Genome-Wide Identification, Expression and Stress Analysis of the GRAS Gene Family in Phoebe bournei
Abstract
:1. Introduction
2. Results
2.1. Phylogenetic Analysis of PbGRAS Gene
2.2. Chromosome Distribution and Synthesis Analysis of PbGRAS Gene
2.3. Conserved Structural Domain Motif Analysis of PbGRASs
2.4. Multiple Sequence Alignment and Cis-Acting Element Analysis of PbGRASs
2.5. Heat Map of PbGRAS Gene Expression in Different Tissues
2.6. Abiotic Stress Experiments on the GRAS Gene Family of P. bournei
3. Discussion
4. Materials and Methods
4.1. Genome Data and Plant Material Source
4.2. Identification and Physical and Chemical Property Analysis
4.3. Chromosomal Distribution and Gene Duplication of PbGRAS Genes
4.4. Collinearity Analysis of PbGRAS Genes
4.5. Phylogenetic Analysis
4.6. Analysis of Conserved Motifs and Gene Structures
4.7. Multiple Sequence Alignment and Promoter Cis-Element Analysis of PbGRAS Genes
4.8. Treatment in Different Tissue
4.9. qRT-PCR Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakshi, A.; Moin, M.; Kumar, M.U.; Reddy, A.B.M.; Ren, M.; Datla, R.; Siddiq, E.A.; Kirti, P.B. Ectopic Expression of Arabidopsis Target of Rapamycin (AtTOR) Improves Water-Use Efficiency and Yield Potential in Rice. Sci. Rep. 2017, 7, 42835. [Google Scholar] [CrossRef] [PubMed]
- Riaño-Pachón, D.M.; Ruzicic, S.; Dreyer, I.; Mueller-Roeber, B. PlnTFDB: An Integrative Plant Transcription Factor Database. BMC Bioinform. 2007, 8, 42. [Google Scholar] [CrossRef]
- Liu, B.; Sun, Y.; Xue, J.; Jia, X.; Li, R. Genome-Wide Characterization and Expression Analysis of GRAS Gene Family in Pepper (Capsicum annuum L.). PeerJ 2018, 6, e4796. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xuan, A.; Bu, C.; Ci, D.; Tian, M.; Zhang, D. Osmotic Stress-Responsive Promoter Upstream Transcripts (PROMPTs) Act as Carriers of MYB Transcription Factors to Induce the Expression of Target Genes in Populus simonii. Plant Biotechnol. J. 2019, 17, 164–177. [Google Scholar] [CrossRef]
- Liu, M.; Huang, L.; Ma, Z.; Sun, W.; Wu, Q.; Tang, Z.; Bu, T.; Li, C.; Chen, H. Genome-Wide Identification, Expression Analysis and Functional Study of the GRAS Gene Family in Tartary Buckwheat (Fagopyrum tataricum). BMC Plant Biol. 2019, 19, 342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, J.; Yang, Z.E.; Chen, E.Y.; Zhang, C.J.; Zhang, X.Y.; Li, F.G. Genome-Wide Analysis of GRAS Transcription Factor Gene Family in Gossypium hirsutum L. BMC Genom. 2018, 19, 348. [Google Scholar] [CrossRef]
- To, V.-T.; Shi, Q.; Zhang, Y.; Shi, J.; Shen, C.; Zhang, D.; Cai, W. Genome-Wide Analysis of the GRAS Gene Family in Barley (Hordeum vulgare L.). Genes 2020, 11, 553. [Google Scholar] [CrossRef]
- Jaiswal, V.; Kakkar, M.; Kumari, P.; Zinta, G.; Gahlaut, V.; Kumar, S. Multifaceted Roles of GRAS Transcription Factors in Growth and Stress Responses in Plants. iScience 2022, 25, 105026. [Google Scholar] [CrossRef]
- Sun, X.; Jones, W.T.; Rikkerink, E.H.A. GRAS Proteins: The Versatile Roles of Intrinsically Disordered Proteins in Plant Signalling. Biochem. J. 2012, 442, 1–12. [Google Scholar] [CrossRef]
- Cenci, A.; Rouard, M. Evolutionary Analyses of GRAS Transcription Factors in Angiosperms. Front. Plant Sci. 2017, 8, 273. [Google Scholar] [CrossRef]
