Ketols Emerge as Potent Oxylipin Signals Regulating Diverse Physiological Processes in Plants
Abstract
:1. The Lipoxygenase Pathway: CYP74 Enzymes
2. Biosynthesis and Occurrence of Ketols
3. Ketols Serve Signaling Roles in Plant–Pathogen Interactions
4. The Involvement of Ketols in Plant–Herbivore Interactions
5. Ketols Are Involved in Abiotic Stress Response
6. Ketols Contribute to the Normal Growth and Reproductive Development of Plants
The Literature | Reference in Review | Plant Physiological Response Where Ketols Have a Role |
---|---|---|
Yan et al. 2012 | [1] | Defense against insects |
Wang et al. 2020 | [22] | Defense against pathogens |
He et al. 2020 | [25] | Defense against insects |
Itoh et al. 2002 | [26] | Defense against pathogens |
Stumpe et al. 2006 | [28] | Defense against pathogens |
Grechkin et al. 2000 | [35] | Defense against pathogens |
Endo et al. 2013 | [40] | Defense against pathogens |
Wang et al. 2016 | [41] | Defense against pathogens |
Wang et al. 2020 | [42] | Defense against pathogens |
Gorman et al. 2021 | [43] | Defense against pathogens |
Wang et al. 2021 | [44] | Defense against pathogens |
Chuang et al. 2014 | [45] | Defense against insects |
Tzin et al. 2015 | [46] | Defense against insects |
Tzin et al. 2017 | [47] | Defense against insects |
Koeduka et al. 2022 | [48] | Defense against insects |
Fitoussi et al. 2021 | [49] | Defense against nematodes |
Gao et al. 2008 | [50] | Defense against nematodes |
Gorina et al. 2022 | [51] | Defense against abiotic stress |
Haque et al. 2016 | [52] | Defense against abiotic stress |
Lõhelaid et al. 2015 | [53] | Defense against abiotic stress |
Kawakami et al. 2015 | [54] | Plant growth/development |
Xu et al. 2006 | [55] | Plant growth/development |
Corbesier et al. 2006 | [56] | Plant growth/development |
Yokoyama et al. 2000 | [57] | Plant growth/development |
Suzuki et al. 2003 | [58] | Plant growth/development |
Kulma and Szopa, 2006 | [59] | Plant growth/development |
Iriti et al. 2013 | [60] | Plant growth/development |
Yamaguchi et al. 2001 | [61] | Plant growth/development |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, Y.; Christensen, S.; Isakeit, T.; Engelberth, J.; Meeley, R.; Hayward, A.; Emergy, R.J.N.; Kolomiets, M.V. Disruption of OPR7 and OPR8 Reveals the Versatile Functions of Jasmonic Acid in Maize Development and Defense. Plant Cell 2012, 24, 1420–1436. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Huang, P.-C.; Borrego, E.; Kolomiets, M. New perspectives into jasmonate roles in maize. Plant Signal. Behav. 2014, 9, e970442. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.M.; Cheng, C.; Sheng, J.; Wang, W.; Ren, H.; Aslam, M.; Yan, Y. Interruption of Jasmonic Acid Biosynthesis Causes Differential Responses in the Roots and Shoots of Maize Seedlings against Salt Stress. Int. J. Mol. Sci. 2019, 20, 6202. [Google Scholar] [CrossRef] [PubMed]
- Savchenko, T.V.; Zastrijnaja, O.M.; Klimov, V.V. Oxylipins and plant abiotic stress resistance. Biochemistry 2014, 79, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Feussner, I.; Wasternack, C. The lipoxygenase pathway. Annu. Rev. Plant Biol. 2002, 53, 275–297. [Google Scholar] [CrossRef]
- Borrego, E.J.; Kolomiets, M.V. Synthesis and Functions of Jasmonates in Maize. Plants 2016, 5, 41. [Google Scholar] [CrossRef]
