Loop-Mediated Isothermal Amplification (LAMP) and SYBR Green qPCR for Fast and Reliable Detection of Geosmithia morbida (Kolařik) in Infected Walnut
Abstract
:1. Introduction
2. Results
2.1. Nucleic Acid Extractions from Mycelium and Woody Samples
2.2. Diagnostic Specificity and Accuracy
2.3. Blind Panel Validation
2.4. Repeatability and Reproducibility of Diagnostic Assays
2.5. LAMP and qPCR Sensitivity Assays
3. Discussion
4. Materials and Methods
4.1. Collection and Identification of Geosmithia morbida
4.2. Fungal Strains and Plant Samples Used to Develop the Diagnostic Assays
4.3. DNA Extraction
4.4. Design of the LAMP and SYBR Green qPCR Primers
4.5. LAMP and SYBR Green qPCR Assay Conditions
4.6. Specificity and Accuracy of the LAMP and SYBR Green qPCR Assays
4.7. Blind Panel Validation of the Assays
4.8. Repeatability and Reproducibility
4.9. Sensitivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aradhya, M.K.; Potter, D.; Simon, C.J. Cladistic biogeography of Juglans (Juglandaceae) based on chloroplast DNA intergenic spacer sequences. In Darwin’s Harvest: New Approaches to the Origins, Evolution and Conservation of Crops; Motley, T.J., Zerega, N., Cross, H., Eds.; Columbia University Press: New York, NY, USA, 2006; pp. 143–170. [Google Scholar] [CrossRef] [Green Version]
- Newton, L.; Fowler, G. Pathway Assessment: Geosmithia sp. and Pityophthorus juglandis Blackman Movement from the Western into the Eastern United States. United States Department of Agriculture Animal and Plant Health Inspection Service, 1–50, Washington, D.C.; 2009 Rev. 1: 10.19.2009. Available online: http://mda.mo.gov/plants/pdf/tc_pathwayanalysis.pdf (accessed on 10 March 2021).
- Banel, D.K.; Hu, F.B. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: A meta-analysis and systematic review. Am. J. Clin. Nutr. 2009, 90, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Nicolescu, V.N.; Rédei, K.; Vor, T.; Bastien, J.; Benčat, T.; Đodan, M.; Cvjetkovic, B.; Andrašev, S.; La Porta, N.; Lavnyy, V.; et al. A review of black walnut (Juglans nigra L.) ecology and management in Europe. Trees 2020, 34, 1087–1112. [Google Scholar] [CrossRef]
- Kolařik, M.; Freeland, E.; Utley, C.; Tisserat, N. Geosmithia morbida sp. Nov. A new phytopathogenic species living in simbiosis with the walnut twig beetle (P. juglandis) on Juglans in USA. Mycologia 2011, 103, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Tisserat, N.; Cranshaw, W.; Putnam, M.L.; Pscheidt, J.; Leslie, C.A.; Murray, M.; Hoffman, J.; Barkley, Y.; Alexander, K.; Seybold, S.J. Thousand cankers disease is widespread in black walnut in the western United States. Online. Plant Health Prog. 2011, 5, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Seybold, S.; Haugen, D.; Graves, A. Thousand Cankers Disease. United Stases Department of Agricolture: Forest Service. 2013. Available online: na.fs.fed.us/pubs/palerts/cankers_disease/thousand_cankers_disease_print_res.pdf (accessed on 18 February 2021).
- Tisserat, N.; Cranshaw, W.; Leatherman, D.; Utley, C.; Alexander, K. Black walnut mortality in Colorado caused by the walnut twig beetle and thousand cankers disease. Plant Health Prog. 2009, 10, 10. [Google Scholar] [CrossRef]
- Montecchio, L.; Faccoli, M. First Record of Thousand Cankers Disease Geosmithia morbida and Walnut Twig Beetle Pityophthorus juglandis on Juglans nigra in Europe. Plant Dis. 2014, 98, 696. [Google Scholar] [CrossRef]
- Moricca, S.; Bracalini, M.; Benigno, A.; Ginetti, B.; Pelleri, F.; Panzavolta, T. Thousand Cankers Disease Caused by Geosmithia morbida and Its Insect Vector Pityophthorus juglandis First Reported on Juglans nigra in Tuscany, Central Italy. Plant Dis. 2019, 103, 369. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/2072 of 28 November 2019, establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019. Off. J. Eur. Union 2019, L 319, 1–279.