- Tian, C.; Wan, P.; Sun, S.; Li, J.; Chen, M. Genome-Wide Analysis of the GRAS Gene Family in Rice and Arabidopsis. Plant Mol. Biol. 2004, 54, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Widmer, A. Genome-Wide Comparative Analysis of the GRAS Gene Family in Populus, Arabidopsis and Rice. Plant Mol. Biol. Rep. 2014, 32, 1129–1145. [Google Scholar] [CrossRef]
- Khan, Y.; Xiong, Z.; Zhang, H.; Liu, S.; Yaseen, T.; Hui, T. Expression and Roles of GRAS Gene Family in Plant Growth, Signal Transduction, Biotic and Abiotic Stress Resistance and Symbiosis Formation—A Review. Plant Biol. 2022, 24, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Hui, C.; Huang, R.; Wang, D.; Fei, C.; Guo, C.; Zhang, J. Genome-Wide Identification, Evolution and Transcriptome Analysis of GRAS Gene Family in Chinese Chestnut (Castanea mollissima). Front. Genet. 2023, 13, 1080759. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Tian, Z.; Zhang, Q.; Wang, Z.; Huang, R.; Xu, X.; Wang, Y.; Ji, X. Genome-Wide Identification, Expression and Salt Stress Tolerance Analysis of the GRAS Transcription Factor Family in Betula Platyphylla. Front. Plant Sci. 2022, 13, 1022076. [Google Scholar] [CrossRef] [PubMed]
- Di Laurenzio, L.; Wysocka-Diller, J.; Malamy, J.E.; Pysh, L.; Helariutta, Y.; Freshour, G.; Hahn, M.G.; Feldmann, K.A.; Benfey, P.N. The SCARECROW Gene Regulates an Asymmetric Cell Division That Is Essential for Generating the Radial Organization of the Arabidopsis Root. Cell 1996, 86, 423–433. [Google Scholar] [CrossRef]
- Lee, M.-H.; Kim, B.; Song, S.-K.; Heo, J.-O.; Yu, N.-I.; Lee, S.A.; Kim, M.; Kim, D.G.; Sohn, S.O.; Lim, C.E.; et al. Large-Scale Analysis of the GRAS Gene Family in Arabidopsis Thaliana. Plant Mol. Biol. 2008, 67, 659–670. [Google Scholar] [CrossRef]
- Ishikawa, M.; Fujiwara, A.; Kosetsu, K.; Horiuchi, Y.; Kamamoto, N.; Umakawa, N.; Tamada, Y.; Zhang, L.; Matsushita, K.; Palfalvi, G.; et al. GRAS Transcription Factors Regulate Cell Division Planes in Moss Overriding the Default Rule. Proc. Natl. Acad. Sci. USA 2023, 120, e2210632120. [Google Scholar] [CrossRef]
- Helariutta, Y.; Fukaki, H.; Wysocka-Diller, J.; Nakajima, K.; Jung, J.; Sena, G.; Hauser, M.-T.; Benfey, P.N. The SHORT-ROOT Gene Controls Radial Patterning of the Arabidopsis Root through Radial Signaling. Cell 2000, 101, 555–567. [Google Scholar] [CrossRef]
- Stuurman, J.; Jäggi, F.; Kuhlemeier, C. Shoot Meristem Maintenance Is Controlled by a GRAS-Gene Mediated Signal from Differentiating Cells. Genes Dev. 2002, 16, 2213–2218. [Google Scholar] [CrossRef]
- Peng, J.; Carol, P.; Richards, D.E.; King, K.E.; Cowling, R.J.; Murphy, G.P.; Harberd, N.P. The Arabidopsis GAI Gene Defines a Signaling Pathway That Negatively Regulates Gibberellin Responses. Genes Dev. 1997, 11, 3194–3205. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Qin, L.; Lee, S.; Fu, X.; Richards, D.E.; Cao, D.; Luo, D.; Harberd, N.P.; Peng, J. Gibberellin Regulates Arabidopsis Floral Development via Suppression of DELLA Protein Function. Development 2004, 131, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Wild, M.; Davière, J.-M.; Cheminant, S.; Regnault, T.; Baumberger, N.; Heintz, D.; Baltz, R.; Genschik, P.; Achard, P. The Arabidopsis DELLA RGA-LIKE3 Is a Direct Target of MYC2 and Modulates Jasmonate Signaling Responses. Plant Cell 2012, 24, 3307–3319. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Lee, L.Y.C.; Xia, K.; Yan, Y.; Yu, H. DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs. Dev. Cell 2010, 19, 884–894. [Google Scholar] [CrossRef]
