Exploration of Soil Functional Microbiomes—A Concept Proposal for Long-Term Fertilized Grasslands
Abstract
:1. Introduction
2. Results
2.1. The Conventional Approach
2.2. Building the DEMSA Model
3. Discussion
3.1. Previous Approaches and the Importance of CLPP Analysis in Grasslands
3.2. What They Have: Specificity That Brings Performance in the Vegetation Analysis
3.3. The Most Frustrating Questions: What Don’t Microbiologists Have?
3.4. In Search of Higher Sensitivity in Data Analysis of Microbial Functional Communities
3.5. The DEMSA Concept—Linkage to Past, Present, and Future Studies
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duru, M.; Pontes, L.D.A.S.; Schellberg, J. Grassland Functional Diversity and Management for Enhancing Ecosystem Services and Reducing Environmental Impacts; Agroecosystem Diversity; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Rumpel, C.; Crème, A.; Ngo, P.T.; Velásquez, G.; Mora, M.L.; Chabbi, A. The Impact of Grassland Management on Biogeochemical Cycles Involving Carbon, Nitrogen and Phosphorus. J. Soil Sci. Plant Nutr. 2015, 15, 353–371. [Google Scholar] [CrossRef] [Green Version]
- Aubree, F.; David, P.; Jarne, P.; Loreau, M.; Mouquet, N.; Calcagno, V. How Community Adaptation Affects Biodiversity–Ecosystem Functioning Relationships. Ecol. Lett. 2020, 23, 1263–1275. [Google Scholar] [CrossRef] [PubMed]
- Naeem, S.; Duffy, J.E.; Zavaleta, E. The Functions of Biological Diversity in an Age of Extinction. Science 2012, 336, 1401–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, A.; Scherer-Lorenzen, M.; Weigelt, A. Grassland Resistance and Resilience after Drought Depends on Management Intensity and Species Richness. PLoS ONE 2012, 7, 36992. [Google Scholar] [CrossRef] [PubMed]
- Michalska-Smith, M.; Song, Z.; Spawn-Lee, S.A.; Hansen, Z.A.; Johnson, M.; May, G.; Borer, E.T.; Seabloom, E.W.; Kinkel, L.L. Network Structure of Resource Use and Niche Overlap within the Endophytic Microbiome. ISME J. 2021, 16, 435–446. [Google Scholar] [CrossRef]
- Sasse, J.; Martinoia, E.; Northen, T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci. 2018, 23, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Schultz, P.; Tipton, A. Soil Microbiome Mediates Positive Plant Diversity-Productivity Relationships in Late Successional Grassland Species. Ecol. Lett. 2019, 22, 1221–1232. [Google Scholar] [CrossRef]
- Wu, S.-H.; Huang, B.-H.; Huang, C.-L.; Li, G.; Liao, P.-C. The Aboveground Vegetation Type and Underground Soil Property Mediate the Divergence of Soil Microbiomes and the Biological Interactions. Microb. Ecol. 2018, 75, 434–446. [Google Scholar] [CrossRef]
- Van der Maarel, E.; Franklin, J. Vegetation Ecology, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2012. [Google Scholar]
- Janišová, M.; Michalcová, D.; Bacaro, G.; Ghisla, A. Landscape Effects on Diversity of Semi-Natural Grasslands. Agric. Ecosyst. Environ. 2014, 182, 47–58. [Google Scholar] [CrossRef]
- Meier, E.S.; Hofer, G. Effects of Plot Size and Their Spatial Arrangement on Estimates of Alpha, Beta and Gamma Diversity of Plants in Alpine Grassland. Alp Bot. 2016, 126, 167–176. [Google Scholar] [CrossRef]
