Beta vulgaris L.—A Source with a Great Potential in the Extraction of Natural Dyes Intended for the Sustainable Dyeing of Wool
Abstract
:1. Introduction
- water solubilization of any compound from betalains that has a good dissolving capacity (prebetanin, betanin/isobetanin, neobetanin, vulgaxanthin I/vulgaxanthin II, indicaxanthin [7]).
- degradation of red beet peels of existing architectural construction (under the impact of high pressure and temperature) leads to create cracks that allow water to penetrate and solubilize easily soluble components.
- pectinase acts only on pectin from red beet peels, which it hydrolyzes into polyga-lacturonic acid (pectic acid). Pectin is present in large proportions in red beet peels where it binds the different components ensuring the cohesion of the betalains; it turns out that during the extraction assisted by pectinase, the biomass of the red beet peels is degraded, which makes possible the penetration of water and the dissolution of easily soluble components.
2. Results and Discussion
2.1. UV-Vis
- for REx1: 540 nm at pH = 1; 535 nm at pH = 2; 530 nm at pH = 4.5; and 530 nm at pH = 7;
- for PecEx1: 540 nm at pH = 1; 535 nm at pH = 2; 535 nm at pH = 4.5; and 525 nm at pH = 7;
- for PresEx1: 540 nm at pH = 1; 535 nm at pH = 2; 535 nm at pH = 4.5; and 525 nm at pH = 7.
2.2. HPLC-MS
2.3. Characterization of Betalains from Extracts
2.4. Color Characterization of Extracts
2.5. Wool Dyeing Assisted by Sustainable Extracts
2.5.1. Influence of pH on Dyeing Wool
2.5.2. Wool Dyeing in the Presence of Stabilizers
2.5.3. Influence of Extract Volume
2.5.4. The Temperature Influence
2.5.5. The Influence of Dyeing Duration
2.5.6. Fastness Properties
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Protein Material
3.3. Experimental Protocol
- without other additions to assist the extraction; the phases were maintained for 1 or 24 h at room temperature to complete the betalains extraction. The raw extracts obtained (abbreviated REx1 or REx24) were used to dye wool samples in 100 mL extract, at different pHs (2–7), temperatures (30–70 °C), durations (1–26 h), or in the presence of 5–10 mL stabilizer (Vitamin E respectively EDTA). The control sample was considered the extract obtained after 10 min of solubilizing and shaking the red beet peels in distilled water.
- extraction under pressure (at 105 °C, for 10 min) and keeping the extract for 1 h or 24 h to complete the reaction. The obtained extracts were named “PresEx1 and PresEx24 respectively”. Control sample was considered the PresEx extract after 10 min from the completion of the extraction process.
- enzyme-assisted extraction (2 mL commercial pectinase in 2 L water), at room temperature, for 1–26 h; the obtained extracts were abbreviated PecEx1 and PecEx24 respectively. The control sample was considered the extract stored 10 min after the completion of the extraction process.
3.4. Analysis
3.4.1. UV-Vis
3.4.2. HPLC-MS Experimental Technique
3.4.3. Colorimetric Measurements
3.4.4. Error Bars to Excel Graphs
3.4.5. Fastness Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samanta, A.K.; Konar, A. Dyeing of textiles with natural dyes. In Natural Dyes; Kumbasar, E.A., Ed.; InTech: Fontana, CA, USA, 2011; ISBN 978-953-307-783-3. Available online: http://www.intechopen.com/books/natural-dyes/dyeing-of-textiles-with-natural-dyes (accessed on 10 August 2022).
- Restricted Substance List. Available online: https://cdn.regatta.com/attachments/restricted-substances.pdf (accessed on 5 March 2023).