- Niu, Y.; Zhao, T.; Xu, X.; Li, J. Genome-Wide Identification and Characterization of GRAS Transcription Factors in Tomato (Solanum lycopersicum ). PeerJ 2017, 5, e3955. [Google Scholar] [CrossRef]
- Xu, K.; Chen, S.; Li, T.; Ma, X.; Liang, X.; Ding, X.; Liu, H.; Luo, L. OsGRAS23, a Rice GRAS Transcription Factor Gene, Is Involved in Drought Stress Response through Regulating Expression of Stress-Responsive Genes. BMC Plant Biol. 2015, 15, 141. [Google Scholar] [CrossRef]
- Mayrose, M.; Ekengren, S.K.; Melech-Bonfil, S.; Martin, G.B.; Sessa, G. A Novel Link between Tomato GRAS Genes, Plant Disease Resistance and Mechanical Stress Response. Mol. Plant Pathol. 2006, 7, 593–604. [Google Scholar] [CrossRef]
- Fode, B.; Siemsen, T.; Thurow, C.; Weigel, R.; Gatz, C. The Arabidopsis GRAS Protein SCL14 Interacts with Class II TGA Transcription Factors and Is Essential for the Activation of Stress-Inducible Promoters. Plant Cell 2008, 20, 3122–3135. [Google Scholar] [CrossRef]
- Yuan, Y.; Fang, L.; Karungo, S.K.; Zhang, L.; Gao, Y.; Li, S.; Xin, H. Overexpression of VaPAT1, a GRAS Transcrip tion Factor from Vitis Amurensis, Confers Abiotic Stress Tolerance in Arabidopsis. Plant Cell Rep. 2016, 35, 655–666. [Google Scholar] [CrossRef]
- Ma, H.-S.; Liang, D.; Shuai, P.; Xia, X.-L.; Yin, W.-L. The Salt- and Drought-Inducible Poplar GRAS Protein SCL7 Confers Salt and Drought Tolerance in Arabidopsis thaliana. J. Exp. Bot. 2010, 61, 4011–4019. [Google Scholar] [CrossRef]
- He, Y.-H.; Liang, R.; Jiang, Y.; Sun, B. Research Progress of Precious Species Phoebe bournei and Its Development Strategies. Guangxi For. Sci. 2013, 42, 365–370. [Google Scholar] [CrossRef]
- Han, S.; Han, X.; Li, Y.-B.; Zhang, Y.-T.; Zhang, J.-H.; Tong, Z.-K. ldentification of NF-Y Gene Family and Expres sion Analysis in Response to Drought Stress in Phoebe bournei. Chin. J. Agric. Biotechnol. 2022, 30, 1112–1127. [Google Scholar]
- Wu, D.-R.; Zhu, Z.-D. Preliminary Study on Structure and Spatial Distribution Pattern of Phoebe. Sci. Silvae Sin. 2003, 39, 23–30. [Google Scholar]
- Jiang, X.-M.; Xiao, F.-M.; Ye, J.-S.; Gong, B.; Liu, Z.-K. Geographic Variation and Estimation of Genetic Parameters of Seed and Growth Traits in Phoebe bournei Provenance at Seedling Stage. Acta Agric. Univ. Jiangxiensis 2008, 150, 666–670. [Google Scholar]
- Dill, A.; Jung, H.-S.; Sun, T. The DELLA Motif Is Essential for Gibberellin-Induced Degradation of RGA. Proc. Natl. Acad. Sci. USA 2001, 98, 14162–14167. [Google Scholar] [CrossRef]
- Greb, T.; Clarenz, O.; Schäfer, E.; Müller, D.; Herrero, R.; Schmitz, G.; Theres, K. Molecular Analysis of the LATERAL SUPPRESSOR Gene in Arabidopsis Reveals a Conserved Control Mechanism for Axillary Meristem Formation. Genes Dev. 2003, 17, 1175–1187. [Google Scholar] [CrossRef]
- Li, X.; Qian, Q.; Fu, Z.; Wang, Y.; Xiong, G.; Zeng, D.; Wang, X.; Liu, X.; Teng, S.; Hiroshi, F.; et al. Control of Tillering in Rice. Nature 2003, 422, 618–621. [Google Scholar] [CrossRef]
