The Colonization and Effect of Isaria cateinannulata on Buckwheat Sprouts
Abstract
:1. Introduction
2. Results and Analysis
2.1. Colonizing Process of I. cateniannulata on Buckwheat Sprouts via SEM
2.2. Colonizing Process of Isaria cateniannulata on Buckwheat Sprouts via FM
2.3. Molecular Identification of Isaria cateniannula by Phylogenetic Analysis
2.4. Population Dynamics of I. cateniannulata on Buckwheat Leaf Surfaces
2.5. The Impact of I. cateniannulata on Buckwheat Defense Enzyme Activity
2.6. The Impact of I. cateniannulata on Buckwheat Sprout Growth
3. Materials and Methods
3.1. Isaria cateniannulata Preparation
3.2. Fluorescein Diacetate (FDA) Preparation
3.3. Buckwheat Sprout Preparation
3.4. Treatment of Buckwheat Sprouts with I. cateniannulata
3.5. Observation with Scanning Electron Microscopy (SEM) and Fluorescence Microscopy (FM)
3.6. Analysis of I. cateniannulata on Buckwheat Leaf Surfaces
3.7. Molecular Identification of I. cateniannulata in Buckwheat Sprouts
3.8. Impact of I. cateniannulata on Buckwheat Defense Enzyme Activity
3.9. Impact of I. cateniannulata on Buckwheat Growth
3.10. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krkošková, B.; Mrázová, Z. Prophylactic components of buckwheat. Food Res. Int. 2005, 38, 561–568. [Google Scholar] [CrossRef]
- Gimenez-Bastida, J.A.; Zielinski, H. Buckwheat as a functional food and its effects on health. J. Agric. Food Chem. 2015, 63, 7896–7913. [Google Scholar] [CrossRef]
- Ji, X.; Han, L.; Liu, F.; Yin, S.; Peng, Q.; Wang, M. A mini-review of isolation, chemical properties and bioactivities of polysaccharides from buckwheat (Fagopyrum Mill). Int. J. Biol. Macromol. 2019, 127, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.Y.; Zhao, G.; Zhao, J.L. Reaearch progress on buckwheat flavonoids and their biosynthesis and regulation. Guihaia 2020, 5, 1–18. (In Chinese) [Google Scholar]
- Liu, X.Y.; Yang, B.B.; Wang, C.H. The mechanism and research progress of buckwheat in the prevention and treatment of diabetes mellitus. Chin. Med. Mod. Distance Educ. China 2020, 18, 136–138. (In Chinese) [Google Scholar]
- Briatia, X.; Chang, K.J.; Ahn, C.H.; Lim, Y.S.; Kim, Y.B.; Park, S.U.; Park, B.J.; Sung, I.J.; Park, C.H. Effect of temperature, deep sea water and seed quality on growth of buckwheat sprouts. Korean J. Plant Res. 2011, 24, 724–728. [Google Scholar] [CrossRef]
- Briatia, X.; Jomduang, S.; Park, C.H.; Lumyong, S.; Kanpiengjai, A.; Khanongnuch, C. Enhancing growth of buckwheat sprouts and microgreens by endophytic bacterium inoculation. Int. J. Agric. Biol. 2017, 19, 373–380. [Google Scholar] [CrossRef]
- Kim, S.L.; Son, Y.K.; Hwang, J.J.; Kim, S.K.; Hur, H.S.; Park, C.H. Development and utilization of buckwheat sprouts as functional vegetables. Fagopyrum 2001, 18, 49–54. [Google Scholar]
- Kim, S.L.; Kim, S.K.; Park, C.H. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int. 2004, 37, 319–327. [Google Scholar] [CrossRef]
- Paulina, Š.; Dalia, U.; Aistė, B.; Pranas, V.; Jonas, V. Optimization of the Multienzyme-Assisted Extraction Procedure of Bioactive Compounds Extracts from Common Buckwheat (Fagopyrum esculentum M.) and Evaluation of Obtained Extracts. Plants 2021, 10, 2567. [Google Scholar] [CrossRef]
- Li, H.Y.; Lv, Q.Y.; Liu, A.; Wang, J.; Sun, X.; Deng, J.; Chen, Q.F.; Wu, Q. Comparative metabolomics study of Tartary (Fagopyrum tataricum (L.) Gaertn) and common (Fagopyrum esculentum Moench) buckwheat seeds. Food Chem. 2022, 371, 131125. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.Q. Two new species of Paecilomyces from insects. Acta. Microbiol. Sin. 1981, 21, 31–34. (In Chinese) [Google Scholar]
- Montes-Bazurto, L.G.; Bustillo-Pardey, A.E.; Medina-Cárdenas, H.C. Cordyceps cateniannulata, a novel entomopathogenic fungus to control Stenoma impressella Busck (Lepidoptera: Elachistidae) in Colombia. J. Appl. Entomol. 2020, 144, 788–796. [Google Scholar] [CrossRef]