- Padma, S.; Vankar, D.S. Newer natural dyes for various textiles. In New Trends in Natural Dyes for Textiles, 1st ed.; Elsevier: Duxford, UK, 2019; pp. 1–30. [Google Scholar]
- Saxena, S.; Raja, A.S.M. Natural dyes: Sources, chemistry, application and sustainability issues. In Roadmap to Sustainable Textiles and Clothing. Textile Science and Clothing Technology; Muthu, S.S., Ed.; Springer: Singapore, 2014; pp. 33–80. [Google Scholar]
- Luzardo-Ocampo, I.; Ramírez-Jiménez, A.K.; Yañez, J.; Mojica, L.; Luna-Vital, D.A. Technological Applications of Natural Colorants in Food Systems: A Review. Foods 2021, 10, 634. [Google Scholar] [CrossRef] [PubMed]
- Swarup, R.; Jong-Whan, R. Anthocyanin food colorant and its application in pH-responsive color change indicator films. Critical Reviews. Food Sci. Nutr. 2020, 61, 2297–2325. [Google Scholar]
- Popescu, V.; Blaga, A.C.; Pruneanu, M.; Cristian, I.N.; Pîslaru, M.; Popescu, A.; Rotaru, V.; Cretescu, I.; Cașcaval, D. Green chemistry in the extraction of natural dyes from colored food waste, for dyeing protein textile materials. Polymers 2021, 13, 3867. [Google Scholar] [CrossRef] [PubMed]
- Abdo, E.; El-Sohaimy, S.; Shaltout, O.; Abdalla, A.; Zeitoun, A. Nutritional Evaluation of Beetroots (Beta vulgaris L.) and Its Potential Application in a Functional Beverage. Plants 2020, 9, 1752. [Google Scholar] [CrossRef] [PubMed]
- Yolcu, S.; Alavilli, H.; Ganesh, P.; Asif, M.; Kumar, M.; Song, K. An Insight into the Abiotic Stress Responses of Cultivated Beets (Beta vulgaris L.). Plants 2022, 11, 12. [Google Scholar] [CrossRef]
- Yolcu, S.; Alavilli, H.; Ganesh, P.; Panigrahy, M.; Song, K. Salt and Drought Stress Responses in Cultivated Beets (Beta vulgaris L.) and Wild Beet (Beta maritima L.). Plants 2021, 10, 1843. [Google Scholar] [CrossRef]
- Rašovský, M.; Pacuta, V.; Ducsay, L.; Lenická, D. Quantity and Quality Changes in Sugar Beet (Beta vulgaris Provar. Altissima Doel) Induced by Different Sources of Biostimulants. Plants 2022, 11, 2222. [Google Scholar] [CrossRef]
- OEKO—TEX® Standard 100. Available online: https://www.oeko-tex.com/en/our-standards/standard-100-by-oeko-tex (accessed on 18 August 2021).
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food. Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Pihlaja, K. Betalains and phenolics in red beetroot (Beta vulgaris) peel extracts: Extraction and characterisation. Z. Naturforsch. C 2001, 56, 343–348. [Google Scholar] [CrossRef]
- Sapers, G.M.; Hornstein, J.S. Varietal differences in colorant properties and stability of red beet pigments. J. Food Sci. 1979, 44, 1245–1248. [Google Scholar] [CrossRef]
- Slatnar, A.; Stampar, F.; Veberic, R.; Jakopic, J. HPLC-MSn identification of betalain profile of different beetroot (Beta vulgaris L. ssp. vulgaris) parts and cultivars. J. Food Sci. 2015, 80, C1952–C1958. [Google Scholar] [CrossRef]