- Gibson, D.J. Grasses and Grassland Ecology; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Ramette, A. Multivariate Analyses in Microbial Ecology. FEMS Microbiol. Ecol. 2007, 62, 142–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodie, E.; Edwards, S.; Clipson, N. Soil Fungal Community Structure in a Temperate Upland Grassland Soil. FEMS Microbiol. Ecol. 2003, 45, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Diamond, S.; Andeer, P.F.; Li, Z.; Crits-Christoph, A.; Burstein, D.; Anantharaman, K.; Lane, K.R.; Thomas, B.C.; Pan, C.; Northen, T.R.; et al. Mediterranean Grassland Soil C–N Compound Turnover Is Dependent on Rainfall and Depth, and Is Mediated by Genomically Divergent Microorganisms. Nat. Microbiol. 2019, 4, 1356–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felske, A.; Wolterink, A.; Van Lis, R.; De Vos, W.M.; Akkermans, A.D.L. Response of a Soil Bacterial Community to Grassland Succession as Monitored by 16S RRNA Levels of the Predominant Ribotypes. Appl. Environ. Microbiol. 2000, 66, 3998–4003. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.I.; Whiteley, A.S.; O’Donnell, A.G.; Bailey, M.J. Influence of Depth and Sampling Time on Bacterial Community Structure in an Upland Grassland Soil. FEMS Microbiol. Ecol. 2003, 43, 35–43. [Google Scholar] [CrossRef]
- Navrátilová, D.; Tláskalová, P.; Kohout, P.; Dřevojan, P.; Fajmon, K.; Chytrý, M.; Baldrian, P. Diversity of Fungi and Bacteria in Species-Rich Grasslands Increases with Plant Diversity in Shoots but Not in Roots and Soil. FEMS Microbiol. Ecol. 2019, 95, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bodor, A.; Bounedjoum, N.; Vincze, G.E. Challenges of unculturable bacteria: Environmental perspectives. Rev. Environ. Sci. Biotechnol. 2020, 19, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Baquerizo, M. Obscure Soil Microbes and Where to Find Them. ISME J. 2019, 13, 2120–2124. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Yang, F.; Stepanauskas, R. Strategies to improve reference databases for soil microbiomes. ISME J. 2017, 11, 829–834. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Tang, Y. A Global Meta-Analyses of the Response of Multi-Taxa Diversity to Grazing Intensity in Grasslands. Environ. Res. Lett. 2019, 14, 114003. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Ding, J.; Li, T.; Zhang, X. Plant Communities Are More Sensitive than Soil Microbial Communities to Multiple Environmental Changes in the Eurasian Steppe. Glob. Ecol. Conserv. 2020, 21, e00779. [Google Scholar] [CrossRef]
- Grayston, S.J.; Griffith, G.S.; Mawdsley, J.L. Accounting for Variability in Soil Microbial Communities of Temperate Upland Grassland Ecosystems. Soil Biol. Biochem. 2001, 33, 533–551. [Google Scholar] [CrossRef]
- Ritz, K.; McNicol, J.W.; Nunan, N. Spatial Structure in Soil Chemical and Microbiological Properties in an Upland Grassland. FEMS Microbiol. Ecol. 2004, 49, 191–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidican, R.; Stoian, V.; Șandor, M.; Ozunu, A.; Nistor, I.A.; Petrescu, D.C. Fertilization and Pesticides as Elements of Pressure on Microbial Communities; Les Presses Agronomiques de Gembloux: Liège, Belgium; Bioflux: Cluj-Napoca, Romania, 2017. [Google Scholar]
- Dengler, J.; Janišová, M.; Török, P.; Wellstein, C. Biodiversity of Palaearctic Grasslands: A Synthesis. Agric. Ecosyst. Environ. 2014, 182, 1–14. [Google Scholar] [CrossRef] [Green Version]
- De Deyn, G.B.; Raaijmakers, C.E.; Zoomer, H.R.; Berg, M.P.; de Ruiter, P.C.; Verhoef, H.A.; Bezemer, T.M.; Putten, W.H. van der Soil Invertebrate Fauna Enhances Grassland Succession and Diversity. Nature 2003, 422, 711–713. [Google Scholar] [CrossRef]
- Saccá, M.L.; Barra Caracciolo, A.; Di Lenola, M.; Grenni, P. Ecosystem Services Provided by Soil Microorganisms. In Soil Biological Communities and Ecosystem Resilience; Lukac, M., Grenni, P., Gamboni, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 9–24. [Google Scholar]
