Differential Antinociceptive Efficacy of Peel Extracts and Lyophilized Juices of Three Varieties of Mexican Pomegranate (Punica granatum L.) in the Formalin Test
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Extraction and Lyophilization Procedure
4.1.1. Plants
4.1.2. Extraction
4.1.3. Lyophilization
4.2. Reagents
4.3. Animals
4.4. Pain Test Procedure
Measurement of Nociceptive Behavior in the Formalin Test
4.5. In Silico Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A. The revised IASP definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J. Pain: Moving from symptom control toward mechanism-specific pharmacologic management. Ann. Intern. Med. 2004, 140, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Costigan, M.; Woolf, C.J. Pain: Molecular mechanisms. J. Pain 2000, 1, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Abboud, C.; Duveau, A.; Bouali-Benazzouz, R.; Massé, K.; Mattar, J.; Brochoire, L.; Fossat, P.; Boué-Grabot, E.; Hleihel, W.; Landry, M. Animal models of pain: Diversity and benefits. J. Neurosci. Methods 2021, 348, 108997. [Google Scholar] [CrossRef] [PubMed]
- Kaliyaperumal, S.; Wilson, K.; Aeffner, F.; Dean, C., Jr. Animal models of peripheral pain: Biology review and application for drug discovery. Toxicol. Pathol. 2020, 48, 202–219. [Google Scholar] [CrossRef]
- Tjølsen, A.; Berge, O.-G.; Hunskaar, S.; Rosland, J.H.; Hole, K. The formalin test: An evaluation of the method. Pain 1992, 51, 5–17. [Google Scholar] [CrossRef]
- Mercer Lindsay, N.; Chen, C.; Gilam, G.; Mackey, S.; Scherrer, G. Brain circuits for pain and its treatment. Sci. Transl. Med. 2021, 13, eabj7360. [Google Scholar] [CrossRef]
- Yong, R.J.; Nguyen, M.; Nelson, E.; Urman, R.D. Pain Medicine: An Essential Review; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Maroon, J.C.; Bost, J.W.; Maroon, A. Natural anti-inflammatory agents for pain relief. Surg. Neurol. Int. 2010, 1, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018, 9, 143–150. [Google Scholar] [CrossRef]
- Silva-Correa, C.R.; Campos-Reyna, J.L.; Villarreal-La Torre, V.E.; Calderón-Peña, A.A.; Blas, M.V.G.; Aspajo-Villalaz, C.L.; Cruzado-Razco, J.L.; Sagástegui-Guarniz, W.A.; Guerrero-Espino, L.M.; Julio, H. Potential Activity of Medicinal Plants as Pain Modulators: A Review. Pharmacogn. J. 2021, 13, 248–263. [Google Scholar] [CrossRef]
- Rengasamy, K.R.; Mahomoodally, M.F.; Joaheer, T.; Zhang, Y. A systematic review of traditionally used herbs and animal-derived products as potential analgesics. Curr. Neuropharmacol. 2021, 19, 553–588. [Google Scholar] [CrossRef] [PubMed]
- Doostkam, A.; Bassiri-Jahromi, S.; Iravani, K. Punica Granatum with Multiple Effects in Chronic Diseases. Int. J. Fruit Sci. 2020, 20, 471–494. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, X.; Yan, J.; Yuan, Z.; Gu, M. Effects of salt stress on growth, photosynthesis, and mineral nutrients of 18 pomegranate (Punica granatum) cultivars. Agronomy 2019, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.; Duo, L.; Wang, J.; Yang, J.; Li, Z.; Tu, Y. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status. J. Ethnopharmacol. 2021, 271, 113877. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Pérez, C.; Delgado-Caballero, C.E.; Cruz-Bautista, P.; Casanova-Pérez, L. Plantas medicinales usadas por los Tének en la Huasteca, México. CienciaUAT 2022, 16, 40–58. [Google Scholar] [CrossRef]