- Rizzo, D.; Da Lio, D.D.; Bartolini, L.; Cappellini, G.; Bruscoli, T.; Bracalini, M.; Benigno, A.; Salemi, C.; Del Nista, D.; Aronadio, A.; et al. A duplex real-time PCR with probe for simultaneous detection of Geosmithia morbida and its vector Pityophthorus juglandis. PLoS ONE 2020, 15, e0241109. [Google Scholar] [CrossRef]
- Coladonato, M. Juglans nigra, Fire Effects Information System [online]. CO: Fire Sciences Laboratory, Rocky Mountain Research Station, Forest Service, U.S. Department of Agriculture. 1991. Available online: https://www.fs.fed.us/database/feis/plants/tree/jugnig/all.html (accessed on 16 April 2021).
- Lestrade, M.; Becquey, J.; Coello, J.; Gonin, P. Autecologie of common walnut (Juglans regia L.), black walnut (Juglans nigra L.), and hybrid walnut (Juglans x intermedia). Forêt-Entrep. 2012, 207, 5–12. [Google Scholar]
- Ares, A.; Brauer, D. Growth and nut production of black walnut in relation to site, tree type and stand conditions in south-central United States. Agrofor. Syst. 2004, 63, 83–90. [Google Scholar] [CrossRef]
- Moricca, S.; Bracalini, M.; Benigno, A.; Ghelardini, L.; Furtado, E.L.; Marino, C.L.; Panzavolta, T. Thousand cankers disease in Juglans: Optimizing sampling and identification procedures for the vector Pityophthorus juglandis, and the causal agent Geosmithia morbida. MethodsX 2020, 7, 101174. [Google Scholar] [CrossRef] [PubMed]
- Moricca, S.; Bracalini, M.; Benigno, A.; Ghelardini, L.; Furtado, E.L.; Marino, C.L.; Panzavolta, T. Observations on the non-native thousand cankers disease of walnut in Europe’s southernmost outbreak. Glob. Ecol. Conserv. 2020, 23, e01159. [Google Scholar] [CrossRef]
- Oren, E.; Klingeman, W.; Gazis, R.; Moulton, J.; Lambdin, P.; Coggeshall, M.; Hulcr, J.; Seybold, S.J.; Hadziabdic, D. A novel molecular toolkit for rapid detection of the pathogen and primary vector of thousand cankers disease. PLoS ONE 2018, 13, e0185087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCartney, H.A.; Foster, S.J.; Fraaije, B.A.; Ward, E. Molecular diagnostics for fungal plant pathogens. Pest Manag. Sci. 2003, 59, 129–142. [Google Scholar] [CrossRef]
- Lamarche, J.; Potvin, A.; Pelletier, G.; Stewart, D.; Feau, N.; Alayon, D.I.O.; Dale, A.L.; Coelho, A.; Uzunovic, A.; Bilodeau, G.J. Molecular detection of 10 of the most unwanted alien forest pathogens in Canada using real-time PCR. PLoS ONE 2015, 10, e0134265. [Google Scholar] [CrossRef]
- Stackhouse, T.; Boggess, S.; Hadziabdic, D.; Trigiano, R.N.; Ginzel, M.; Klingeman, W. Conventional Gel Electrophoresis and TaqMan Probes Enable Rapid Confirmation of Thousand Cankers Disease from Diagnostic Samples. Plant Dis. 2021, 105, 3171–3180. [Google Scholar] [CrossRef]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef]