- Zhou, Y.M.; Xie, W.; Ye, J.Q.; Zhang, T.; Li, D.Y.; Zhi, J.R.; Zou, X. New potential strains for controlling Spodoptera frugiperda in China: Cordyceps cateniannulata and Metarhizium rileyi. BioControl 2020, 65, 663–672. [Google Scholar] [CrossRef]
- Zhang, X.N.; Guo, J.J.; Zou, X.; Jin, D.C. Pathogenic differences of the entomopathogenic fungus Isaria cateniannulata to the spider mite Tetranychus urticae (Trombidiformes: Tetranychidae) and its predator Euseius nicholsi (Mesostigmata: Phytoseiidae). Exp. Appl. Acarol. 2018, 75, 69–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.N.; Jin, D.C.; Zou, X.; Guo, J.J. Screening for entomogenous fungi strain with high toxicity to Tetranychus urticae. Guizhou Agric. Sci. 2013, 41, 98–100. (In Chinese) [Google Scholar]
- Zhang, X.N.; Jin, D.C.; Zou, X.; Guo, J.J. Laboratory and field evaluation of an entomopathogenic fungus, Isaria cateniannulata strain 08XS-1, against Tetranychus urticae (Koch). Pest Manag. Sci. 2016, 72, 1059–1066. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.N.; Jin, D.C.; Zou, X.; Guo, J.J.; Qu, J.J. Screening of highly virulent strain of Isaria cateniannulata against Tetranychus urticae and its effect to Euseius nicholsi. J. Environ. Entomol. 2014, 36, 372–380. (In Chinese) [Google Scholar]
- He, J.; Kang, J.C.; Lei, B.X.; Liu, X.Y.; Wen, T.C. Identification of four entomogenous fungi and preliminary evaluation on their insecticidal activities to Plutella xylastellal. Acta. Phytophyl. Sci. 2010, 37, 341–346. (In Chinese) [Google Scholar]
- Li, F.B.; Wang, C.Y.; Yao, J.F.; Fang, L.J. Biological control of Cenopalpus lineola in Mountain Huangshan Scenic Spot by Paecilomyces cateniannulatus. J. Northeast For. Univ. 2011, 37, 77–78. (In Chinese) [Google Scholar]
- Wang, D.; Li, L.; Wu, G.; Vasseur, L.; Yang, G.; Huang, P. De novo transcriptome sequencing of Isaria cateniannulata and comparative analysis of gene expression in response to heat and cold stresses. PLoS ONE 2017, 12, e0186040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.H. Effects of Isaria Cateniannulata Colonization on Growth and Rhizosphere Microbial Diversity of Tobacco; Guizhou University: Guizhou, China, 2021. [Google Scholar]
- Peng, X.; Wu, Y.; Zhang, X.N.; Chen, W.H.; Zhu, L.W.; Chen, Q.F.; Deng, J. Screening of high germination rate strains of entomopathogenic fungi against buckwheat seeds. J. Shandong Agri. Univ. 2022, 53, 393–400. (Natural Science Edition) (In Chinese) [Google Scholar]
- Guan, J.Q.; Xu, Z.S.; Liu, J.; Gou, J.Y.; Zou, X. Effect of Cordyceps cateniannulata on the growth and antioxidant enzyme activity of Solanum lycopersicum. Acta. Microbio. Sinica. 2022, 62, 1119–1130. (In Chinese) [Google Scholar]
- Jones, K.H.; Senft, J.A. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J. Histochem. Cytochem. 1985, 33, 77–79. [Google Scholar] [CrossRef] [Green Version]
- Charnley, A.K.; Leger, R.J.S. The role of cuticle-degrading enzymes in fungal pathogenesis in insects. In Fungal Spore Disease Initiation in Plants and Animals; Cole, E.T., Hoch, H.C., Eds.; Springer: Boston, MA, USA, 1991; pp. 267–287. [Google Scholar]
- Vega, F.E. Insect pathology and fungal endophytes. J. Invertebr. Pathol. 2008, 98, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y. Effects of Cordyceps Cateniannulata on Enzyme Activity and Genes of Tetranychus Urticae. Master Dissertation, Guizhou Normal University, Guizhou, China, 2022. [Google Scholar]
- Lu, Y.; Zhang, H.; Liu, Y.; Ji, Q.; Xie, J.; Zhang, R.; Huang, L.; Mei, K.; Wang, J.; Gao, W. Engineering of triterpene metabolism and overexpression of the lignin biosynthesis gene PAL promotes ginsenoside Rg-3 accumulation in ginseng plant chassis. J. Integr. Plant Biol. 2022, 64, 1739–1754. [Google Scholar] [CrossRef]
- He, X.; Lei, J.; Guan, W. Comparison of enzyme properties of soluble and membrane-bound polyphenol oxidase from Agaricus bisporus. Food Sci. 2022, 1–15. Available online: https://kns.cnki.net/kcms/detail/11.2206.ts.20220729.0940.028.html (accessed on 1 October 2022). (In Chinese).