- Weichert, H.; Stenzel, I.; Berndt, E.; Wasternack, C.; Feussner, I. Metabolic profiling of oxylipins upon salicylate treatment in barley leaves—Preferential induction of the reductase pathway by salicylate. FEBS Lett. 1999, 464, 133–137. [Google Scholar] [CrossRef]
- Feussner, I.; Kühn, H.; Wasternack, C. Lipoxygenase-dependent degradation of storage lipids. Trends Plant Sci. 2001, 6, 268–273. [Google Scholar] [CrossRef]
- Kawano, T. Roles of the reactive oxygen species-generated peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 2003, 21, 829–837. [Google Scholar] [CrossRef]
- Howe, G.A.; Schilmiller, A.L. Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol. 2002, 5, 230–236. [Google Scholar] [CrossRef]
- Grechkin, A.N. Hydroperoxide lyase and divinyl ether synthase. Prostaglandins Other Lipid Mediat. 2002, 68, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Liavonchanka, A.; Feussner, I. Lipoxygenases: Occurrence, functions, and catalysis. J. Plant Physiol. 2006, 163, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Stumpe, M.; Feussner, I. Formation of oxylipins by CYP74 enzymes. Phytochem. Rev. 2006, 5, 347–357. [Google Scholar] [CrossRef]
- Lee, D.-S.; Nioche, P.; Hamberg, M.; Raman, C.S. Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 2008, 455, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Toporkova, Y.Y.; Askarova, E.K.; Gorina, S.S.; Ogorodnikova, A.V.; Mukhtarova, L.S.; Grechkin, A.N. Epoxyalcohol synthase activity of the CYP74B enzymes of higher plants. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158743. [Google Scholar] [CrossRef]
- Toporkova, Y.Y.; Smirnova, E.O.; Gorina, S.S.; Mukhtarova, L.S.; Grechkin, A.N. Detection of the first higher plant epoxyalcohol synthase: Molecular cloning and characterisation of the CYP74M2 enzyme of spikemoss Selaginella moellendorffii. Phytochemistry 2018, 156, 73–82. [Google Scholar] [CrossRef]
- Christensen, S.A.; Huffaker, A.; Kaplan, F.; Schmelz, E.A. Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Proc. Natl. Acad. Sci. USA 2015, 112, 11407–11412. [Google Scholar] [CrossRef]
- Grechkin, A.N.; Ogorodnikova, A.V.; Egorova, A.M.; Mukhitova, F.K.; Ilyina, T.M.; Khairutdinov, B.I. Allene Oxide Synthase Pathway in Cereal Roots: Detection of Novel Oxylipin Graminoxins. ChemistryOpen 2018, 7, 336–343. [Google Scholar] [CrossRef]
- Ogorodnikova, A.V.; Gorina, S.S.; Mukhtarova, L.S.; Mukhitova, F.K.; Toporkova, Y.Y.; Hamberg, M.; Grechkin, A.N. Stereospecific biosynthesis of (9S,13S)-10-oxo-phytoenoic acid in young maize roots. Biochim. Biophys. Acta 2015, 1851, 1262–1270. [Google Scholar] [CrossRef]
- Blée, E. Phytooxylipins and plant defense reactions. Prog. Lipid Res. 1998, 37, 33–72. [Google Scholar] [CrossRef]
- Deboever, E.; Deleu, M.; Mongrand, S.; Lins, L.; Fauconnier, M.-L. Plant–pathogen Interactions: Underestimated Roles of Phyto-oxylipins. Trends Plant Sci. 2020, 25, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-D.; Gorman, Z.; Huang, P.-C.; Kenerley, C.M.; Kolomiets, M.V. Trichoderma virens colonization of maize roots triggers rapid accumulation of 12-oxophytodienoate and two γ-ketols in leaves as priming agents of induced systemic resistance. Plant Signal. Behav. 2020, 15, 1792187. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.J.; Berger, S. Reactive electrophilic oxylipins: Pattern recognition and signaling. Phytochemistry 2009, 70, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Maucher, H.; Hause, B.; Feussner, I.; Ziegler, J.; Wasternack, C. Allene oxide synthases of barley (Hordeum vulgare cv. Salome): Tissue specific regulation in seedling development. Plant J. 2000, 21, 199–213. [Google Scholar] [CrossRef]