- Panek, J.; Frąc, M. Loop-mediated isothermal amplification (LAMP) approach for detection of heat-resistant Talaromyces flavus species. Sci. Rep. 2019, 9, 5846. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Dickinson, M.J.; Boonham, N. Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology 2010, 100, 143–149. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority); Wilstermann, A.; Hoppe, B.; Schraderm, G.; Delbianco, A.; Vos, S. Pest survey card on Geosmithia morbida and its vector Pityophthorus juglandis. EFSA Support. Publ. 2020, EN-1894, 31. [Google Scholar] [CrossRef]
- Rizzo, D.; Moricca, S.; Bracalini, M.; Benigno, A.; Bernardo, U.; Luchi, N.; Da Lio, D.; Nugnes, F.; Cappellini, G.; Salemi, C.; et al. Rapid detection of Pityophthorus juglandis (Blackman) (Coleoptera, Curculionidae) with the loop-mediated isothermal amplification (LAMP) method. Plants 2021, 10, 1048. [Google Scholar] [CrossRef] [PubMed]
- Kolařík, M.; Hulcr, J.; Tisserat, N.; De Beer, W.; Kostovčík, M.; Kolaříková, Z.; Seybold, S.J.; Rizzo, D.M. Geosmithia associated with bark beetles and woodborers in the western USA: Taxonomic diversity and vector specificity. Mycologia 2017, 109, 185–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolařik, M.; Kubàtovà, A.; Hulcr, J.; Pazoutovà, S. Geosmithia fungi are highly diverse and consistent bark beetle associates: Evidence from their community structure in temperate Europe. Microb. Ecol. 2008, 55, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.; Juzwik, J.; Miller, F.; Roberts, L.; Ginzel, M.D. Detection of Geosmithia morbida on numerous insect species in four eastern States. Plant Health Prog. 2019, 20, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Council Regulation (EEC) No 2080/92 of 30 June 1992 Instituting a Community Aid Scheme for Forestry Measures in Agriculture (OJ L 215 30.07.1992, p. 96, CELEX. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31992R2080 (accessed on 29 April 2021).
- Rizzo, D.; Da Lio, D.; Bartolini, L.; Cappellini, G.; Bruscoli, T.; Salemi, C.; Aronadio, A.; Del Nista, D.; Pennacchio, F.; Boersma, N.; et al. Development of three molecular diagnostic tools for the identification of the false codling moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 2021, 114, 1796–1807. [Google Scholar] [CrossRef]
- Koohkanzade, M.; Zakiaghl, M.; Dhami, M.K.; Fekrat, L.; Namaghi, H.S. Rapid identification of Bactrocera zonata (Dip.: Tephritidae) using TaqMan real-time PCR assay. PLoS ONE 2018, 13, e0205136. [Google Scholar] [CrossRef] [Green Version]
- Teter, S.; Steffen, L. Real-Time qPCR: Guidelines for a Comparison of Reagent Performance. Application Note #AN299, 2017, Retrieved from Promega Corporation Website. Available online: https://ita.promega.com/resources/pubhub/applications-notes/an299-real-time-qpcr-guidelines-for-acomparison-of-reagent-performance/ (accessed on 27 April 2021).