- Wang, T.-T.; Yu, T.-F.; Fu, J.-D.; Su, H.-G.; Chen, J.; Zhou, Y.-B.; Chen, M.; Guo, J.; Ma, Y.-Z.; Wei, W.-L.; et al. Genome-Wide Analysis of the GRAS Gene Family and Functional Identification of GmGRAS37 in Drought and Salt Tolerance. Front. Plant Sci. 2020, 11, 604690. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, D.-K.; Wang, Q.-Q.; Ke, S.; Li, Y.; Zhang, D.; Zheng, Q.; Zhang, C.; Liu, Z.-J.; Lan, S. Genome-Wide Identification and Expression Analysis of the GRAS Gene Family in Dendrobium chrysotoxum. Front. Plant Sci. 2022, 13, 1058287. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, P.; Wu, S.; Lu, Y.; Sun, J.; Cao, Q.; Li, Z.; Xu, T. Identification and Expression Analysis of GRAS Transcription Factors in the Wild Relative of Sweet Potato Ipomoea Trifida. BMC Genom. 2019, 20, 911. [Google Scholar] [CrossRef]
- Fan, Y.; Yan, J.; Lai, D.; Yang, H.; Xue, G.; He, A.; Guo, T.; Chen, L.; Cheng, X.; Xiang, D.; et al. Genome-Wide Identification, Expression Analysis, and Functional Study of the GRAS Transcription Factor Family and Its Response to Abiotic Stress in Sorghum [Sorghum bicolor (L.) Moench]. BMC Genom. 2021, 22, 509. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wei, X.; Lai, D.; Yang, H.; Feng, L.; Li, L.; Niu, K.; Chen, L.; Xiang, D.; Ruan, J.; et al. Genome-Wide Investigation of the GRAS Transcription Factor Family in Foxtail Millet (Setaria italica L.). BMC Plant Biol. 2021, 21, 508. [Google Scholar] [CrossRef]
- Kotak, S.; Port, M.; Ganguli, A.; Bicker, F.; von Koskull-Döring, P. Characterization of C-Terminal Domains of Arabidopsis Heat Stress Transcription Factors (Hsfs) and Identification of a New Signature Combination of Plant Class A Hsfs with AHA and NES Motifs Essential for Activator Function and Intracellular Localization. Plant J. 2004, 39, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Zhang, D.; Li, D. Expression Analysis of Segmentally Duplicated ZmMPK3-1 and ZmMPK3-2 Genes in Maize. Plant Mol. Biol. Rep. 2013, 31, 457–463. [Google Scholar] [CrossRef]
- Lin, C.-W.; Huang, L.-Y.; Huang, C.-L.; Wang, Y.-C.; Lai, P.-H.; Wang, H.-V.; Chang, W.-C.; Chiang, T.-Y.; Huang, H.-J. Common Stress Transcriptome Analysis Reveals Functional and Genomic Architecture Differences Between Early and Delayed Response Genes. Plant Cell Physiol. 2017, 58, 546–559. [Google Scholar] [CrossRef]
- Pysh, L.D.; Wysocka-Diller, J.W.; Camilleri, C.; Bouchez, D.; Benfey, P.N. The GRAS Gene Family in Arabidopsis: Sequence Characterization and Basic Expression Analysis of the SCARECROW-LIKE Genes. Plant J. 1999, 18, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Li, T.-H.; Wen, S.-Z.; Wang, B.; Xie, Y.-B. Growth and physiological characteristics of Phoebe bournei seedling under drought stress. J. Cent. South Univ. For. Technol. 2018, 38, 50–57. [Google Scholar] [CrossRef]
- Wang, B. Studies on Photosynthesis and Physiology of Phoebe Bournei Seedlings under Drought Stress and Recover of Polyamine. Master’s Dissertation, Central South University of Forestry and Technology, Changsha, China, 2019. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkEcTGK3Qt5VuzQzk0e7M1z79hmwnI7R4TyWQaG7VFWhQxxuF8z2IpxKazT8odri7D&uniplatform=NZKPT (accessed on 6 April 2022).