- Stone, L.B.L.; Bidochka, M.J. The multifunctional lifestyles of Metarhizium: Evolution and applications. Appl. Microbiol. Biotechnol. 2020, 104, 9935–9945. [Google Scholar] [CrossRef] [PubMed]
- Fei, H.Q. The Cononization of Beauveria Bassiana in Corn-Seedling and Colonization Effect on Protective Enzyme of Ostrinia Furnacalis. Master’s Thesis, Ji Lin Agriculture University, Changchun, China, 2016. (In Chinese). [Google Scholar]
- Kuzhuppillymyal-Prabhakarankutty, L.; Tamez-Guerra, P.; Gomez-Flores, R.; Rodriguez-Padilla, M.C.; Ek-Ramos, M.J. Endophytic Beauveria bassiana promotes drought tolerance and early flowering in corn. World J. Microbiol. Biotechnol. 2020, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sui, L.; Xu, W.J.; Zhang, Z.S.; Yang, Z.; Wang, Z.H.; Du, Q.; Wang, Y.Z.; Chen, R.Z.; Li, Q.Y.; Lu, Y. Colonization of GFP-tagged Beauveria bassiana in Maize. Chin. J. Biol. Control 2018, 34, 848–857. [Google Scholar] [CrossRef]
- Sui, L.; Lu, Y.; Zhu, H.; Wan, T.; Li, Q.; Zhang, Z. Endophytic blastospores of Beauveria bassiana provide high resistance against plant disease caused by Botrytis cinerea. Fungal Biol. 2022, 126, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Keppanan, R.; Leibman-Markus, M.; Rav-David, D.; Elad, Y.; Ment, D.; Bar, M. The entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana promote systemic immunity and confer resistance to a broad range of pests and pathogens in tomato. Phytopathology® 2022, 112, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Aguila, L.C.; Akutse, K.S.; Bamisile, B.S.; Sánchez-Moreano, J.P.; Ashraf, H.J.; Zhou, C.; Wang, L. Endophytically colonized Citrus limon seedlings by Beauveria bassiana hampered development, reproduction and progeny fitness of Diaphorina citri. J. Appl. Entomol. 2022, 146, 229–242. [Google Scholar] [CrossRef]
- Akutse, K.S.; Maniania, N.K.; Fiaboe, K.K.; Van-den, B.J.; Ekesi, S. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol. 2013, 6, 293–301. [Google Scholar] [CrossRef]
- Batta, Y.A. Efficacy of endophytic and applied Metarhizium anisopliae (Metch.) Sorokin (Ascomycota: Hypocreales) against larvae of Plutella xylostella L.(Yponomeutidae: Lepidoptera) infesting Brassica napus plants. Crop Prot. 2013, 44, 128–134. [Google Scholar] [CrossRef]
- Razinger, J.; Lutz, M.; Schroers, H.J.; Palmisano, M.; Wohler, C.; Urek, G.; Grunder, J. Direct plantlet inoculation with soil or insect-associated fungi may control cabbage root fly maggots. J. Invertebr. Pathol. 2014, 120, 59–66. [Google Scholar] [CrossRef]
- Greenfield, M.; Gómez-Jiménez, M.I.; Ortiz, V.; Vega, F.E.; Kramer, M.; Parsa, S. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol. Control 2016, 95, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Kwasna, H.; Szewczyk, W. Effects of fungi isolated from Quercus robur roots on growth of oak seedlings. Dendrobiology 2016, 75, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Dash, C.K.; Bamisile, B.S.; Keppanan, R.; Qasim, M.; Lin, Y.; Islam, S.U.; Hussain, M.; Wang, L. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb. Pathog. 2018, 125, 385–392. [Google Scholar] [CrossRef]