- Kandylis, P.; Kokkinomagoulos, E. Food applications and potential health benefits of pomegranate and its derivatives. Foods 2020, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Solano, J.A.; Jaramillo-Morales, O.A.; Velázquez-González, C.; De la O-Arciniega, M.; Castañeda-Ovando, A.; Betanzos-Cabrera, G.; Bautista, M. Pomegranate as a Potential Alternative of Pain Management: A Review. Plants 2020, 9, 419. [Google Scholar] [CrossRef] [Green Version]
- Teixeira da Silva, J.A.; Rana, T.S.; Narzary, D.; Verma, N.; Meshram, D.T.; Ranade, S.A. Pomegranate biology and biotechnology: A review. Sci. Hortic. 2013, 160, 85–107. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Arana-Argáez, V.; Yáñez-Barrientos, E.; Ramírez-Camacho, M.A.; Wrobel, K.; Torres-Romero, J.C.; León-Callejas, C.; Wrobel, K. Antinociceptive and anti-inflammatory effects of Cuphea aequipetala Cav (Lythraceae). Inflammopharmacology 2021, 29, 295–306. [Google Scholar] [CrossRef]
- Shoaib, M.; Shah, S.W.A.; Ali, N.; Shah, I.; Ullah, S.; Ghias, M.; Tahir, M.N.; Gul, F.; Akhtar, S.; Ullah, A. Scientific investigation of crude alkaloids from medicinal plants for the management of pain. BMC Complement. Altern. Med. 2016, 16, 178. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Özen, C.; Abu-Reidah, I.M.; Chigurupati, S.; Patra, J.K.; Horbanczuk, J.O.; Jóźwik, A.; Tzvetkov, N.T.; Uhrin, P.; Atanasov, A.G. Vasculoprotective effects of pomegranate (Punica granatum L.). Front. Pharmacol. 2018, 9, 544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiq, Z.; Narasimhan, S.; Vennila, R.; Vaidyanathan, R. Punigratane, a novel pyrrolidine alkaloid from Punica granatum rind with putative efflux inhibition activity. Nat. Prod. Res. 2016, 30, 2682–2687. [Google Scholar] [CrossRef] [PubMed]
- Nasser, M.; Damaj, Z.; Hijazi, A.; Merah, O.; Al-Khatib, B.; Hijazi, N.; Trabolsi, C.; Damaj, R.; Nasser, M. Pomegranate juice extract decreases cisplatin toxicity on peripheral blood mononuclear cells. Medicines 2020, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Ouachrif, A.; Khalki, H.; Chaib, S.; Mountassir, M.; Aboufatima, R.; Farouk, L.; Benharraf, A.; Chait, A. Comparative study of the anti-inflammatory and antinociceptive effects of two varieties of Punica granatum. Pharm. Biol. 2012, 50, 429–438. [Google Scholar] [CrossRef]
- Shibata, M.; Ohkubo, T.; Takahashi, H.; Inoki, R. Modified formalin test: Characteristic biphasic pain response. Pain 1989, 38, 347–352. [Google Scholar] [CrossRef]
- Hunskaar, S.; Fasmer, O.B.; Hole, K. Formalin test in mice, a useful technique for evaluating mild analgesics. J. Neurosci. Methods 1985, 14, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Rosland, J.H.; Tjølsen, A.; Mæhle, B.; Hole, K. The formalin test in mice: Effect of formalin concentration. Pain 1990, 42, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Yin, Y.; Fang, Y.; Yang, X. Quantitative determination of punicalagin and related substances in different parts of pomegranate. Food Anal. Methods 2017, 10, 3600–3606. [Google Scholar] [CrossRef]
- Mo, J.; Panichayupakaranant, P.; Kaewnopparat, N.; Nitiruangjaras, A.; Reanmongkol, W. Topical anti-inflammatory and analgesic activities of standardized pomegranate rind extract in comparison with its marker compound ellagic acid in vivo. J. Ethnopharmacol. 2013, 148, 901–908. [Google Scholar] [CrossRef]
- Olapour, S.; Najafzadeh, H. Evaluation Analgesic, Anti-Inflammatory and Antiepileptic Effect of Hydro Alcoholic Peel Extract of “Punica granatum (pomegranate)”. Asian J. Med. Sci. 2010, 2, 266–270. [Google Scholar]
- Sachs, D.; Villarreal, C.; Cunha, F.; Parada, C.; Ferreira, S. The role of PKA and PKCepsilon pathways in prostaglandin E2-mediated hypernociception. Br. J. Pharmacol. 2009, 156, 826–834. [Google Scholar] [CrossRef] [Green Version]
