manure application increased greenhouse gas emissions but had no effect on ammonia volatilization in a Northern China upland field. Sci. Total Environ. 2018, 633, 230–239. [Google Scholar] [CrossRef]
- Sommer, S.G.; Schjoerring, J.K.; Denmead, O.T. Ammonia emission from mineral fertilizers and fertilized crops. Adv. Agron. 2004, 82, 557–622. [Google Scholar]
- Guo, S.; Pan, J.; Zhai, L.; Khoshnevisan, B.; Wu, S.; Wang, H.; Yang, B.; Liu, H.; Lei, B. The reactive nitrogen loss and GHG emissions from a maize system after a long-term livestock manure incorporation in the North China Plain. Sci. Total Environ. 2020, 720, 137558. [Google Scholar] [CrossRef]
- Yu, Q.; Ma, J.; Zou, P.; Lin, H.; Sun, W.; Yin, J.; Fu, J. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils. Environ. Sci. Pollut. Res. Int. 2015, 22, 472–481. [Google Scholar] [CrossRef]
- Chen, M.; Sun, F.; Shindo, J. China’s agricultural nitrogen flows in 2011: Environmental assessment and management scenarios. Resour. Conserv. Recycl. 2016, 111, 10–27. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Cosby, B.J. The nitrogen cascade. Bioscience 2003, 53, 341–356. [Google Scholar] [CrossRef]
- Long, W.; Wang, H.; Hou, Y.; Chadwick, D.; Ma, Y.; Cui, Z.; Zhang, F. Mitigation of Multiple Environmental Footprints for China’s Pig Production Using Different Land Use Strategies. Environ. Sci. Technol. 2021, 55, 4440–4451. [Google Scholar] [CrossRef]
- Zhang, N.; Bai, Z.; Winiwarter, W.; Ledgard, S.; Luo, J.; Liu, J.; Guo, Y.; Ma, L. Reducing Ammonia Emissions from Dairy Cattle Production via Cost-Effective Manure Management Techniques in China. Environ. Sci. Technol. 2019, 53, 11840–11848. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, B.; Wu, B.; Han, D.; Hu, Y.; Ren, C.; Zhang, C.; Wei, X.; Wu, Y.; Mol, A.P.J.; et al. Decoupling livestock and crop production at the household level in China. Nat. Sustain. 2020, 4, 48–55. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, Y.; Dong, P.; Velthof, G.L.; Long, W.; Ma, L.; Ma, W.; Jiang, R.; Oenema, O. Cooperation between specialized livestock and crop farms can reduce environmental footprints and increase net profits in livestock production. J. Environ. Manag. 2022, 302, 113960. [Google Scholar] [CrossRef] [PubMed]
- DEFRA. UK Biomass Strategy 2007: Working Paper 3-Anaerobic Digestion. Published on Defra Website; DEFRA: London, UK, 2007.