- Nemzer, B.; Pietrzkowski, Z.; Sporna, A.; Stalica, P.; Thresher, W.; Michałowski, T.; Wybraniec, S. Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chem. 2011, 127, 42–53. [Google Scholar] [CrossRef]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Betalain stability and degradation—Structural and chromatic aspects. J. Food Sci. 2006, 71, 41–50. [Google Scholar] [CrossRef]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Impact of thermal treatment on color and pigment pattern of red beet (Beta vulgaris L.) preparations. J. Food Sci. 2004, 69, 491–498. [Google Scholar] [CrossRef]
- Knuthsen, P. Investigations on beetroot colours for the purpose of regulation. Z. Lebensm. Unters. Forsch. 1981, 172, 195–200. [Google Scholar] [CrossRef]
- Antigo, J.L.D.; Bergamasco, R.C.; Madrona, G.S. Effect of pH on the stability of red beet extract (Beta vulgaris L.) microcapsules produced by spray drying or freeze drying. Food Sci. Technol. 2018, 38, 72–77. [Google Scholar] [CrossRef]
- Lukitasari, D.M.; Indrawatia, R.; Heriyanto, R.D.C.; Limantara, L. Color Alteration of Encapsulated Beetroot (Beta vulgaris L.) Extract Upon Dissolving in Various pH Treatment. Indones. J. Nat. Pigm. 2020, 2, 48–53. [Google Scholar] [CrossRef]
- Sutor-Swiezy, K.; Antonik, M.; Proszek, J.; Nemzer, B.; Pietrzkowski, Z.; Popenda, L.; Swiergosz, T.; Wybraniec, S. Dehydrogenation of betacyanins in heated betalain-rich extracts of red beet (Beta vulgaris L.). Int. J. Mol. Sci. 2022, 23, 1245. [Google Scholar] [CrossRef]
- Dumbrava, A.; Enache, I.; Oprea, C.I.; Georgescu, A.; Gîrtu, M.A. Toward a more efficient utilisation of betalains as pigments for dye-Sensitized solar cells. Dig. J. Nanomater. Biostruct. 2012, 7, 339–351. [Google Scholar]
- Pires Goncalves, L.C.; Martorelli Di Genova, B.; Augusto Dorr, F.; Pinto, E.; Leite Bastos, E. Effect of dielectric microwave heating on the color and antiradical capacity of betanin. J. Food Eng. 2013, 118, 49–55. [Google Scholar] [CrossRef]
- Tuwalska, D.; Starzak, K.; Szot, D.; Wybraniec, S.; Winterhalter, P.; Jerz, G. Semi-synthesis of red beet betacyanin ethyl-esters by esterification. Chall. Mod. Technol. 2014, 5, 27–31. [Google Scholar]
- Rodriguez, S.A.; Baumgartner, M.T. Betanidin pKa prediction using DFT methods. ACS Omega 2020, 5, 13751–13759. [Google Scholar] [CrossRef] [PubMed]
- Gliszczyńska-Świglo, A.; Szymusiak, H.; Malinowska, P. Betanin, the main pigment of red beet—Molecular origin of its exceptionally high free radical scavenging activity. Food Addit. Contam. 2006, 23, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Wybraniec, S. A method for identification of diastereomers of 2-decarboxy-betacyanins and 2,17-bidecarboxy-betacyanins in reversed-phase HPLC. Anal. Bioanal. Chem. 2007, 389, 1611–1621. [Google Scholar] [CrossRef] [PubMed]
- FooDB: Listing Compounds. Available online: https://foodb.ca/compounds/ (accessed on 4 March 2023).
- PhytoHub: Compounds. Available online: https://phytohub.eu/entries/ (accessed on 4 March 2023).