- Li, Y.-F.; Yang, W.-L.; Gu, J.-J.; Zhang, A.-M.; Zhan, K.-H. Genome-widle ldentification and Characterization of the GRAS Gene Family in Bread Wheat (Triticum aestivum L.). J. Triticeae Crops 2019, 39, 549–559. [Google Scholar]
- Liu, Y.; Wang, W. Characterization of the GRAS Gene Family Reveals Their Contribution to the High Adaptability of Wheat. PeerJ 2021, 9, e10811. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Xian, Z.; Kang, X.; Tang, N.; Li, Z. Genome-Wide Identification, Phylogeny and Expression Analysis of GRAS Gene Family in Tomato. BMC Plant Biol. 2015, 15, 209. [Google Scholar] [CrossRef]
- Roy, S.W.; Penny, D. Patterns of Intron Loss and Gain in Plants: Intron Loss-Dominated Evolution and Genome-Wide Comparison of O. Sativa and A. Thaliana. Mol. Biol. Evol. 2006, 24, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Rogozin, I.B.; Carmel, L.; Csuros, M.; Koonin, E.V. Origin and Evolution of Spliceosomal Introns. Biol. Direct 2012, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Takakura, Y.; Sofuku, K.; Tsunashima, M.; Kuwata, S. Lentiavidins: Novel Avidin-like Proteins with Low Isoelectric Points from Shiitake Mushroom (Lentinula edodes). J. Biosci. Bioeng. 2016, 121, 420–423. [Google Scholar] [CrossRef]
- Jing, Z.; Qi, R.; Liu, C.; Ren, P. Study of Interactions between Metal Ions and Protein Model Compounds by Energy Decomposition Analyses and the AMOEBA Force Field. J. Chem. Phys. 2017, 147, 161733. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, D.; Gao, C.; Zhao, M.; Wu, H.; Li, Y.; Shen, Y.; Han, M. Identification, Classification, and Expression Analysis of GRAS Gene Family in Malus domestica. Front. Physiol. 2017, 8, 253. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ding, X.; Gao, Y.; Yang, S. Genome-Wide Identification and Characterization of GRAS Genes in Soybean (Glycine Max). BMC Plant Biol. 2020, 20, 415. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, S.; Zhou, Y.; Zhou, Y.; Yang, J.; Tang, X. Genome-Wide Identification and Characterization of GRAS Transcription Factors in Sacred Lotus ( Nelumbo nucifera). PeerJ 2016, 4, e2388. [Google Scholar] [CrossRef]
- Czikkel, B.E.; Maxwell, D.P. NtGRAS1, a Novel Stress-Induced Member of the GRAS Family in Tobacco, Localizes to the Nucleus. J. Plant Physiol. 2007, 164, 1220–1230. [Google Scholar] [CrossRef]
- Wang, H.-L.; Chen, J.; Tian, Q.; Wang, S.; Xia, X.; Yin, W. Identification and Validation of Reference Genes for Populus Euphratica Gene Expression Analysis during Abiotic Stresses by Quantitative Real-Time PCR. Physiol. Plant. 2014, 152, 529–545. [Google Scholar] [CrossRef]
- Grimplet, J.; Agudelo-Romero, P.; Teixeira, R.T.; Martinez-Zapater, J.M.; Fortes, A.M. Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses. Front. Plant Sci. 2016, 7, 353. [Google Scholar] [CrossRef]
- Agudelo-Romero, P.; Erban, A.; Rego, C.; Carbonell-Bejerano, P.; Nascimento, T.; Sousa, L.; Martínez-Zapater, J.M.; Kopka, J.; Fortes, A.M. Transcriptome and Metabolome Reprogramming in Vitis vinifera Cv. Trincadeira Berries upon Infection with Botrytis cinerea. J. Exp. Bot. 2015, 66, 1769–1785. [Google Scholar] [CrossRef]