- He, Y.; Borrego, E.J.; Gorman, Z.; Huang, P.-C.; Kolomiets, M.V. Relative contribution of LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin and hormone signature in Zea mays (maize). Phytochemistry 2020, 174, 112334. [Google Scholar] [CrossRef]
- Itoh, A.; Schilmiller, A.L.; McCaig, B.C.; Howe, G.A. Identification of a Jasmonate-regulated Allene Oxide Synthase That Metabolizes 9-Hydroperoxides of Linoleic and Linolenic Acids. J. Biol. Chem. 2002, 277, 46051–46058. [Google Scholar] [CrossRef]
- Pollmann, S.; Springer, A.; Rustgi, S.; Wettstein, D.V.; Kang, C.; Reinbothe, C.; Reinbothe, S. Substrate channeling in oxylipin biosynthesis through a protein complex in the plastid envelope of Arabidopsis thaliana. J. Exp. Bot. 2019, 70, 1483–1495. [Google Scholar] [CrossRef]
- Stumpe, M.; Göbel, C.; Demchenko, K.; Hoffmann, M.; Klösgen, R.B.; Pawlowski, K.; Feussner, I. Identification of an allene oxide synthase (CYP74C) that leads to formation of α-ketols from 9-hydroperoxides of linoleic and linolenic acid in below-ground organs of potato. Plant J. Cell Mol. Biol. 2006, 47, 883–896. [Google Scholar] [CrossRef]
- Scholz, J.; Brodhun, F.; Hornung, E.; Herrfurth, C.; Stumpe, M.; Beike, A.K.; Faltin, B.; Frank, W.; Reski, R.; Feussner, I. Biosynthesis of allene oxides in Physcomitrella patens. BMC Plant Biol. 2012, 12, 228. [Google Scholar] [CrossRef]
- Koeduka, T.; Ishizaki, K.; Mwenda, C.M.; Hori, K.; Sasaki-Sekimoto, Y.; Ohta, H.; Kohchi, T.; Matsui, K. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. Planta 2015, 242, 1175–1186. [Google Scholar] [CrossRef]
- Toporkova, Y.Y.; Smirnova, E.O.; Mukhtarova, L.S.; Gorina, S.S.; Grechkin, A.N. Catalysis by allene oxide synthases (CYP74A and CYP74C): Alterations by the Phe/Leu mutation at the SRS-1 region. Phytochemistry 2020, 169, 112152. [Google Scholar] [CrossRef] [PubMed]
- Toporkova, Y.Y.; Askarova, E.K.; Gorina, S.S.; Mukhtarova, L.S.; Grechkin, A.N. Oxylipin biosynthesis in spikemoss Selaginella moellendorffi: Identification of allene oxide synthase (CYP74L2) and hydroperoxide lyase (CYP74L1). Phytochemistry 2022, 195, 113051. [Google Scholar] [CrossRef] [PubMed]
- Yoeun, S.; Sukhanov, A.; Han, O. Separation of enzymatic functions and variation of spin state of rice allene oxide synthase-1 mutation of Phe-92 and Pro-430. Bioorg. Chem. 2016, 68, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Chen, Y.; Feng, A.; Zou, W.; Wang, D.; Lin, P.; Chen, Y.; You, C.; Que, Y.; Su, Y. The allene oxide synthase gene family in sugarcane and its involvement in disease resistance. Ind. Crops Prod. 2023, 192, 116136. [Google Scholar] [CrossRef]
- Grechkin, A.N.; Mukhtarova, L.S.; Hamberg, M. The lipoxygenase pathway in tulip (Tulipa gesneriana): Detection of the ketol route. Biochem. J. 2000, 352, 501–509. [Google Scholar] [CrossRef]