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innes, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; Thierer, T.; et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Abdulmawjood, A.; Grabowski, N.; Fohler, S.; Kittler, S.; Nagengast, H.; Klein, G. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid and Sensitive Identification of Ostrich Meat. PLoS ONE 2014, 9, e100717. [Google Scholar] [CrossRef]
- Goto, M.; Honda, E.; Ogura, A.; Nomoto, A.; Hanaki, K.I. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques 2009, 46, 167–172. [Google Scholar] [CrossRef] [PubMed]
- European and Mediterranean Plant Protection Organization (EPPO). PM 7/98 (4) Specific requirements for laboratories preparing accreditation for a plant pest diagnostic activity. EPPO Bull. 2019, 49, 530–563. [Google Scholar] [CrossRef] [Green Version]
- Dhami, M.K.; Dsouza, M.; Waite, D.W.; Anderson, D.; Li, D. Real time PCR Assay for the Identification of the Brown Marmorated Stink Bug (Halyomorpha halys). Front. Mol. Biosci. 2016, 3, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Sample Code | Origin | DNA Extraction Matrix | Supplier | Host | LAMP Results | qPCR | |
---|---|---|---|---|---|---|---|---|
vLAMP | rtLAMP | SYBR Green | ||||||
Geosmithia morbida (M. Kolařík, Freeland, C. Utley & Tisserat) | F120 | Italy | Mycelium | University of Florence | Juglans nigra | + | + | + |
F116 | Italy | Mycelium | SFR phytopathol. Lab | Juglans nigra | + | + | + | |
F133 | Colorado, USA | Mycelium | CBS—124664 | Juglans nigra | + | + | + | |
F120 | Italy | Infected woody tissue | SFR phytopathol. Lab | Juglans nigra | + | + | + | |
F121 | Italy | Infected woody tissue | SFR phytopathol. Lab | Juglans nigra | + | + | + | |
F124 | Italy | Infected woody tissue | SFR phytopathol. Lab | Juglans nigra | + | + | + | |
F125 | Italy | Infected woody tissue | SFR phytopathol. Lab | Juglans nigra | + | + | + | |
F126 | Italy | Infected woody tissue | SFR phytopathol. Lab | Juglans nigra | + | + | + | |
F127 | Italy | Infected woody tissue | SFR phytopathol. Lab | Juglans nigra | + | + | + | |
F128 | Italy | Infected woody tissue | SFR phytopathol. Lab | Juglans nigra | + | + | + | |
F129 | Italy | Infected woody tissue | SFR phytopathol. Lab | Juglans nigra | + | + | + | |
Geosmithia obscura (M. Kolařík, Kubátová & Pažoutová) | CCF3422 | Czech Republic | Mycelium | ASCR-Prague | − | − | − | − |
Geosmithia langdonii (M. Kolařík, Kubátová & Pažoutová) | CNR105 | Italy | Mycelium | IPSP-CNR-Florence | − | − | − | − |
Geosmithia sp. (Pitt) | CNR132 | Italy | Mycelium | IPSP-CNR-Florence | − | − | − | − |
Botryosphaeria (Ces. & De Not.) sp. | F004 | Italy | Mycelium | SFR phytopathol. Lab | − | − | − | − |
Botryosphaeria dothidea (Moug.) Ces. & De Not. | F005 | Italy | Mycelium | University of Bologna | − | − | − | − |
Sphaeropsis sapinea ((Fr.) Dyko & B. Sutton) | F078 | Italy | Infected plant tissue | − | − | − | − | |
Colletotrichum (Corda) | F010 | Italy | Mycelium | SFR phytopathol. Lab | − | − | − | − |
