Phytochemical Investigation of Marker Compounds from Indigenous Korean Salix Species and Their Antimicrobial Effects
Abstract
:1. Introduction
2. Results and Discussion
2.1. Collection of Salix Species
2.2. Isolation and Identification of Marker Compounds
2.3. Evaluation of the Antimicrobial Activities of the Marker Compounds
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Plant Materials
3.3. Extraction and Isolation of Marker Compounds
3.3.1. S. triandra
3.3.2. S. chaenomeloides
3.3.3. S. gracilistyla
3.3.4. S. koriyanagi
3.3.5. S. koreensis
3.3.6. S. pseudolasiogyne
3.3.7. S. caprea
3.3.8. S. rorida
3.4. Antifungal Activity
3.5. Antibacterial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mahdi, J.G.; Mahdi, A.J.; Mahdi, A.J.; Bowen, I.D. The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell Prolif. 2006, 39, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Jerz, G.; Shen, L.; Xiu, L.; Winterhalter, P. Isolation and structure determination of a lignan from the bark of Salix alba. Nat. Prod. Res. 2007, 21, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Freischmidt, A.; Jurgenliemk, G.; Kraus, B.; Okpanyi, S.N.; Muller, J.; Kelber, O.; Weiser, D.; Heilmann, J. Contribution of flavonoids and catechol to the reduction of ICAM-1 expression in endothelial cells by a standardised Willow bark extract. Phytomedicine Int. J. Phytother. Phytopharm. 2012, 19, 245–252. [Google Scholar] [CrossRef]
- Sultana, S.; Saleem, M. Salix caprea inhibits skin carcinogenesis in murine skin: Inhibition of oxidative stress, ornithine decarboxylase activity and DNA synthesis. J. Ethnopharmacol. 2004, 91, 267–276. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Zhang, X.F.; Wang, L.J.; Zheng, Y.N.; Yuan, C.C.; Sun, G.Z. Isolation and characterization of phenolic compounds from the leaves of Salix matsudana. Molecules 2008, 13, 1530–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.S.; Kaur, G.; Jabbar, Z.; Javed, K.; Athar, M. Evaluation of antioxidant activity of Salix caprea flowers. Phytother. Res. PTR 2006, 20, 479–483. [Google Scholar] [CrossRef]
- Han, L.K.; Sumiyoshi, M.; Zhang, J.; Liu, M.X.; Zhang, X.F.; Zheng, Y.N.; Okuda, H.; Kimura, Y. Anti-obesity action of Salix matsudana leaves (Part 1). Anti-obesity action by polyphenols of Salix matsudana in high fat-diet treated rodent animals. Phytother. Res. PTR 2003, 17, 1188–1194. [Google Scholar] [CrossRef]
- Yang, H.; Lee, S.H.; Sung, S.H.; Kim, J.; Kim, Y.C. Neuroprotective compounds from Salix pseudo-lasiogyne twigs and their anti-amnesic effects on scopolamine-induced memory deficit in mice. Planta Med. 2013, 79, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gligorić, E.; Igić, R.; Suvajdžić, L.; Grujić-Letić, N. Species of the genus Salix L.: Biochemical screening and molecular docking approach to potential acetylcholinesterase inhibitors. Appl. Sci. 2019, 9, 1842. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Subedi, L.; Park, K.J.; Kim, S.Y.; Choi, S.U.; Kim, K.H.; Lee, K.R. Salicin derivatives from Salix glandulosa and their biological activities. Fitoterapia 2015, 106, 147–152. [Google Scholar] [CrossRef]
- Kim, C.S.; Kwon, O.W.; Kim, S.Y.; Choi, S.U.; Kim, J.Y.; Han, J.Y.; Lee, K.R. Phenolic glycosides from the twigs of Salix glandulosa. J. Nat. Prod. 2014, 77, 1955–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, Y.U.; Park, Y.J. Effect of Ganoderma lucidum Solid-state Fermented Salix gracilistyla Extract on Type I Procollagen Biosynthesis in HDFn Cells. Korean J. Mycol. 2019, 47, 153–163. [Google Scholar] [CrossRef]
- Ryu, J.H.; Ahn, H.; Kim, J.Y.; Kim, Y.K. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages. Phytother. Res. 2003, 17, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.-U.; Park, Y.-J. Studies on antioxidant and whitening activities of Salix gracilistyla extracts. J. Soc. Cosmet. Sci. Korea 2018, 44, 317–325. [Google Scholar] [CrossRef]