- Skenhall, S.A.; Berndes, G.; Woods, J. Integration of bioenergy systems into UK agriculture–New options for management of nitrogen flows. Biomass Bioenergy 2013, 54, 219–226. [Google Scholar] [CrossRef]
Item | SS-C | IS-C | Units | Emission Factor | Units |
---|---|---|---|---|---|
Inputs | |||||
Wheat seed | 262.50 | 262.50 | kg ha−1 | 0.76 | g N-eq kg−1 |
Maize seed | 15.00 | 15.00 | kg ha−1 | 0.76 | g N-eq kg−1 |
N | 274.63 | 75.00 | kg ha−1 | 39.82 | g N-eq kg−1 |
P2O5 | 52.00 | 52.00 | kg ha−1 | 28.35 | g N-eq kg−1 |
K2O | 248.00 | 248.00 | kg ha−1 | 8.32 | g N-eq kg−1 |
Bactericide | 2.63 | 2.63 | kg ha−1 | 3.53 | g N-eq kg−1 |
Insecticide | 1.35 | 1.35 | kg ha−1 | 3.53 | g N-eq kg−1 |
Herbicide | 1.50 | 1.50 | kg ha−1 | 4.49 | g N-eq kg−1 |
Diesel for tillage | 20.40 | 20.40 | kg ha−1 | 102.98 | g N-eq kg−1 |
Diesel for sowing | 15.00 | 15.00 | kg ha−1 | 102.98 | g N-eq kg−1 |
Diesel for harvesting | 9.75 | 9.75 | kg ha−1 | 102.98 | g N-eq kg−1 |
Diesel for manure management | 0.00 | 15.00 | kg ha−1 | 102.98 | g N-eq kg−1 |
Machinery for tillage | 40.80 | 40.80 | kg ha−1 | 104.30 | g N-eq kg−1 |
Machinery for sowing | 30.00 | 30.00 | kg ha−1 | 104.30 | g N-eq kg−1 |
Machinery for harvesting | 19.50 | 19.50 | kg ha−1 | 104.30 | g N-eq kg−1 |
Machinery for manure management | 0.00 | 30.00 | kg ha−1 | 104.30 | g N-eq kg−1 |
Electricity | 1087.50 | 1087.50 | Kwh ha−1 | 3.72 | g N-eq Kwh−1 |
Outputs | |||||
Wheat grain | 6381.09 ± 794.59 | 8165.96 ± 1193.56 | kg ha−1 | ||
Maize grain | 11,082.77 ± 1066.06 | 11,808.46 ± 1015.62 | kg ha−1 |
Items | SS-P | IS-P | Units | Emission Factor | Units |
---|---|---|---|---|---|
Forage processing | |||||
Maize | 183.38 | 0.00 | kg head−1 | 0.76 | g N-eq kg−1 |
Soybean meal | 70.04 | 70.04 | kg head−1 | 0.76 | g N-eq kg−1 |
Wheat bran | 49.07 | 49.07 | kg head−1 | 0.76 | g N-eq kg−1 |
Compound forage | 315.98 | 315.98 | kg head−1 | 17.76 | g N-eq kg−1 |
Microelement | 14.16 | 14.16 | kg head−1 | 17.34 | g N-eq kg−1 |
Transportation | 200.00 | 200.00 | km | 2.57 | g N-eq t−1 km−1 |
Electricity | 0.02 | 0.02 | kWh head−1 | 3.72 | g N-eq kWh−1 |
Fossil fuel | 0.02 | 0.02 | kg head−1 | 102.98 | g N-eq kg−1 |
Swine rearing | |||||
Water | 2634.26 | 2634.26 | kg head−1 | 2.60 × 10−4 | g N-eq kg−1 |
Concentrate feed | 19.49 | 19.49 | kg head−1 | 21.57 | g N-eq kg−1 |
Premixed feeds | 13.49 | 13.49 | kg head−1 | 17.76 | g N-eq kg−1 |
Electricity | 20.11 | 20.11 | kWh head−1 | 3.72 | g N-eq kWh−1 |
Coal | 8.65 | 8.65 | kg head−1 | 2.70 × 10−3 | g N-eq kg−1 |
Vaccine | 37.11 | 37.11 | g head−1 | 80.35 | g N-eq kg−1 |
Disinfectant | 1542.03 | 1542.03 | g head−1 | 0.17 | g N-eq kg−1 |
Veterinary medicine | 75.10 | 75.10 | g head−1 | 80.35 | g N-eq kg−1 |
Outputs | |||||
Pork | 100 kg head−1 | ||||
Urine | 314 kg head−1 | ||||
Feces | 66.80 kg dry head−1 |
Item | Units | SS-C | IS-C | Statistical Analysis |