Colletotrichum acutatum (J.H. Simmonds) | F013 | Italy | Mycelium | SFR phytopathol. Lab | − | − | − | − |
Colletotrichum coccodes (Wallr.) S. Hughes | F011 | Italy | Mycelium | University of Bologna | − | − | − | − |
Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. | F012 | Italy | Mycelium | SFR phytopathol. Lab | − | − | − | − |
F102 | Italy | Infected plant tissue | SFR phytopathol. Lab | Photinia sp. | − | − | − | |
Fusarium oxysporum (Schltdl.) | F026 | Italy | Mycelium | University of Bologna | − | − | − | − |
Fusarium oxysporum f. sp. radicis-lycopersici (Jarvis & Shoemaker) | F001 | Italy | Mycelium | SFR phytopathol. Lab | Solanum lycopersicum | − | − | − |
Fusarium oxysporum f. sp. dianthi (W.C. Snyder & H.N. Hansen) | F123 | Italy | Mycelium | University of Pisa | − | − | − | |
Fusarium oxysporum f. sp. basilici (Tamietti & Matta) | F122 | Italy | Mycelium | University of Pisa | − | − | − | |
Fusarium redolens (Wollenw.) | F027 | Italy | Mycelium | University of Bologna | − | − | − | − |
Gibberella circinata (Nirenberg & O’Donnell) | F028 | Italy | Mycelium | CREA-PAV_Rome | − | − | − | − |
Neofusicoccum luteum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips | F038 | Italy | Mycelium | University of Florence | Vitis sp. | − | − | − |
Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips | F039 | Italy | Mycelium | University of Florence | Vitis sp. | − | − | − |
Neofusicoccum ribis (Slippers, Crous & M.J. Wingf.) Crous, Slippers & A.J.L. Phillips | F040 | Italy | Mycelium | University of Florence | Vitis sp. | − | − | − |
Neofusicoccum vitifusiforme (Van Niekerk & Crous) Crous, Slippers & A.J.L. Phillips | F041 | Italy | Mycelium | University of Florence | Vitis sp. | − | − | − |
Guignardia citricarpa (Kiely) | F029 | Italy | Infected plant tissue | SFR phytopathol. Lab | − | − | − | |
F109 | Italy | Infected plant tissue | SFR phytopathol. Lab | − | − | − | ||
F114 | Italy | Mycelium | SFR phytopathol. Lab -Campania | − | − | − | ||
F115 | Italy | Infected plant tissue | SFR phytopathol. Lab -Campania | − | − | − | ||
Guignardia mangiferae (A.J.Roy) | F030 | Italy | Mycelium | University of Bologna | − | − | − | |
Dothiorella sarmentorum ((Fr.) A.J.L. Phillips, A. Alves & J. Luque) | F147 | Italy | Mycelium | University of Florence | − | − | − | |
Phyllosticta paracitricarpa (Guarnaccia & Crous) | F134 | Greece | Mycelium | CBS 141358 | − | − | − | |
Drechslera teres ((Sacc.) Shoemaker) | F022 | Italy | Mycelium | University of Bologna | − | − | − | |
Biscogniauxia mediterranea ((De Not.) Kuntze) | F100 | Italy | Mycelium | University of Florence | − | − | − | |
Phomopsis sp. (Sacc. & Roum.) | F046 | Italy | Mycelium | University of Bologna | − | − | − |
Sample No. | rtLAMP | SYBR Green qPCR | ||||
---|---|---|---|---|---|---|
Repeatability | Reproducibility | Repeatability | Reproducibility | |||
Assay 1 | Assay 2 | Assay 1 | Assay 2 | |||
F120 | 0.02 | 0.03 | 0.25 | 0.40 | 0.28 | 0.30 |
F121 | 0.01 | 0.25 | 0.35 | 0.06 | 0.35 | 0.23 |
F124 | 0.02 | 0.10 | 0.24 | 0.02 | 0.10 | 0.20 |