- Jung, B.N.; Park, J.H.; Shin, H.D. First report of Rhytisma filamentosum causing tar-spot disease on Salix koriyanagi. For. Pathol. 2020, 50, e12577. [Google Scholar] [CrossRef]
- Yoon, A.; Oh, H.E.; Kim, S.Y.; Park, Y.G. Plant growth regulators and rooting substrates affect growth and development of Salix koriyanagi cuttings. Rhizosphere 2021, 20, 100437. [Google Scholar] [CrossRef]
- Ahn, Y.; Yang, Y.; Chun, S. A study on the distribution patterns of Salicaceae species at the An-sung stream-refered to Woldongcheon, Yokjungcheon, Joyoungcheon and Gisolcheon. Kor. J. Env. Eco 2001, 15, 213–223. [Google Scholar]
- Park, Y. A study about control of gingivitis and plaque of dentifrice containing tranexamic acid and willow tree bark. J Korean Acad. Dent. Health 2006, 30, 271–279. [Google Scholar] [CrossRef]
- Hostanska, K.; Jürgenliemk, G.; Abel, G.; Nahrstedt, A.; Saller, R. Willow bark extract (BNO1455) and its fractions suppress growth and induce apoptosis in human colon and lung cancer cells. Cancer Detect. Prev. 2007, 31, 129–139. [Google Scholar] [CrossRef]
- Kim, E.-J.; Kim, M.H. Anti-oxidant and anti-inflammatory effects of Salix koreensis Andersson in DC. leaf methanol extract in vitro models. CELLMED 2016, 6, 28.21–28.26. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H. Antioxidant activity and anti-inflammatory effects of Salix Koreensis Andersson branches extracts. J. Korean Soc. Food Cult. 2018, 33, 104–111. [Google Scholar] [CrossRef]
- Kim, S.; Min, J.; Kang, H. Hepatoprotective effects of willow (Salix koreensis ANDERSS.) branch extracts against cytotoxicity induced by tert-butyl hydroperoxide in human hepatoma cells. J. Korean Soc. Food Sci. Nutr. 2020, 49, 1328–1334. [Google Scholar] [CrossRef]
- Ko, K.S.; Jeon, E.S. Fern-Allies and Seed-Bearing Plants of Korea; Iljinsa: Seoul, Republic of Korea, 2003; pp. 17–18. [Google Scholar]
- Lee, M.; Lee, S.H.; Kang, J.; Yang, H.; Jeong, E.J.; Kim, H.P.; Sung, S.H. Salicortin-derivatives from Salix pseudo-lasiogyne twigs inhibit adipogenesis in 3T3-L1 cells via modulation of C/EBPα and SREBP1c dependent pathway. Molecules 2013, 18, 10484–10496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noleto-Dias, C.; Ward, J.L.; Bellisai, A.; Lomax, C.; Beale, M.H. Salicin-7-sulfate: A new salicinoid from willow and implications for herbal medicine. Fitoterapia 2018, 127, 166–172. [Google Scholar] [CrossRef]
- Lee, S.R.; Kang, H.; Yoo, M.J.; Yu, J.S.; Lee, S.; Yi, S.A.; Beemelmanns, C.; Lee, J.; Kim, K.H. Anti-adipogenic pregnane steroid from a Hydractinia-associated fungus, Cladosporium sphaerospermum SW67. Nat. Prod. Sci. 2020, 26, 230–235. [Google Scholar] [CrossRef]
- Yu, J.S.; Park, M.; Pang, C.; Rashan, L.; Jung, W.H.; Kim, K.H. Antifungal phenols from Woodfordia uniflora collected in Oman. J. Nat. Prod. 2020, 83, 2261–2268. [Google Scholar] [CrossRef]
- Lee, S.; Kim, C.S.; Yu, J.S.; Kang, H.; Yoo, M.J.; Youn, U.J.; Ryoo, R.; Bae, H.Y.; Kim, K.H. Ergopyrone, a Styrylpyrone-Fused Steroid with a Hexacyclic 6/5/6/6/6/5 Skeleton from a Mushroom Gymnopilus orientispectabilis. Org. Lett. 2021, 23, 3315–3319. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, J.K.; Yu, J.S.; Jeong, S.Y.; Choi, J.H.; Kim, J.C.; Ko, Y.J.; Kim, S.H.; Kim, K.H. Ginkwanghols A and B, osteogenic coumaric acid-aliphatic alcohol hybrids from the leaves of Ginkgo biloba. Arch. Pharmacal Res. 2021, 44, 514–524. [Google Scholar] [CrossRef]
- Yu, J.S.; Li, C.; Kwon, M.; Oh, T.; Lee, T.H.; Kim, D.H.; Ahn, J.S.; Ko, S.-K.; Kim, C.S.; Cao, S. Herqueilenone A, a unique rearranged benzoquinone-chromanone from the hawaiian volcanic soil-associated fungal strain Penicillium herquei FT729. Bioorg. Chem. 2020, 105, 104397. [Google Scholar] [CrossRef]
- Ha, J.W.; Kim, J.; Kim, H.; Jang, W.; Kim, K.H. Mushrooms: An important source of natural bioactive compounds. Nat. Prod. Sci. 2020, 26, 118–131. [Google Scholar] [CrossRef]