- Golo, P.S.; Gardner, D.R.; Grilley, M.M.; Takemoto, J.Y.; Krasnoff, S.B.; Pires, M.S.; Fernandes, É.K.K.; Bittencourt, V.R.E.P.; Roberts, D.W. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants. PLoS ONE 2014, 9, e0104946. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Chondrogiannis, C.; Grammatikopoulos, G. Effects of three endophytic entomopathogens on sweet sorghum and on the larvae of the stalk borer Sesamia nonagrioides. Entomol. Exp. Appl. 2015, 154, 78–87. [Google Scholar] [CrossRef]
- Lopez, D.C.; Sword, G.A. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol. Control 2015, 89, 53–60. [Google Scholar] [CrossRef]
- Lopez, D.C.; Zhu-Salzman, K.; Ek-Ramos, M.J.; Sword, G.A. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 2014, 9, e0103891. [Google Scholar] [CrossRef] [Green Version]
- Elena, G.J.; Beatriz, P.J.; Alejandro, P.; Lecuona, R.E. Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Adv. Biol. Res. 2011, 5, 22–27. [Google Scholar]
- González-Pérez, E.; Ortega-Amaro, M.A.; Bautista, E.; Delgado-Sánchez, P.; Jiménez-Bremont, J.F. The entomopathogenic fungus Metarhizium anisopliae enhances Arabidopsis, tomato, and maize plant growth. Plant Physiol. Biochem. 2022, 176, 34–43. [Google Scholar] [CrossRef]
- Liu, S.F. Endophytism and Growth-Promoting of Metarhizium Anisopliae During Peanut Development. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2015. (In Chinese). [Google Scholar]
- Bamisile, B.S.; Senyo-Akutse, K.; Dash, C.K.; Qasim, M.; Ramos-Aguila, L.C.; Ashraf, H.J.; Huang, W.; Hussain, M.; Chen, S.; Wang, L. Effects of seedling age on colonization patterns of Citrus limon plants by endophytic Beauveria bassiana and Metarhizium anisopliae and their influence on seedlings growth. J. Fungi. 2020, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Jaber, L.R.; Enkerli, J. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biol. Control 2016, 103, 187–195. [Google Scholar] [CrossRef]
- Macuphe, N. Evaluating the Endophytic Activities of Beauveria bassiana on the Physiology, Growth, and Antioxidant Activities of Extracts of Lettuce (Lactuca sativa L.). Plants 2021, 10, 1178. [Google Scholar] [CrossRef]
- Juliet, A.; Thomas, D.; Gold, C.S.; Daniel, C. Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J. Invertebr. Pathol. 2007, 96, 34–42. [Google Scholar] [CrossRef]
- Cui, Y.H.; Bai, Y.; Cao, N.; Liu, Y.H.; Ghulam, A.; Wang, B. Effects of Beauveria bassiana inoculated with different methods on maize as growth promoter. Chin. J. Trop. Crops 2017, 38, 206–212. (In Chinese) [Google Scholar]
- Gomezvidal, S.; Lopezllorca, L.V.; Jansson, H.; Salinas, J. Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi. Micron 2006, 37, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xu, W.J.; Sui, L.; Wang, Y.Z.; Zhang, Z.K.; Li, Q.Y. Beauveria bassiana: Endophytic colonization and applications in plant protection. J. North Agric. Sci. 2016, 41, 73–77. (In Chinese) [Google Scholar]