F125 | 0.18 | 0.13 | 0.18 | 0.29 | 0.18 | 0.20 |
F126 | 0.52 | 0.09 | 0.46 | 0.11 | 0.13 | 0.12 |
F127 | 0.52 | 0.45 | 0.36 | 0.01 | 0.11 | 0.09 |
F128 | 0.37 | 0.15 | 0.24 | 0.19 | 0.03 | 0.13 |
F129 | 0.06 | 0.06 | 0.29 | 0.28 | 0.01 | 0.19 |
Dilutions | rtLAMP | vLAMP | SYBR Green qPCR | qPCR Probe G. morbida [12] |
---|---|---|---|---|
Tamp (Mean ± SD) | Cq (Mean ± SD) | Cq (Mean ± SD) | ||
10 ng·µL−1 | 8.90 ± 0.15 | + | 23.60 ± 0.06 | 25.54 ± 0.48 |
2.0 ng·µL−1 | 9.58 ± 0.63 | + | 25.75 ± 0.30 | 27.52 ± 0.43 |
0.4 ng·µL−1 | 10.74 ± 0.25 | + | 28.06 ± 0.17 | 29.57 ± 0.47 |
0.08 ng·µL−1 | 11.41 ± 0.98 | + | 31.16 ± 0.35 | 31.12 ± 0.14 |
0.016 ng·µL−1 | 13.02 ± 1.03 | + | 33.08 ± 0.01 | 33.05 ± 0.53 |
3.2 pg·µL−1 | 16.49 ± 0.57 | + | 35.91 ± 0.49 | 34.75 ± 0.19 |
0.64 pg·µL−1 | − | − | − | − |
0.128 pg·µL−1 | − | − | − | − |
0.0256 pg·µL−1 | − | − | − | − |
5.12 fg·µL−1 | − | − | − | − |
Molecular Assay | Target Gene | Primer Name | Sequence 5′–3′ | Lenght (bp) | Amplicon Size (bp) |
---|---|---|---|---|---|
LAMP | kinesin gene | F3 | TCCACTGTCCGCAAGAGC | 18 | 166 |
B3 | CAGCGTCTGCGTTAGTTGC | 19 | |||
FIP(F1c+F2) | GGCGAGCTAGGCACACCGTTGAGCAATTCCTCTACCGCCTCT | 42 | |||
BIP(B1c+B2) | TGCGCCCTCTCAGCAAGGACAAGCTTCTCAATGGTGCGAATACG | 44 | |||
LoopF | GCGAAGAAGAGCCGTTCG | 18 | |||
LoopB | AATAACTGAGGACCAGGAAGCG | 22 | |||
SYBR Green qPCR | beta-tubulin gene | Gmorb_104_F | ACCTCTTCCTGTCCAGCCTAT | 21 | 269 |
Gmorb_373_R | TGTCGACAAGAGACGTGTCAG | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, D.; Aglietti, C.; Benigno, A.; Bracalini, M.; Da Lio, D.; Bartolini, L.; Cappellini, G.; Aronadio, A.; Francia, C.; Luchi, N.; et al. Loop-Mediated Isothermal Amplification (LAMP) and SYBR Green qPCR for Fast and Reliable Detection of Geosmithia morbida (Kolařik) in Infected Walnut. Plants 2022, 11, 1239. https://doi.org/10.3390/plants11091239
Rizzo D, Aglietti C, Benigno A, Bracalini M, Da Lio D, Bartolini L, Cappellini G, Aronadio A, Francia C, Luchi N, et al. Loop-Mediated Isothermal Amplification (LAMP) and SYBR Green qPCR for Fast and Reliable Detection of Geosmithia morbida (Kolařik) in Infected Walnut. Plants. 2022; 11(9):1239. https://doi.org/10.3390/plants11091239
Chicago/Turabian StyleRizzo, Domenico, Chiara Aglietti, Alessandra Benigno, Matteo Bracalini, Daniele Da Lio, Linda Bartolini, Giovanni Cappellini, Antonio Aronadio, Cristina Francia, Nicola Luchi, and et al. 2022. "Loop-Mediated Isothermal Amplification (LAMP) and SYBR Green qPCR for Fast and Reliable Detection of Geosmithia morbida (Kolařik) in Infected Walnut" Plants 11, no. 9: 1239. https://doi.org/10.3390/plants11091239
APA StyleRizzo, D., Aglietti, C., Benigno, A., Bracalini, M., Da Lio, D., Bartolini, L., Cappellini, G., Aronadio, A., Francia, C., Luchi, N., Santini, A., Cacciola, S. O., Panzavolta, T., & Moricca, S. (2022). Loop-Mediated Isothermal Amplification (LAMP) and SYBR Green qPCR for Fast and Reliable Detection of Geosmithia morbida (Kolařik) in Infected Walnut. Plants, 11(9), 1239. https://doi.org/10.3390/plants11091239