- El-Shitany, N.A.; El-Bastawissy, E.A.; El-desoky, K. Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B, inducible cyclooxygenase and proinflammatory cytokines and enhancement of interleukin-10 via an antioxidant mechanism. Int. Immunopharmacol. 2014, 19, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanzadeh, B.; Mansouri, M.T.; Hemmati, A.A.; Naghizadeh, B.; Mard, S.A.; Rezaie, A. Involvement of L-arginine/NO/cGMP/KATP channel pathway in the peripheral antinociceptive actions of ellagic acid in the rat formalin test. Pharmacol. Biochem. Behav. 2014, 126, 116–121. [Google Scholar] [CrossRef]
- Lee, C.-J.; Chen, L.-G.; Liang, W.-L.; Wang, C.-C. Anti-inflammatory effects of Punica granatum Linne in vitro and in vivo. Food Chem. 2010, 118, 315–322. [Google Scholar] [CrossRef]
- Mansouri, M.T.; Naghizadeh, B.; Ghorbanzadeh, B. Ellagic acid enhances morphine analgesia and attenuates the development of morphine tolerance and dependence in mice. Eur. J. Pharmacol. 2014, 741, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, M.T.; Naghizadeh, B.; Ghorbanzadeh, B. Involvement of opioid receptors in the systemic and peripheral antinociceptive actions of ellagic acid in the rat formalin test. Pharmacol. Biochem. Behav. 2014, 120, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, M.T.; Naghizadeh, B.; Ghorbanzadeh, B.; Farbood, Y. Central and peripheral antinociceptive effects of ellagic acid in different animal models of pain. Eur. J. Pharmacol. 2013, 707, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-offive revolution. Drug Disc. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Kharasch, E.D.; Hoffer, C.; Whittington, D.; Sheffels, P. Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine. Clin. Pharmacol. Ther. 2003, 4, 543–554. [Google Scholar] [CrossRef]
- Álvarez-Cervantes, P.; Izquierdo-Vega, J.A.; Morán-León, J.; Guerrero-Solano, J.A.; García-Pérez, B.E.; Cancino-Díaz, J.C.; Belefant-Miller, H.; Betanzos-Cabrera, G. Subacute and subchronic toxicity of microencapsulated pomegranate juice in rats and mice. Toxicol. Res. 2021, 10, 312–324. [Google Scholar] [CrossRef] [PubMed]
- El Deeb, K.S.; Eid, H.H.; Ali, Z.Y.; Shams, M.M.; Elfiky, A.M. Bioassay-guided fractionation and identification of antidiabetic compounds from the rind of Punica Granatum Var. nana. Nat. Prod. Res. 2019, 35, 2103–2106. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.; Dadhaniya, P.; Hingorani, L.; Soni, M. Safety assessment of pomegranate fruit extract: Acute and subchronic toxicity studies. Food Chem. Toxicol. 2008, 46, 2728–2735. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Fallarero, A.; Peña, B.R.; Medina, M.E.; Gra, B.; Rivera, F.; Gutierrez, Y.; Vuorela, P.M. Studies on the toxicity of Punica granatum L.(Punicaceae) whole fruit extracts. J. Ethnopharmacol. 2003, 89, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Rivera, E.; Hernandez, R.; Carissimi, A.; Pekow, C. Laboratory Animal Legislation in Latin America. ILAR J. 2016, 57, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Purves, R.D. Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC). J. Pharmacokinet. Biopharm. 1992, 20, 211–226. [Google Scholar] [CrossRef]
- Filimonov, D.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Comp. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 3, 42717. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012, 52, 3099–3105. [Google Scholar] [CrossRef]
Compound | Antinociceptive | Anti-inflammatory | Antioxidant | |||