- Schliemann, W.; Strack, D. Intramolecular stabilization of acylated betacyanins. Phytochemistry 1998, 49, 585–588. [Google Scholar] [CrossRef]
- Sutor-Świeży, K.; Proszek, J.; Popenda, Ł.; Wybraniec, S. Influence of Citrates and EDTA on Oxidation and Decarboxylation of Betacyanins in Red Beet (Beta vulgaris L.) Betalain-Rich Extract. Molecules 2022, 27, 9054. [Google Scholar] [CrossRef]
- Kumorkiewicz, A.; Szmyr, N.; Popenda, Ł.; Pietrzkowski, Z.; Wybraniec, S. Alternative mechanisms of betacyanin oxidation by complexation and radical generation. J. Agric. Food Chem. 2019, 67, 7455–7746. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; Escribano, J.; García-Carmona, F. Betaxanthins as substrates for tyrosinase. An approach to the role of tyrosinase in the biosynthetic pathway of betalains. Plant Physiol. 2005, 138, 421–432. [Google Scholar] [CrossRef]
- Wybraniec, S.; Nowak-Wydra, B.; Mizrahi, Y. 1H and 13C NMR spectroscopic structural elucidation of new decarboxylated betacyanins. Tetrahedron Lett. 2006, 47, 1725–1728. [Google Scholar] [CrossRef]
- Attoe, E.L.; von Elbe, J.H. Degradation kinetics of betanin in solutions as influenced by oxygen. J. Agric. Food Chem. 1982, 30, 708–712. [Google Scholar] [CrossRef]
- Pasch, J.H.; von Elbe, J.H. Stability containing organic in buffered solutions acids, metal cations, or sequestrants. J. Food Sci. 1979, 44, 72–75. [Google Scholar] [CrossRef]
- Savolainen, K.; Kuusi, T. The stability properties of golden beet and red beet pigments: Influence of pH, temperature, and some stabilizers. Z. Lebensm. Unters. Forsch. 1978, 166, 19–22. [Google Scholar] [CrossRef]
- Attoe, E.L.; von Elbe, J.H. Oxygen involvement in betanin degradation. Oxygen uptake and influence of metal ions. Z. Lebensm. Unters. Forsch. 1984, 179, 232–236. [Google Scholar] [CrossRef]
- Wybraniec, S.; Starzak, K.; Skopinska, A.; Szaleniec, M.; Słupski, J.; Mitka, K.; Kowalski, P.; Michałowski, T. Effects of metal cations on betanin stability in aqueous-organic solutions. Food Sci. Biotechnol. 2013, 22, 353–363. [Google Scholar] [CrossRef]
- Wybraniec, S. Formation of decarboxylated betacyanins in heated purified betacyanin fractions from red beet root (Beta vulgaris L.) monitored by LC-MS/MS. J. Agric. Food Chem. 2005, 53, 3483–3487. [Google Scholar] [CrossRef]
- Kumorkiewicz, A.; Sutor, K.; Nemzer, B.; Pietrzkowski, Z.; Wybraniec, S. Thermal decarboxylation of betacyanins in red beet betalain-rich extract. Pol. J. Food Nutr. Sci. 2020, 70, 7–14. [Google Scholar] [CrossRef]
- Wybraniec, S.; Michalowski, T. New pathways of betanidin and betanin enzymatic oxidation. J. Agric. Food Chem. 2011, 59, 9612–9622. [Google Scholar] [CrossRef]
- Wybraniec, S.; Starzak, K.; Skopinska, A.; Nemzer, B.; Pietrzkowski, Z.; Michałowski, T. Studies on nonenzymatic oxidation mechanisms in neobetanin, betanin, and decarboxylated betanins. J. Agric. Food Chem. 2013, 61, 6465–6476. [Google Scholar] [CrossRef]
Extract * | Total Monomeric Anthocyanins (mg/L) | Color Density | Polymeric Color Density (Bisulfite) | Browning Index |
---|---|---|---|---|
REx1 | 142.35 | 0.5976 | 0.7695 | 0.2046 |