- Harberd, N.P.; Belfield, E.; Yasumura, Y. The Angiosperm Gibberellin-GID1-DELLA Growth Regulatory Mecha nism: How an “Inhibitor of an Inhibitor” Enables Flexible Response to Fluctuating Environments. Plant Cell 2009, 21, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, J.; Han, S.; Chong, S.L.; Meng, G.; Song, M.; Wang, Y.; Zhou, S.; Liu, C.; Lou, L.; et al. The Chro mosome-Scale Genome of Phoebe Bournei Reveals Contrasting Fates of Terpene Synthase (TPS)-a and TPS-b Subfamilies. Plant Commun. 2022, 3, 100410. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yan, Q.; Li, J.; Feng, L.; Zhang, Y.; Xu, J.; Xia, R.; Zeng, Z.; Liu, Y. The GRAS Gene Family and Its Roles in Seed Development in Litchi (Litchi chinensis Sonn). BMC Plant Biol. 2021, 21, 423. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Manuel, M. A New Semi-Subterranean Diving Beetle of the Hydroporus Normandi-Complex from South-Eastern France, with Notes on Other Taxa of the Complex (Coleoptera: Dytiscidae). Zootaxa 2013, 3652, 453. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Pan, Y.; Huang, H.; Li, C.; Li, G.; Tong, Z. Transcriptomic Profiling and Identification of Candidate Genes in Two Phoebe Bournei Ecotypes with Contrasting Cold Stress Responses. Trees 2018, 32, 1315–1333. [Google Scholar] [CrossRef]
Member | Number of Amino Acid | Molecular Weight | Theoretical pI | Instability Index | Grand Average of Hydropathicity | Domain (aa) | Intron |
---|---|---|---|---|---|---|---|
PbGRAS1 | 684 | 76,352.99 | 5.91 | 60.92 | −0.415 | 366 | 0 |
PbGRAS2 | 601 | 66,265.46 | 6.35 | 61.97 | −0.149 | 364 | 0 |
PbGRAS3 | 522 | 59,304.67 | 5.94 | 48.53 | −0.263 | 297 | 0 |
PbGRAS4 | 456 | 49,271.71 | 5.5 | 51.05 | −0.132 | 356 | 0 |
PbGRAS5 | 119 | 13,682.77 | 8.46 | 39.37 | −0.206 | 116 | 0 |
PbGRAS6 | 605 | 67,162.22 | 5.54 | 40.94 | −0.315 | 369 | 1 |
PbGRAS7 | 406 | 44,804.64 | 5.47 | 58.55 | −0.245 | 360 | 0 |
PbGRAS8 | 542 | 60,896.42 | 5.26 | 55.46 | −0.52 | 329 | 1 |
PbGRAS9 | 407 | 45,766.31 | 7.25 | 46.25 | −0.329 | 200 | 0 |
PbGRAS10 | 577 | 64,480.59 | 5.72 | 56.43 | −0.418 | 369 | 1 |
PbGRAS11 | 578 | 64,135.67 | 5.51 | 51.57 | −0.206 | 351 | 1 |
PbGRAS12 | 443 | 50,201.97 | 6.11 | 43.72 | −0.368 | 366 | 0 |
PbGRAS13 | 433 | 48,160.99 | 9.95 | 49.35 | −0.377 | 298 | 0 |
PbGRAS14 | 595 | 64,855.31 | 5.24 | 45.09 | −0.236 | 366 | 1 |
PbGRAS15 | 515 | 56,248.95 | 5.28 | 44.28 | −0.229 | 385 | 0 |
PbGRAS16 | 533 | 58,213.08 | 5.17 | 47.33 | −0.178 | 358 | 0 |
PbGRAS17 | 595 | 66,650.92 | 7.87 | 47.27 | −0.097 | 374 | 1 |
PbGRAS18 | 723 | 80,619.74 | 5.5 | 51.06 | −0.284 | 420 | 5 |
PbGRAS19 | 479 | 54,200.05 | 6.29 | 47.41 | −0.242 | 263 | 0 |
PbGRAS20 | 489 | 54,185.93 | 6.3 | 53.76 | −0.139 | 345 | 1 |
PbGRAS21 | 396 | 44,773.87 | 6.19 | 52.67 | −0.24 | 365 | 0 |
PbGRAS22 | 755 | 82,162.03 | 5.91 | 59.13 | −0.218 | 351 | 0 |
PbGRAS23 | 359 | 40,017.22 | 9.52 | 60.39 | −0.023 | 341 | 0 |