- Toporkova, Y.Y.; Smirnova, E.O.; Lantsova, N.V.; Mukhtarova, L.S.; Grechkin, A.N. Detection of the First Epoxyalcohol Synthase/Allene Oxide Synthase (CYP74 clan) in the Lancelet (Branchiostoma belcheri, Chordata). Int. J. Mol. Sci. 2021, 22, 4737. [Google Scholar] [CrossRef]
- Brash, A.R. Catalase-Related Allene Oxide Synthase, on a Biosynthetic Route to Fatty Acid Cyclopentenones: Expression and Assay of the Enzyme and Preparation of the 8R-HPETE Substrate. Methods Enzymol. 2018, 605, 51–68. [Google Scholar]
- Lõhelaid, H.; Samel, N. Eicosanoid Diversity of Stony Corals. Mar. Drugs 2018, 16, 10. [Google Scholar] [CrossRef]
- Resemann, H.C.; Feussner, K.; Hornung, E.; Feussner, I. A non-targeted metabolomics analysis identifies wound-induced oxylipins in Physcomitrium patens. Front. Plant Sci. 2023, 13, 1085915. [Google Scholar] [CrossRef]
- Endo, J.-I.; Takahashi, W.; Yokoyama, M.; Tanaka, O. Induction of gene expression for systemic acquired resistance in tobacco by 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (KODA). Can. J. Plant Sci. 2013, 93, 827–830. [Google Scholar] [CrossRef]
- Wang, S.; Saito, T.; Ohkawa, K.; Ohara, H.; Shishido, M.; Ikeura, H.; Takagi, K.; Ogawa, S.; Yokoyama, M.; Kondo, S. α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromantic volatiles in grapes infected by a pathogen (Glomerella cingulata). J. Plant Physiol. 2016, 192, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-D.; Borrego, E.J.; Kenerley, C.M.; Kolomiets, M.V. Oxylipins Other Than Jasmonic Acid Are Xylem-Resident Signals Regulating Systemic Resistance Induced by Trichoderma virens in Maize. Plant Cell 2020, 32, 166–185. [Google Scholar] [CrossRef] [PubMed]
- Gorman, Z.; Tolley, J.P.; Koiwa, H.; Kolomiets, M.V. The Synthesis of Pentyl Leaf Volatiles and Their Role in Resistance to Anthracnose Leaf Blight. Front. Plant Sci. 2021, 12, 719587. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Y.; Wang, F.; Huang, P.-C.; Wang, Y.; Ruan, X.; Ma, L.; Li, X.; Kolomiets, M.V.; Gao, X. Transcriptome and Oxylipin Profiling Joint Analysis Reveals Opposite Roles of 9-Oxylipins and Jasmonic Acid in Maize Resistance to Gibberella Stalk Rot. Front. Plant Sci. 2021, 12, 699146. [Google Scholar] [CrossRef]
- Chuang, W.-P.; Ray, S.; Acevedo, F.E.; Peiffer, M.; Felton, G.W.; Luthe, D.S. Herbivore Cues from the Fall Armyworm (Spodoptera frugiperda) Larvae Trigger Direct Defenses in Maize. Mol. Plant-Microbe Interact. 2014, 27, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Tzin, V.; Fernandez-Pozo, N.; Richter, A.; Schmelz, E.A.; Schoettner, M.; Schäfer, M.; Ahern, K.R.; Meihls, L.N.; Kaur, H.; Huffaker, A.; et al. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays. Plant Physiol. 2015, 169, 1727–1743. [Google Scholar] [CrossRef] [PubMed]
- Tzin, V.; Hojo, Y.; Strickler, S.R.; Bartsch, L.J.; Archer, C.M.; Ahern, K.R.; Zhou, S.; Christensen, S.A.; Galis, I.; Mueller, L.A.; et al. Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. J. Exp. Bot. 2017, 68, 4709–4723. [Google Scholar] [CrossRef]
- Koeduka, T.; Takaishi, M.; Suzuki, M.; Nishihama, R.; Kohchi, T.; Uefune, M.; Matsui, K. CRISPR/Cas9-mediated disruption of ALLENE OXIDE SYNTHASE results in defective 12-oxo-phytodienoic acid accumulation and reduced defense against spider mite (Tetranychus urticae) in liverwort (Marchantia polymorpha). Plant Biotechnol. 2022, 39, 191–194. [Google Scholar] [CrossRef]