---|---|---|---|---|
Wheat yield | kg ha−1 | 6381.09 ± 794.59 | 8165.96 ± 1193.56 | * |
Maize yield | kg ha−1 | 11,082.77 ± 1066.06 | 11,808.46 ± 1015.62 | - |
Total yield | kg ha−1 | 17,463.86 ± 1590.94 | 19,974.42 ± 1789.15 | * |
Indirect NF | kg N ha−1 | 35.86 | 32.59 | |
Direct NF | kg N ha−1 | 135.51 ± 32.11 | 118.19 ± 31.77 | - |
including | ||||
N2O | kg N ha−1 | 7.10 ± 3.17 | 3.77 ± 2.85 | - |
NH3 | kg N ha−1 | 124.02 ± 29.98 | 104.00 ± 23.34 | - |
NO3− | kg N ha−1 | 4.39 ± 0.14 | 10.42 ± 7.70 | - |
NF per unit area | kg N-eq ha−1 | 171.37 | 150.77 | |
NF per unit grain yield | kg N-eq t−1 | 98.13 | 75.48 |
Items | Units 37 Head Pigs−1 | SS-P | IS-P |
---|---|---|---|
Forage processing | |||
Maize | g N-eq | 5156.65 | 0.00 |
Soybean meal | g N-eq | 0.00 | 0.00 |
Wheat bran | g N-eq | 0.00 | 0.00 |
Compound forage | g N-eq | 207,605.01 | 207,605.01 |
Microelement | g N-eq | 9086.95 | 9086.95 |
Transportation | g N-eq | 12,029.07 | 8542.21 |
Electricity | g N-eq | 2.76 | 2.76 |
Fossil fuel | g N-eq | 76.21 | 76.21 |
Pig rearing | |||
Water | g N-eq | 25.36 | 25.36 |
Concentrate feed | g N-eq | 15,552.57 | 15,552.57 |
Premixed feeds | g N-eq | 8863.19 | 8863.19 |
Electricity | g N-eq | 2771.49 | 2771.49 |
Coal | g N-eq | 0.86 | 0.86 |
Vaccine | g N-eq | 110.33 | 110.33 |
Disinfectant | g N-eq | 9.98 | 9.98 |
Veterinary medicine | g N-eq | 223.28 | 223.28 |
Waste management | g N-eq | 55,521.14 | 1468.11 |
Total | kg N-eq | 317.03 | 254.34 |
Items | Units | SS | IS |
---|---|---|---|
Crop Production | kg N-eq ha−1 | 171.37 | 150.77 |
Forage processing | kg N-eq ha−1 | 233.96 | 225.31 |
Pig rearing | kg N-eq ha−1 | 27.56 | 27.56 |
Waste management | kg N-eq ha−1 | 55.52 | 1.47 |
Total | kg N-eq ha−1 | 488.41 | 405.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Cui, J.; Xu, Y.; Zhao, Y.; Chen, L.; Li, Z.; Sui, P.; Gao, W.; Chen, Y. Nitrogen Footprint of a Recycling System Integrated with Cropland and Livestock in the North China Plain. Plants 2022, 11, 842. https://doi.org/10.3390/plants11070842
Du H, Cui J, Xu Y, Zhao Y, Chen L, Li Z, Sui P, Gao W, Chen Y. Nitrogen Footprint of a Recycling System Integrated with Cropland and Livestock in the North China Plain. Plants. 2022; 11(7):842. https://doi.org/10.3390/plants11070842
Chicago/Turabian StyleDu, Hailun, Jixiao Cui, Yinan Xu, Yingxing Zhao, Lin Chen, Zhejin Li, Peng Sui, Wangsheng Gao, and Yuanquan Chen. 2022. "Nitrogen Footprint of a Recycling System Integrated with Cropland and Livestock in the North China Plain" Plants 11, no. 7: 842. https://doi.org/10.3390/plants11070842
APA StyleDu, H., Cui, J., Xu, Y., Zhao, Y., Chen, L., Li, Z., Sui, P., Gao, W., & Chen, Y. (2022). Nitrogen Footprint of a Recycling System Integrated with Cropland and Livestock in the North China Plain. Plants, 11(7), 842. https://doi.org/10.3390/plants11070842