---|---|---|---|---|---|---|
Pa | Pi | Pa | Pi | Pa | Pi | |
Punicalagin | -- | -- | 0.983 | 0.004 | 0.957 | 0.002 |
Punicalin | -- | -- | 0.829 | 0.005 | 0.873 | 0.003 |
Granatin B | -- | -- | 0.572 | 0.038 | 0.483 | 0.007 |
Urolithin A | 0.326 | 0.163 | 0.572 | 0.038 | 0.888 | 0.003 |
Corilagin | -- | -- | 0.700 | 0.016 | 0.671 | 0.004 |
Flavone | 0.399 | 0.110 | 0.547 | 0.044 | 0.469 | 0.008 |
Resveratrol | 0.503 | 0.034 | 0.554 | 0.042 | 0.546 | 0.005 |
Quercetin | 0.362 | 0.137 | 0.689 | 0.017 | 0.872 | 0.003 |
Apigenin | 0.348 | 0.147 | 0.644 | 0.008 | 0.732 | 0.004 |
Chrysin | 0.341 | 0.152 | 0.637 | 0.025 | 0.708 | 0.004 |
Galangin | 0.338 | 0.154 | 0.689 | 0.017 | 0.853 | 0.006 |
Kaempferol | 0.345 | 0.149 | 0.676 | 0.008 | 0.856 | 0.002 |
Ellagic acid | 0.474 | 0.053 | 0.759 | 0.010 | 0.699 | 0.004 |
Gallic acid | 0.539 | 0.019 | 0.548 | 0.044 | 0.520 | 0.006 |
Punicic acid | 0.540 | 0.018 | 0.675 | 0.019 | 0.341 | 0.018 |
Compound | PKA Inhibitor | PKC Inhibitor | NOS2 Inhibitor | Histamine Release Inhibitor | TNF Expression Inhibitor | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pa | Pi | Pa | Pi | Pa | Pi | Pa | Pi | Pa | Pi | |
Punicalagin | 0.934 | 0.001 | 0.558 | 0.003 | 0.289 | 0.005 | -- | -- | -- | -- |
Punicalin | 0.801 | 0.002 | 0.248 | 0.003 | 0.253 | 0.075 | -- | -- | -- | -- |
Granatin B | 0.995 | 0.000 | 0.336 | 0.003 | 0.240 | 0.085 | -- | -- | -- | -- |
Urolithin A | -- | -- | -- | -- | 0.581 | 0.004 | 0.764 | 0.004 | -- | -- |
Corilagin | 0.884 | 0.002 | 0.3310 | 0005 | 0.240 | 0.085 | -- | -- | -- | -- |
Flavone | -- | -- | -- | -- | 0.565 | 0.005 | 0.732 | 0.004 | 0.461 | 0.008 |
Resveratrol | -- | -- | -- | -- | 0.603 | 0.004 | 0.526 | 0.027 | 0.654 | 0.009 |
Quercetin | -- | -- | -- | -- | 0.850 | 0.002 | 0.751 | 0.003 | 0.501 | 0.029 |
Apigenin | -- | -- | -- | -- | 0.732 | 0.002 | 0.791 | 0.003 | 0.609 | 0.012 |
Chrysin | -- | -- | -- | -- | 0.705 | 0.003 | 0.788 | 0.004 | 0.573 | 0.007 |
Galangin | -- | -- | -- | -- | 0.784 | 0.002 | 0.690 | 0.005 | 0.449 | 0.042 |
Kaempferol | -- | -- | -- | -- | 0.797 | 0.002 | 0.692 | 0.005 | -- | -- |
Ellagic acid | 0.343 | 0.004 | -- | -- | 0.324 | 0.011 | 0.519 | 0.008 | -- | -- |
Gallic acid | 0.324 | 0.004 | -- | -- | 0.382 | 0.022 | 0.654 | 0.006 | 0.560 | 0.018 |
Punicic acid | -- | -- | -- | -- | -- | -- | 0.575 | 0.014 | 0.751 | 0.005 |
Compound/Property | LogP | TPSA | MW | HBD/HBA | RB | N Violations | PAINS |
---|---|---|---|---|---|---|---|
Punicalagin | 0.07 | 518.76 | 1084.72 | 17/30 | 0 | 3 | 1 |
Punicalin | −0.83 | 385.24 | 782.53 | 13/22 | 0 | 3 | 1 |
Granatin B | −1.49 | 450.25 | 952.64 | 14/27 | 3 | 3 | 1 |
Urolithin A | 2.06 | 70.67 | 228.20 | 2/4 | 0 | 0 | 0 |
Corilagin | −0.78 | 310.66 | 634.45 | 11/18 | 3 | 3 | 1 |
Flavone | 3.18 | 30.21 | 222.24 | 0/2 | 1 | 0 | 0 |
Resveratrol | 2.48 | 60.69 | 228.24 | 3/3 | 2 | 0 | 0 |
Quercetin | 1.23 | 131.36 | 302.24 | 5/7 | 1 | 0 | 1 |
Apigenin | 2.11 | 90.90 | 270.24 | 3/5 | 1 | 0 | 0 |
Chrysin | 2.55 | 70.67 | 254.24 | 2/4 | 1 | 0 | 0 |
Galangin | 1.99 | 90.90 | 270.24 | 3/5 | 1 | 0 | 0 |
Kaempferol | 1.58 | 111.13 | 286.24 | 4/6 | 1 | 0 | 0 |
Ellagic acid | 1.00 | 141.34 | 302.19 | 4/8 | 0 | 0 | 1 |
Gallic acid | 0.21 | 97.99 | 170.12 | 4/5 | 1 | 0 | 0 |
Punicic acid | 0.21 | 278.43 | 278.43 | 1/2 | 13 | 0 | 1 |
Compound/Property | BBB Permeant | P-gp Substrate | GI Absorption |
---|---|---|---|
Punicalagin | No | Yes | Low |
Punicalin | No | Yes | Low |
Granatin B | No | Yes | Low |
Urolithin A | Yes | No | High |
Corilagin | No | Yes | Low |