- Strobel, G.; Stierle, A.; Stierle, D.; Hess, W.M. Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew (Taxus brevifolia). Mycotaxon 1993, 47, 71–80. [Google Scholar]
- Terna, T.P.; Mohamed Nor, N.M.I.; Zakaria, L. Histopathology of Corn Plants Infected by Endophytic Fungi. Biology 2022, 11, 641. [Google Scholar] [CrossRef]
- Hinton, D.M.; Bacon, C.W. The distribution and ultrastructure of the endophyte of toxic tall fescue. Can. J. Bot. 1985, 63, 36–42. [Google Scholar] [CrossRef]
- Kuldau, G.A.; Yates, I.E. Evidence for Fusarium endophytes in cultivated and wild plants. In Microbial Endophytes; Woodhead Publishing: New York, NY, USA, 2000; pp. 85–117. [Google Scholar]
- García, A.; Rhoden, S.A.; Rubin Filho, C.J.; Nakamura, C.V.; Pamphile, J.A. Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol. Res. 2012, 45, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Istikorini, Y.; Sari, O.Y. Identification of Endophytic Fungi of Balangeran (Shorea balangeran Korth.) by Morphological Characterization. J. Sylva Lestari 2022, 10, 211–222. [Google Scholar] [CrossRef]
- Sunarti, S.; Ginting, C.N.; Ginting, S.F. Isolation and molecular identification of endophytic mold schizophillum commune in red Dahlia (Dahlia sp. L) tuber as producing inulinases. Maced. J. Med. Sci. 2022, 10, 49–55. [Google Scholar] [CrossRef]
- Li, X.H. Studies on Endophytic Character of Beauveria Bassiana and Its Ecological Control on Ostrinia Furnacalis. Master’s Thesis, Harbin Normal University, Harbin, China, 2015. (In Chinese). [Google Scholar]
- Tefera, T.; Vidal, S. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 2009, 54, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Griffin, M.R. Beauveria Bassiana, A Cotton Endophyte with Biocontrol Activity Against Seedling Disease. Doctoral Dissertation, The University of Tennessee, Knoxville, TN, USA, 2007. [Google Scholar]
- Wakil, W.; Tahir, M.; Al-Sadi, A.M.; Shapiro-Ilan, D. Interactions between two invertebrate pathogens: An endophytic fungus and an externally applied bacterium. Front. Microbiol. 2020, 2624, 1–13. [Google Scholar] [CrossRef]
- Qayyum, M.A.; Wakil, W.; Arif, M.J.; Sahi, S.T.; Dunlap, C.A. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol. Control 2015, 90, 200–207. [Google Scholar] [CrossRef]
- Powell, W.A.; Klingeman, W.E.; Ownley, B.H.; Gwinn, K.D.; Dee, M.; Flanagan, P.C. Endophytic Beauveria bassiana in tomatoes yields mycosis in tomato fruitworm larvae. HortScience 2007, 42, 933. [Google Scholar]
- Yang, R. Soybean GmPAL Gene Family Enhance the Resistance of Soybean against Heterodera Glycines. Doctoral Dissertation, Shenyang Agricultural university, Shenyang, China, 2022. [Google Scholar]
- Canassa, F.; Tall, S.; Moral, R.A.; de Lara, I.A.; Delalibera Jr, I.; Meyling, N.V. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biol. Control 2019, 132, 199–208. [Google Scholar] [CrossRef]
Cultivars | Plant Height (cm) | Main Stem Diameter (mm) | Fresh Weight (g) | Leaf Number | Surface Area of Leaf (cm2) | Root Length (cm) | Root Surface Area (cm) | Root Volume (cm3) | Average Root Diameter (mm) |