- Rafiq, M.K.; Bai, Y.; Aziz, R.; Rafiq, M.T.; Mašek, O.; Bachmann, R.T.; Joseph, S.; Shahbaz, M.; Qayyum, A.; Shang, Z.; et al. Biochar Amendment Improves Alpine Meadows Growth and Soil Health in Tibetan Plateau over a Three Year Period. Sci. Total Environ. 2020, 717, 135296. [Google Scholar] [CrossRef]
- Canarini, A.; Carrillo, Y.; Mariotte, P.; Ingram, L.; Dijkstra, F.A. Soil Microbial Community Resistance to Drought and Links to C Stabilization in an Australian Grassland. Soil Biol. Biochem. 2016, 103, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Mureva, A.; Ward, D. Soil Microbial Biomass and Functional Diversity in Shrub-Encroached Grasslands along a Precipitation Gradient. Pedobiologia 2017, 63, 37–45. [Google Scholar] [CrossRef]
- Li, C.; Fultz, L.M.; Moore-Kucera, J.; Acosta-Martínez, V.; Kakarla, M.; Weindorf, D.C. Soil Microbial Community Restoration in Conservation Reserve Program Semi-Arid Grasslands. Soil Biol. Biochem. 2018, 118, 166–177. [Google Scholar] [CrossRef]
- van Eekeren, N.; de Boer, H.; Hanegraaf, M.; Bokhorst, J.; Nierop, D.; Bloem, J.; Schouten, T.; de Goede, R.; Brussaard, L. Ecosystem Services in Grassland Associated with Biotic and Abiotic Soil Parameters. Soil Biol. Biochem. 2010, 42, 1491–1504. [Google Scholar] [CrossRef]
- Pullaiah, T.; Bahadur, B.; Krishnamurthy, K.V. Plant Biodiversity. In Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement; Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K.V., Eds.; Springer India: New Delhi, India, 2015; pp. 177–195. ISBN 978-81-322-2286-6. [Google Scholar]
- Chang, J.; Ciais, P.; Herrero, M.; Havlik, P.; Campioli, M.; Zhang, X.; Bai, Y.; Viovy, N.; Joiner, J.; Wang, X.; et al. Combining Livestock Production Information in a Process-Based Vegetation Model to Reconstruct the History of Grassland Management. Biogeosciences 2016, 13, 3757–3776. [Google Scholar] [CrossRef] [Green Version]
- Vitousek, P.M. Grassland Ecology: Complexity of Nutrient Constraints. Nat. Plants 2015, 1, 15098. [Google Scholar] [CrossRef]
- Nkuekam, G.K.; Cowan, D.A.; Valverde, A. Arable Agriculture Changes Soil Microbial Communities in the South African Grassland Biome. S. Afr. J. Sci. 2018, 114, 1–7. [Google Scholar] [CrossRef]
- Denef, K.; Roobroeck, D.; Manimel Wadu, M.C.W.; Lootens, P.; Boeckx, P. Microbial Community Composition and Rhizodeposit-Carbon Assimilation in Differently Managed Temperate Grassland Soils. Soil Biol. Biochem. 2009, 41, 144–153. [Google Scholar] [CrossRef]
- Millard, P.; Singh, B.K. Does Grassland Vegetation Drive Soil Microbial Diversity? Nutr. Cycl. Agroecosyst. 2010, 88, 147–158. [Google Scholar] [CrossRef]
- Arcand, M.M.; Helgason, B.L.; Lemke, R.L. Microbial Crop Residue Decomposition Dynamics in Organic and Conventionally Managed Soils. Appl. Soil Ecol. 2016, 107, 347–359. [Google Scholar] [CrossRef]
- Xu, W.; Ge, Z.; Poudel, D.R. Application and Optimization of Biolog EcoPlates in Functional Diversity Studies of Soil Microbial Communities. MATEC Web Conf. 2015, 22, 04015. [Google Scholar] [CrossRef] [Green Version]
- Zhen, T.; Fan, W.; Wang, H.; Cao, X.; Xu, X. Monitoring Soil Microorganisms with Community-Level Physiological Profiles Using Biolog EcoPlatesTM in Chaohu Lakeside Wetland, East China. Eurasian Soil Sci. 2020, 53, 1142–1153. [Google Scholar] [CrossRef]
- Wolinska, A.; Frąc, M.; Oszust, K.; Szafranek-Nakonieczna, A.; Zielenkiewicz, U.; Stępniewska, Z. Microbial Biodiversity of Meadows under Different Modes of Land Use: Catabolic and Genetic Fingerprinting. World J. Microbiol. Biotechnol. 2017, 33, 154. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.biolog.com/support/bibliography/ (accessed on 11 April 2022).