Flavone | Yes | No | High |
Resveratrol | Yes | No | High |
Quercetin | No | No | High |
Apigenin | No | No | High |
Chrysin | Yes | No | High |
Galangin | No | No | High |
Kaempferol | No | No | High |
Ellagic acid | No | No | High |
Gallic acid | No | No | High |
Punicic acid | No | No | High |
Compound/Property | AMES Toxicity | hERG | Carcinogenicity | Nephrotoxicity | Reproductive Toxicity | Oral Rat Acute Toxicity (LD50, mol/kg) | Acute Oral Toxicity (Category OCDE) |
---|---|---|---|---|---|---|---|
Punicalagin | + (0510) | + (0.763) | − (1.000) | − (0.844) | + (0.744) | 2.74 | III |
Punicalin | + (0.540) | + (0.723) | − (0.985) | − (0.827) | + (0.744) | 2.74 | III |
Granatin B | + (0.630) | + (0.690) | − (0.960) | − (0.860) | + (0.777) | 3.01 | III |
Urolithin A | − (0.610) | − (0.900) | − (1.000) | − (0.697) | + (0.577) | 2.48 | III |
Corilagin | − (0.500) | + (0.756) | − (0.942) | − (0.877) | + (0.766) | 2.28 | III |
Flavone | − (0.670) | − (0.708) | − (0.888) | − (0.579) | + (0.566) | 2.84 | III |
Resveratrol | − (0.820) | − (0.836) | − (0.530) | + (0.537) | − (0.555) | 2.37 | III |
Quercetin | + (0900) | − (0.841) | − (1.000) | − (0.816) | + (0.766) | 2.52 | II |
Apigenin | − (0.830) | − (0.897) | − (1.000) | − (0.663) | + (0.655) | 2.69 | III |
Chrysin | − (0.985) | − (0.800) | − (1.000) | − (0.628) | + (0.655) | 1.92 | III |
Galangin | − (0.790) | − (0.871) | − (1.000) | − (0.714) | + (0.766) | 2.24 | II |
Kaempferol | + (0.730) | − (0.914) | − (1.000) | − (0.747) | + (0766) | 1.83 | II |
Ellagic acid | − (0.820) | − (0.804) | − (1.000) | − (0.844) | + (0.633) | 1.71 | II |
Gallic acid | − (0.950) | − (0.842) | − (0.662) | − (0.697) | + (0.677) | 2.31 | III |
Punicic acid | − (0.879) | − (0.421) | − (0.671) | − (0.589) | − (0.791) | 1.53 | IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Solano, J.A.; Bautista, M.; Espinosa-Juárez, J.V.; Moreno-Rocha, L.A.; Betanzos-Cabrera, G.; Salanță, L.C.; De la O Arciniega, M.; Olvera-Hernández, E.G.; Jaramillo-Morales, O.A. Differential Antinociceptive Efficacy of Peel Extracts and Lyophilized Juices of Three Varieties of Mexican Pomegranate (Punica granatum L.) in the Formalin Test. Plants 2023, 12, 131. https://doi.org/10.3390/plants12010131
Guerrero-Solano JA, Bautista M, Espinosa-Juárez JV, Moreno-Rocha LA, Betanzos-Cabrera G, Salanță LC, De la O Arciniega M, Olvera-Hernández EG, Jaramillo-Morales OA. Differential Antinociceptive Efficacy of Peel Extracts and Lyophilized Juices of Three Varieties of Mexican Pomegranate (Punica granatum L.) in the Formalin Test. Plants. 2023; 12(1):131. https://doi.org/10.3390/plants12010131
Chicago/Turabian StyleGuerrero-Solano, José Antonio, Mirandeli Bautista, Josué Vidal Espinosa-Juárez, Luis Alfonso Moreno-Rocha, Gabriel Betanzos-Cabrera, Liana Claudia Salanță, Minarda De la O Arciniega, Elena G. Olvera-Hernández, and Osmar Antonio Jaramillo-Morales. 2023. "Differential Antinociceptive Efficacy of Peel Extracts and Lyophilized Juices of Three Varieties of Mexican Pomegranate (Punica granatum L.) in the Formalin Test" Plants 12, no. 1: 131. https://doi.org/10.3390/plants12010131
APA StyleGuerrero-Solano, J. A., Bautista, M., Espinosa-Juárez, J. V., Moreno-Rocha, L. A., Betanzos-Cabrera, G., Salanță, L. C., De la O Arciniega, M., Olvera-Hernández, E. G., & Jaramillo-Morales, O. A. (2023). Differential Antinociceptive Efficacy of Peel Extracts and Lyophilized Juices of Three Varieties of Mexican Pomegranate (Punica granatum L.) in the Formalin Test. Plants, 12(1), 131. https://doi.org/10.3390/plants12010131