PresEx1 | 135.23 | 0.5600 | 0.7300 | 0.1900 |
PecEx1 | 142.71 | 0.6181 | 0.8057 | 0.0847 |
Sample | Compound | RT (min) | m/z [M + H]+ |
---|---|---|---|
REx1 | Betanin/Isobetanin | 3.70 | 551 |
Vulgaxanthin IV/Isovulgaxanthin IV | 9.49 | 325 | |
PresEx1 | 2-decarboxy-Neobetanin/2-decarboxy-Xanbetanin | 2.77 | 505 |
15-decarboxy-Betanin 17-decarboxy-Betanin/17-decarboxy-Isobetanin | 3.18 | 507 | |
2-decarboxy-Betanin/2-decarboxy-Isobetanin | 3.57 | 507 | |
17-decarboxy-Isobetanidin | 3.88 | 345 | |
Betanin/Isobetanin | 3.89 | 551 |
Property | Betanin | Isobetanin | 2-decarboxy-betanin | 2-decarboxy-neobetanin | 15-decarboxy-betanin | 17-decarboxy-betanin | 17-decarboxy-isobetanin | Vulgaxanthin IV |
---|---|---|---|---|---|---|---|---|
Compound no. in [26] * | FDB000497 | - | FDB015256 | - | - | - | - | - |
Compound no. in [27] ** | - | PHUB000406 | - | PHUB000412 | PHUB000416 | PHUB000413 | PHUB000414 | PHUB000435 |
Synonyms | E 162 | isobetanidin 5-O-beta-glucoside | 2-Descarboxy betanin | - | - | - | - | Leucine-betaxanthin |
Chemical formula | C24H26N2O13 | C24H26N2O13 | C23H27N2O11 | C23H26N2O11 | C23H27N2O11 | C23H27N2O11 | C23H27N2O11 | C15H20N2O6 |
Molecular weight (g) | 550.4688 | 550.473 | 507.4673 | 506.464 | 507.471 | 507.471 | 507.471 | 324.333 |
Water solubility (g/L) | 0.5 | 5.00 × 10−1 | 0.49 | 1.85 | 7.73 × 10−1 | 7.87 × 10−1 | 7.87 × 10−1 | 1.60 × 10−1 |
pKa (Strongest acidic) | 1.46 | 2.402 | 3.22 | 3.008 | 2.669 | 0.9196 | 0.919 | 1.84 |
pka (Strongest basic) | −3.6 | −3.648 | −3 | 7.174 | 1.726 | 8.1168 | 8.116 | 8.81 |
Hydrogen acceptor count | 14 | 14 | 12 | 13 | 12 | 12 | 12 | 8 |
Hydrogen donor count | 8 | 8 | 8 | 7 | 8 | 8 | 8 | 4 |
Number of rings | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 |
Sample Code | Color Fastness to Washing | Color Fastness to Rubbing | |||
---|---|---|---|---|---|
Change in Color | Staining | ||||
Cotton | Wool | Dry | Wet | ||
Rex24 | 5 | 5 | 5 | 5 | 4–5 |
PresEx24 | 4–5 | 5 | 5 | 5 | 4–5 |
PecEx24 | 5 | 5 | 5 | 5 | 4–5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, V.; Blaga, A.C.; Cașcaval, D.; Popescu, A. Beta vulgaris L.—A Source with a Great Potential in the Extraction of Natural Dyes Intended for the Sustainable Dyeing of Wool. Plants 2023, 12, 1933. https://doi.org/10.3390/plants12101933
Popescu V, Blaga AC, Cașcaval D, Popescu A. Beta vulgaris L.—A Source with a Great Potential in the Extraction of Natural Dyes Intended for the Sustainable Dyeing of Wool. Plants. 2023; 12(10):1933. https://doi.org/10.3390/plants12101933
Chicago/Turabian StylePopescu, Vasilica, Alexandra Cristina Blaga, Dan Cașcaval, and Andrei Popescu. 2023. "Beta vulgaris L.—A Source with a Great Potential in the Extraction of Natural Dyes Intended for the Sustainable Dyeing of Wool" Plants 12, no. 10: 1933. https://doi.org/10.3390/plants12101933
APA StylePopescu, V., Blaga, A. C., Cașcaval, D., & Popescu, A. (2023). Beta vulgaris L.—A Source with a Great Potential in the Extraction of Natural Dyes Intended for the Sustainable Dyeing of Wool. Plants, 12(10), 1933. https://doi.org/10.3390/plants12101933