- Chabrerie, O.; Laval, K.; Puget, P.; Desaire, S.; Alard, D. Relationship between Plant and Soil Microbial Communities along a Successional Gradient in a Chalk Grassland in North-Western France. Appl. Soil Ecol. 2003, 24, 43–56. [Google Scholar] [CrossRef]
- Dengler, J. Phytosociology. In The International Encyclopedia of Geography; Richardson, D., Castree, N., Goodchild, M.F., Kobayashi, A., Liu, W., Marston, R.A., Eds.; John Wiley & Sons: Chichester, UK, 2017. [Google Scholar] [CrossRef]
- Tilman, D.; Downing, J.A. Biodiversity and Stability in Grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- Vaida, I.; Păcurar, F.; Rotar, I.; Tomoș, L.; Stoian, V. Changes in Diversity Due to Long-Term Management in a High Natural Value Grassland. Plants 2021, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Chytrý, M.; Hejcman, M.; Hennekens, S.M.; Schellberg, J. Changes in Vegetation Types and Ellenberg Indicator Values after 65 Years of Fertilizer Application in the Rengen Grassland Experiment, Germany. Appl. Veg. Sci. 2009, 12, 167–176. [Google Scholar] [CrossRef]
- Floch, C.; Chevremont, A.-C.; Joanico, K. Indicators of Pesticide Contamination: Soil Enzyme Compared to Functional Diversity of Bacterial Communities via Biolog® Ecoplates. Eur. J. Soil Biol. 2011, 47, 256–263. [Google Scholar] [CrossRef]
- Rutgers, M.; Wouterse, M.; Drost, S.M. Monitoring Soil Bacteria with Community-Level Physiological Profiles Using BiologTM ECO-Plates in the Netherlands and Europe. Appl. Soil Ecol. 2016, 97, 23–35. [Google Scholar] [CrossRef]
- Schloter, M.; Nannipieri, P.; Sørensen, S.J.; van Elsas, J.D. Microbial Indicators for Soil Quality. Biol. Fertil. Soils 2018, 54, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Stone, D.; Ritz, K.; Griffiths, B.G. Selection of Biological Indicators Appropriate for European Soil Monitoring. Appl. Soil Ecol. 2016, 97, 12–22. [Google Scholar] [CrossRef]
- Buttigieg, P.L.; Ramette, A. A guide to statistical analysis in microbial ecology: A community-focused, living review of multivariate data analyses. FEMS Microbiol. Ecol. 2014, 90, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Corcoz, L.; Păcurar, F.; Vaida, I.; Pleșa, A.; Moldovan, C.; Stoian, V.; Vidican, R. Deciphering the Colonization Strategies in Roots of Long-Term Fertilized Festuca rubra. Agronomy 2022, 12, 650. [Google Scholar] [CrossRef]
- Weber, K.P.; Legge, R.L. One-dimensional metric for tracking bacterial community divergence using sole carbon source utilization patterns. J. Microbiol. Methods 2009, 79, 55–61. [Google Scholar] [CrossRef]
- Garland, J.L. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. Ecol. 1997, 24, 289–300. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio Inc.: Boston, MA, USA, 2019. [Google Scholar]
- RCore Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legrende, P.; McGlinn, D.; Wagner, H. Vegan: Community Ecology Package, R Package Version 2.5-2; 2019. Available online: https://CRAN.R-project.org/package=vegan (accessed on 10 November 2021).