---|---|---|---|---|---|---|---|---|---|
M13-s | 9.6400 ± 0.4561 * | 1.3700 ± 0.2421 | 0.7960 ± 0.0839 * | 5.20 ± 0.45 * | 52.7446 ± 0.7642 * | 3.3200 ± 0.8228 * | 0.6271 ± 0.2157 * | 0.0067 ± 0.0011 * | 0.5025 ± 0.0612 * |
M13-d | 7.5200 ± 0.4087 | 1.1140 ± 0.1324 | 0.6900 ± 0.0579 | 4.00 ± 0.00 | 48.0357 ± 0.7185 | 2.020 ± 0.7259 | 0.2464 ± 0.0171 | 0.0026 ± 0.0002 | 0.3400 ± 0.0876 |
M18-s | 13.2000 ± 0.5745 * | 1.7500 ± 0.2749 | 1.5480 ± 0.0817 * | 5.60 ± 0.89 * | 98.0285 ± 7.0741 * | 4.6000 ± 0.2449 * | 0.7382 ± 0.0989 * | 0.0043 ± 0.0001 * | 0.4848 ± 0.0728 * |
M18-d | 11.5600 ± 1.0945 | 1.4140 ± 0.3620 | 1.3540 ± 0.0288 | 3.60 ± 0.54 | 74.5337 ± 9.8254 | 4.3400 ± 0.0894 | 0.4018 ± 0.2003 | 0.0026 ± 0.0012 | 0.3730 ± 0.0325 |
M55-s | 10.5800 ± 1.0426 * | 1.5280 ± 0.2774 | 1.4160 ± 0.0709 * | 4.60 ± 0.89 * | 84.0771 ± 5.8239 * | 2.5200 ± 0.3898 * | 0.6229 ± 0.1683 * | 0.0066 ± 0.0025 * | 0.5662 ± 0.08581 * |
M55-d | 9.6600 ± 0.3782 | 1.2800 ± 0.1756 | 1.2840 ± 0.0709 | 3.80 ± 0.45 | 54.5186 ± 5.1692 | 2.1200 ± 0.2683 | 0.2198 ± 0.0531 | 0.0026 ± 0.0011 | 0.3238 ± 0.0347 |
HT-s | 30.1400 ± 4.3478 | 3.2040 ± 0.3325 * | 3.6140 ± 1.0313 * | 7.00 ± 0.71 * | 187.3840 ± 14.5548 * | 8.7800 ± 1.4772 * | 1.1236 ± 0.6708 * | 0.0163 ± 0.0022 * | 0.4456 ± 0.0884 * |
HT-d | 27.2200 ± 3.4737 | 2.1640 ± 0.2154 | 1.9160 ± 0.4852 | 4.80 ± 0.84 | 155.1280 ± 20.4564 | 4.3600 ± 0.1816 | 0.8348 ± 0.0847 | 0.0040 ± 0.0004 | 0.3812 ± 0.0522 |
1412-1-s | 15.8400 ± 2.4470 | 1.7700 ± 0.0906 * | 1.7560 ± 0.9965 * | 6.00 ± 1.22 * | 212.8579 ± 31.3140 * | 4.1800 ± 0.1923 * | 0.6979 ± 0.0583 * | 0.0131 ± 0.0037 * | 0.5895 ± 0.0604 * |
1412-1-d | 11.0400 ± 1.0479 | 1.5320 ± 0.1223 | 1.4300 ± 0.1288 | 4.80 ± 0.84 | 164.9717 ± 9.7931 | 3.3200 ± 0.1788 | 0.4290 ± 0.0581 | 0.0050 ± 0.0028 | 0.4583 ± 0.0275 |
1412-16-s | 19.2000 ± 1.0901 | 1.7200 ± 0.3843 * | 2.0000 ± 0.3221 * | 6.80 ± 0.86 * | 459.2300 ± 22.0052 * | 5.700 ± 0.4000 * | 0.7692 ± 0.0602 * | 0.0161 ± 0.0026 * | 0.6941 ± 0.1762 * |
1412-16-d | 17.6000 ± 2.4749 | 1.0840 ± 0.4287 | 1.3660 ± 0.2017 | 5.20 ± 0.84 | 347.5329 ± 25.0809 | 4.8600 ± 0.6107 | 0.4587 ± 0.2643 | 0.0070 ± 0.0023 | 0.5041 ± 0.0649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Peng, X.; Yang, G.; Chen, Q.; Jin, D. The Colonization and Effect of Isaria cateinannulata on Buckwheat Sprouts. Plants 2023, 12, 145. https://doi.org/10.3390/plants12010145
Zhang X, Peng X, Yang G, Chen Q, Jin D. The Colonization and Effect of Isaria cateinannulata on Buckwheat Sprouts. Plants. 2023; 12(1):145. https://doi.org/10.3390/plants12010145
Chicago/Turabian StyleZhang, Xiaona, Xue Peng, Guimin Yang, Qingfu Chen, and Daochao Jin. 2023. "The Colonization and Effect of Isaria cateinannulata on Buckwheat Sprouts" Plants 12, no. 1: 145. https://doi.org/10.3390/plants12010145
APA StyleZhang, X., Peng, X., Yang, G., Chen, Q., & Jin, D. (2023). The Colonization and Effect of Isaria cateinannulata on Buckwheat Sprouts. Plants, 12(1), 145. https://doi.org/10.3390/plants12010145