- Lee, S.; Ryoo, R.; Choi, J.H.; Kim, J.-H.; Kim, S.-H.; Kim, K.H. Trichothecene and tremulane sesquiterpenes from a hallucinogenic mushroom Gymnopilus junonius and their cytotoxicity. Arch. Pharm. Res. 2020, 43, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Akita, H.; Kawahara, E.; Kishida, M.; Kato, K. Synthesis of naturally occurring β-D-glucopyranoside based on enzymatic β-glycosidation. J. Mol. Catal. B Enzym. 2006, 40, 8–15. [Google Scholar] [CrossRef]
- Tawfeek, N.; Sobeh, M.; Hamdan, D.I.; Farrag, N.; Roxo, M.; El-Shazly, A.M.; Wink, M. Phenolic compounds from Populus alba L. and Salix subserrata Willd. (Salicaceae) counteract oxidative stress in Caenorhabditis elegans. Molecules 2019, 24, 1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whang, W.K.; Chang, Y.S.; Kim, I.H. Phenolic compounds from the bark of Salix Gilgiana. Yakhak Hoeji 1995, 39, 193–199. [Google Scholar]
- Jeon, S.H.; Chun, W.; Choi, Y.J.; Kwon, Y.S. Cytotoxic constituents from the bark of Salix hulteni. Arch. Pharmacal Res. 2008, 31, 978–982. [Google Scholar] [CrossRef]
- Si, C.L.; Kim, J.K.; Bae, Y.S.; Li, S.M. Phenolic compounds in the leaves of Populus ussuriensis and their antioxidant activities. Planta Med. 2009, 75, 1165–1167. [Google Scholar] [CrossRef]
- Reichardt, P.B.; Merken, H.M.; Clausen, T.P.; Wu, J. Phenolic glycosides from Salix lasiandra. Journal of Natural Products. J. Nat. Prod. 1992, 55, 970–973. [Google Scholar] [CrossRef]
- Du, Q.; Cai, W.; Xia, M.; Ito, Y. Purification of (+)-dihydromyricetin from leaves extract of Ampelopsis grossedentata using high-speed countercurrent chromatograph with scale-up triple columns. J. Chromatogr. A 2002, 973, 217–220. [Google Scholar] [CrossRef]
- Lindroth, R.L.; Hsia, M.S.; Scriber, J.M. Characterization of phenolic glycosides from quaking aspen. Biochem. Syst. Ecol. 1987, 15, 677–680. [Google Scholar] [CrossRef]
- Choi, G.J.; Jang, K.S.; Choi, Y.H.; Yu, J.H.; Kim, J.C. Antifungal activity of lower alkyl fatty acid esters against powdery mildews. Plant Pathol. J. 2010, 26, 360–366. [Google Scholar] [CrossRef]
- Hong, J.H.; Lee, J.; Min, M.; Ryu, S.M.; Lee, D.; Kim, G.H.; Kim, J.J. 6-Pentyl-α-pyrone as an anti-sapstain compound produced by Trichoderma gamsii KUC1747 inhibits the germination of ophiostomatoid fungi. Holzforschung 2014, 68, 769–774. [Google Scholar] [CrossRef]
- Yu, J.S.; Kim, J.H.; Rashan, L.; Kim, I.; Lee, W.; Kim, K.H. Potential Antimicrobial Activity of Galloyl-Flavonoid glycosides From Woodfordia uniflora Against Methicillin-Resistant Staphylococcus aureus. Front. Microbiol. 2021, 12, 784504. [Google Scholar] [CrossRef] [PubMed]
Compound | Concentration (μg/mL) | Inhibition (%) | MIC50 (μg/mL) | MIC90 (μg/mL) |
---|---|---|---|---|
1 | 125 | 1.9 | ||
3 | 1.3 | |||
7 | 32.4 | 250 | 500 | |
Gentamicin a | 7.8 | 96.5 | 1.95 | 3.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.S.; Lee, D.E.; Hong, J.-H.; Kim, K.A.; Kim, B.; Cho, Y.R.; Ra, M.-J.; Jung, S.-M.; Yu, J.-N.; An, S.; et al. Phytochemical Investigation of Marker Compounds from Indigenous Korean Salix Species and Their Antimicrobial Effects. Plants 2023, 12, 104. https://doi.org/10.3390/plants12010104
Jang YS, Lee DE, Hong J-H, Kim KA, Kim B, Cho YR, Ra M-J, Jung S-M, Yu J-N, An S, et al. Phytochemical Investigation of Marker Compounds from Indigenous Korean Salix Species and Their Antimicrobial Effects. Plants. 2023; 12(1):104. https://doi.org/10.3390/plants12010104
Chicago/Turabian StyleJang, Yoon Seo, Da Eun Lee, Joo-Hyun Hong, Kyung Ah Kim, Bora Kim, Yeo Rang Cho, Moon-Jin Ra, Sang-Mi Jung, Jeong-Nam Yu, Seongpil An, and et al. 2023. "Phytochemical Investigation of Marker Compounds from Indigenous Korean Salix Species and Their Antimicrobial Effects" Plants 12, no. 1: 104. https://doi.org/10.3390/plants12010104
APA StyleJang, Y. S., Lee, D. E., Hong, J.-H., Kim, K. A., Kim, B., Cho, Y. R., Ra, M.-J., Jung, S.-M., Yu, J.-N., An, S., & Kim, K. H. (2023). Phytochemical Investigation of Marker Compounds from Indigenous Korean Salix Species and Their Antimicrobial Effects. Plants, 12(1), 104. https://doi.org/10.3390/plants12010104