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. 2019. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 10 November 2021).
Sum | AWCD | H | D | |
---|---|---|---|---|
V1 | 50.7 ± 3.54 bc | 1.35 ± 0.09 bc | 3.31 ± 0.03 a | 0.96 ± 0.00 a |
V2 | 59.9 ± 0.71 a | 1.65 ± 0.03 a | 3.37 ± 0.00 a | 0.96 ± 0.00 a |
V3 | 54.2 ± 0.91 b | 1.45 ± 0.04 b | 3.31 ± 0.03 a | 0.96 ± 0.00 a |
V4 | 45.4 ± 1.03 c | 1.25 ± 0.03 c | 3.23 ± 0.02 b | 0.95 ± 0.00 b |
V5 | 48.9 ± 0.93 bc | 1.35 ± 0.03 bc | 3.34 ± 0.01 a | 0.96 ± 0.00 a |
F test | 9.55 | 7.27 | 4.40 | 4.90 |
p value | p < 0.001 | 0.002 | 0.015 | 0.010 |
Matrix of | Intensification | Narrowing | Expansion | Contraction |
---|---|---|---|---|
AA | ||||
V2 | 0.98 ± 0.05 ab | 0.15 ± 0.09 c | 0.77 ± 0.23 a | 0.01 ± 0.01 a |
V3 | 1.23 ± 0.15 a | 0.24 ± 0.09 bc | 0.91 ± 0.24 a | 0.55 ± 0.31 a |
V4 | 1.01 ± 0.06 ab | 0.49 ± 0.06 ab | 0.79 ± 0.26 a | 0.66 ± 0.24 a |
V5 | 0.65 ± 0.15 b | 0.71 ± 0.12 a | 0.38 ± 0.30 a | 0.57 ± 0.12 a |
F test | 4.07 | 6.37 | 0.77 | 1.96 |
p value | 0.033 | 0.008 | 0.534 | 0.174 |
AM | ||||
V2 | 0.18 ± 0.07 a | 0.22 ± 0.11 a | 0.10 ± 0.07 a | 0.00 ± 0.00 b |
V3 | 0.08 ± 0.03 a | 0.25 ± 0.06 a | 0.11 ± 0.11 a | 0.17 ± 0.12 b |
V4 | 0.12 ± 0.08 a | 0.37 ± 0.07 a | 0.07 ± 0.05 a | 0.92 ± 0.21 a |
V5 | 0.09 ± 0.05 a | 0.24 ± 0.09 a | 0.10 ± 0.07 a | 0.26 ± 0.19 b |
F test | 0.51 | 0.55 | 0.05 | 6.47 |
p value | 0.681 | 0.657 | 0.982 | 0.007 |
CH | ||||
V2 | 1.23 ± 0.06 a | 0.63 ± 0.09 c | 2.83 ± 0.32 a | 0.48 ± 0.20 b |
V3 | 0.94 ± 0.16 ab | 1.02 ± 0.14 b | 1.90 ± 0.21 b | 1.64 ± 0.59 ab |
V4 | 0.60 ± 0.10 b | 1.36 ± 0.09 a | 0.46 ± 0.15 c | 2.98 ± 0.50 a |
V5 | 0.91 ± 0.15 ab | 0.81 ± 0.06 bc | 1.38 ± 0.24 b | 0.84 ± 0.54 b |
F test | 3.86 | 8.98 | 16.54 | 5.22 |
p value | 0.038 | 0.002 | p < 0.001 | 0.015 |
CX | ||||
V2 | 1.11 ± 0.09 ab | 0.73 ± 0.17 b | 1.65 ± 0.16 a | 0.27 ± 0.22 b |
V3 | 1.23 ± 0.18 a | 0.87 ± 0.17 ab | 1.65 ± 0.38 a | 0.40 ± 0.13 b |
V4 | 0.82 ± 0.14 ab | 1.17 ± 0.17 ab | 1.61 ± 0.40 a | 2.02 ± 0.75 a |
V5 | 0.65 ± 0.18 b | 1.27 ± 0.15 a | 0.63 ± 0.20 b | 1.65 ± 0.44 ab |
F test | 2.75 | 2.26 | 2.63 | 3.71 |
p value | 0.089 | 0.134 | 0.098 | 0.043 |
P | ||||
V2 | 0.81 ± 0.09 a | 0.08 ± 0.07 b | 2.11 ± 0.30 a | 0.02 ± 0.02 a |
V3 | 0.44 ± 0.12 b | 0.41 ± 0.06 a | 1.05 ± 0.41 b | 0.46 ± 0.30 a |
V4 | 0.23 ± 0.08 bc | 0.54 ± 0.16 a | 0.17 ± 0.12 b | 0.67 ± 0.31 a |
V5 | 0.14 ± 0.07 c | 0.57 ± 0.05 a | 0.62 ± 0.22 b | 0.41 ± 0.17 a |
F test | 9.61 | 5.00 | 8.28 | 1.29 |
p value | 0.002 | 0.018 | 0.003 | 0.322 |
Index of | Intensification | Narrowing | Expansion | Contraction |
V2 | 7.23 ± 0.19 a | 3.07 ± 0.16 c | 12.4 ± 0.73 a | 1.36 ± 0.44 c |
V3 | 7.26 ± 0.72 a | 5.20 ± 0.56 b | 10.4 ± 0.83 a | 6.06 ± 1.95 b |
V4 | 6.17 ± 0.41 ab | 8.74 ± 0.75 a | 6.79 ± 1.24 b | 16.0 ± 1.41 a |
V5 | 5.03 ± 0.43 b | 7.42 ± 0.47 a | 6.39 ± 0.33 b | 7.78 ± 1.79 b |
F test | 4.76 | 21.83 | 11.83 | 16.25 |