PbGRAS24 | 414 | 46,394.48 | 5.14 | 45.58 | −0.259 | 356 | 1 |
PbGRAS25 | 292 | 33,025.63 | 7.1 | 49.73 | 0.218 | 278 | 0 |
PbGRAS26 | 495 | 55,471.75 | 5.63 | 54.13 | −0.385 | 351 | 1 |
PbGRAS27 | 406 | 45,917.81 | 5.28 | 54.2 | −0.367 | 371 | 0 |
PbGRAS28 | 505 | 56,314.09 | 5.88 | 42.94 | −0.129 | 354 | 0 |
PbGRAS29 | 426 | 46,516.11 | 5.27 | 53.99 | −0.293 | 246 | 3 |
PbGRAS30 | 426 | 48,266.75 | 5.72 | 40.08 | −0.014 | 346 | 0 |
PbGRAS31 | 452 | 51,198.4 | 6.23 | 47.47 | −0.292 | 369 | 0 |
PbGRAS32 | 548 | 60,019.12 | 5.69 | 57.13 | −0.52 | 400 | 0 |
PbGRAS33 | 547 | 59,484.68 | 5.62 | 46.5 | −0.071 | 369 | 0 |
PbGRAS34 | 762 | 85,476.64 | 5.08 | 50.09 | −0.496 | 372 | 0 |
PbGRAS35 | 593 | 67,285.73 | 5.14 | 39.67 | −0.224 | 367 | 0 |
PbGRAS36 | 588 | 65,880.12 | 5.49 | 51.14 | −0.443 | 355 | 0 |
PbGRAS37 | 499 | 56,222.09 | 4.86 | 35.3 | −0.132 | 276 | 0 |
PbGRAS38 | 777 | 83,607.35 | 5.81 | 52.8 | −0.168 | 358 | 0 |
PbGRAS39 | 582 | 64,216.62 | 5.01 | 48.6 | −0.25 | 368 | 0 |
PbGRAS40 | 756 | 84,836.7 | 5.1 | 47.53 | −0.555 | 372 | 0 |
PbGRAS41 | 586 | 65,363.6 | 5.7 | 48.7 | −0.304 | 370 | 1 |
PbGRAS42 | 582 | 65,227.44 | 5.31 | 53.36 | −0.448 | 369 | 0 |
PbGRAS43 | 545 | 61,817.03 | 4.91 | 46.94 | −0.354 | 369 | 0 |
PbGRAS44 | 597 | 65,108.66 | 8.49 | 56.88 | −0.344 | 367 | 0 |
PbGRAS45 | 474 | 53,276.12 | 5.76 | 52.93 | −0.189 | 420 | 0 |
PbGRAS46 | 495 | 55,057.59 | 5.38 | 53.23 | −0.343 | 381 | 0 |
PbGRAS47 | 652 | 73,122.66 | 6.4 | 60.59 | −0.443 | 370 | 0 |
PbGRAS48 | 243 | 27,935.42 | 6.9 | 40.59 | 0.029 | 240 | 0 |
PbGRAS49 | 681 | 75,504.3 | 5.71 | 55.36 | −0.333 | 364 | 1 |
PbGRAS50 | 412 | 46,004.99 | 7.22 | 50.54 | −0.125 | 371 | 0 |
PbGRAS51 | 653 | 71,489.74 | 6.02 | 54.1 | −0.236 | 363 | 0 |
PbGRAS52 | 460 | 50,659.31 | 5.91 | 46.48 | −0.223 | 337 | 1 |
PbGRAS53 | 237 | 26,573 | 5.9 | 40.48 | 0.195 | 155 | 1 |
PbGRAS54 | 606 | 68,104.02 | 5.54 | 32.34 | −0.098 | 372 | 1 |
PbGRAS55 | 453 | 50,294.48 | 5.66 | 47.16 | −0.077 | 394 | 2 |
PbGRAS56 | 426 | 47,508.06 | 4.99 | 57.1 | −0.507 | 142 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.; Fan, D.; Lan, S.; Cheng, S.; Chen, S.; Lin, Y.; Cao, S. Genome-Wide Identification, Expression and Stress Analysis of the GRAS Gene Family in Phoebe bournei. Plants 2023, 12, 2048. https://doi.org/10.3390/plants12102048
Chang J, Fan D, Lan S, Cheng S, Chen S, Lin Y, Cao S. Genome-Wide Identification, Expression and Stress Analysis of the GRAS Gene Family in Phoebe bournei. Plants. 2023; 12(10):2048. https://doi.org/10.3390/plants12102048
Chicago/Turabian StyleChang, Jiarui, Dunjin Fan, Shuoxian Lan, Shengze Cheng, Shipin Chen, Yuling Lin, and Shijiang Cao. 2023. "Genome-Wide Identification, Expression and Stress Analysis of the GRAS Gene Family in Phoebe bournei" Plants 12, no. 10: 2048. https://doi.org/10.3390/plants12102048
APA StyleChang, J., Fan, D., Lan, S., Cheng, S., Chen, S., Lin, Y., & Cao, S. (2023). Genome-Wide Identification, Expression and Stress Analysis of the GRAS Gene Family in Phoebe bournei. Plants, 12(10), 2048. https://doi.org/10.3390/plants12102048