p value | 0.021 | 0.000 | 0.001 | 0.000 |
Guild Association | ||||
V2 | CH–CX | CX–CH | CH–P | CH–CX |
V3 | CX–AA | CH–CX | CH–CX | CH–AA |
V4 | AA–CX | CH–CX | CX–AA | CH–CX |
V5 | CH–CX | CX–CH | CH–CX | CX–CH |
Group Association Dominance–Codominance | Intensification | Narrowing | Expansion | Contraction |
V2 | CX6–CH2 | CH7–CX3 | P3–CX4 | CH9–CH1 |
V3 | AA2–CX6 | CX7–AM1 | P3–CH3 | CX1–CH6 |
V4 | AA3–AA2 | CX7–AM1 | CX6–CX4 | CH9–AM1 |
V5 | AA4–AA3 | AA1–CX1 | P3–CH3 | CX7–AA1 |
Community comparison | Functional alteration | Within-community functional resemblance | Between-community functional resemblance | |
V2 | 18.07 ± 1.41 a | 80.64 ± 1.78 b | 74.83 ± 0.92 c | |
V3 | 6.92 ± 1.81 b | 89.65 ± 0.40 a | 79.75 ± 1.06 b | |
V4 | −10.44 ± 2.04 d | 81.36 ± 1.14 b | 86.32 ± 0.80 a | |
V5 | −3.53 ± 1.85 c | 77.38 ± 1.85 b | 85.04 ± 1.21 a | |
F test | 48.40 | 13.59 | 27.35 | |
p value | p < 0.001 | p < 0.001 | p < 0.001 |
Substrate | Code | Substrate | Code |
---|---|---|---|
Water | W | d-Galactonic acid γ-lactone | CX2 |
Pyruvic acid methyl ester | CH1 | d-Galacturonic acid | CX3 |
Tween 40 | P1 | 2-Hydroxy benzoic acid | CX4 |
Tween 80 | P2 | 4-Hydroxy benzoic acid | CX5 |
α-Cyclodextrin | P3 | γ-Hydroxy butyric acid | CX6 |
Glycogen | P4 | Itaconic acid | CX7 |
d-Cellobiose | CH2 | α-Keto butyric acid | CX8 |
α-d-Lactose | CH3 | d-Malic acid | CX9 |
β-Methyl-d-glucoside | CH4 | l-Arginine | AA1 |
d-Xylose | CH5 | l-Asparagine | AA2 |
i-Erythritol | CH6 | l-Phenylalanine | AA3 |
d-Mannitol | CH7 | l-Serine | AA4 |
N-Acetyl-d-glucosamine | CH8 | l-Threonine | AA5 |
d-Glucosaminic acid | CX1 | Glycyl-l-glutamic acid | AA6 |
Glucose-1-phosphate | CH9 | Phenylethylamine | AM1 |
d,l-α-Glycerol phosphate | CH10 | Putrescine | AM2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoian, V.; Vidican, R.; Florin, P.; Corcoz, L.; Pop-Moldovan, V.; Vaida, I.; Vâtcă, S.-D.; Stoian, V.A.; Pleșa, A. Exploration of Soil Functional Microbiomes—A Concept Proposal for Long-Term Fertilized Grasslands. Plants 2022, 11, 1253. https://doi.org/10.3390/plants11091253
Stoian V, Vidican R, Florin P, Corcoz L, Pop-Moldovan V, Vaida I, Vâtcă S-D, Stoian VA, Pleșa A. Exploration of Soil Functional Microbiomes—A Concept Proposal for Long-Term Fertilized Grasslands. Plants. 2022; 11(9):1253. https://doi.org/10.3390/plants11091253
Chicago/Turabian StyleStoian, Vlad, Roxana Vidican, Păcurar Florin, Larisa Corcoz, Victoria Pop-Moldovan, Ioana Vaida, Sorin-Daniel Vâtcă, Valentina Ancuța Stoian, and Anca Pleșa. 2022. "Exploration of Soil Functional Microbiomes—A Concept Proposal for Long-Term Fertilized Grasslands" Plants 11, no. 9: 1253. https://doi.org/10.3390/plants11091253
APA StyleStoian, V., Vidican, R., Florin, P., Corcoz, L., Pop-Moldovan, V., Vaida, I., Vâtcă, S.-D., Stoian, V. A., & Pleșa, A. (2022). Exploration of Soil Functional Microbiomes—A Concept Proposal for Long-Term Fertilized Grasslands. Plants, 11(9), 1253. https://doi.org/10.3390/plants11091253