- Fitoussi, N.; Borrego, E.; Kolomiets, M.V.; Qing, X.; Bucki, P.; Sela, N.; Belausov, E.; Miyara, S.B. Oxylipins are implicated as communication signals in tomato-root-knot nematode (Meloidogyne javanica) interaction. Sci. Rep. 2021, 11, 326. [Google Scholar] [CrossRef]
- Gao, X.; Starr, J.; Göbel, C.; Engelberth, J.; Feussner, I.; Tumlinson, J.; Kolomiets, M. Maize 9-Lipoxygenase ZmLOX3 Controls Development, Root-Specific Expression of Defense Genes, and Resistance to Root-Knot Nematodes. Mol. Plant-Microbe Interact. 2008, 21, 98–109. [Google Scholar] [CrossRef]
- Gorina, S.; Ogorodnikova, A.; Mukhtarova, L.; Toporkova, Y. Gene Expression Analysis of Potato (Solanum tuberosum L.) Lipoxygenase Cascade and Oxylipin Signature under Abiotic Stress. Plants 2022, 11, 683. [Google Scholar] [CrossRef]
- Haque, E.; Osmani, A.A.; Ahmadi, S.H.; Ogawa, S.; Takagi, K.; Yokoyama, M.; Ban, T. KODA, an a-ketol of linolenic acid provides wide recovery ability of wheat against various abiotic stresses. Biocatal. Agric. Biotechnol. 2016, 7, 67–75. [Google Scholar] [CrossRef]
- Lõhelaid, H.; Teder, T.; Samel, N. Lipoxygenase-allene oxide synthase pathway in octocoral thermal stress response. Coral Reefs 2015, 34, 143–154. [Google Scholar] [CrossRef]
- Kawakami, H.; Yokoyama, M.; Takagi, K.; Ogawa, S.; Hara, K.; Komine, M.; Yamamoto, Y. 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (KODA) enhances adventitious root redifferentiation from Swertia japonica callus. Vitr. Cell. Dev. Biol. 2015, 51, 201–204. [Google Scholar] [CrossRef]
- Xu, Y.; Ishida, H.; Reisen, D.; Hanson, M.R. Upregulation of a tonoplast-localized cytochrome P450 during petal senescence in Petunia inflata. BMC Plant Biol. 2006, 6, 8. [Google Scholar] [CrossRef]
- Corbesier, L.; Coupland, G. The quest for florigen: A review of recent progress. J. Exp. Bot. 2006, 57, 3395–3403. [Google Scholar] [CrossRef]
- Yokoyama, M.; Yamaguchi, S.; Inomata, S.; Komatsu, K.; Yoshida, S.; Iida, T.; Yokokawa, Y.; Yamaguchi, M.; Kaihara, S.; Takimoto, A. Stress-Induced Factor Involved in Flower Formation of Lemna is an α-Ketol Derivative of Linolenic Acid. Plant Cell Physiol. 2000, 41, 110–113. [Google Scholar] [CrossRef]
- Suzuki, M.; Yamaguchi, S.; Iida, T.; Hashimoto, I.; Teranishi, H.; Mizoguchi, M.; Yano, F.; Todoroki, Y.; Watanabe, N.; Yokoyama, M. Endogenous a-Ketol Linolenic Acid Levels in Short Day-Induced Cotyledons are Closely Related to Flower Induction in Pharbitis nil. Plant Cell Physiol. 2003, 44, 35–43. [Google Scholar] [CrossRef]
- Kulma, A.; Szopa, J. Catecholamines are active compounds in plants. Plant Sci. 2006, 172, 433–440. [Google Scholar] [CrossRef]
- Iriti, M. Plant Neurobiology, a Fascinating Perspective in the Field of Research on Plant Secondary Metabolites. Int. J. Mol. Sci. 2013, 14, 10819–10821. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Yokoyama, M.; Iida, T.; Okai, M.; Tanaka, O.; Takimoto, A. Identification of a component that induces flowering of Lemna among the reaction products of alpha-ketol linolenic acid (FIF) and norephinephrine. Plant Cell Physiol. 2001, 42, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berg-Falloure, K.M.; Kolomiets, M.V. Ketols Emerge as Potent Oxylipin Signals Regulating Diverse Physiological Processes in Plants. Plants 2023, 12, 2088. https://doi.org/10.3390/plants12112088
Berg-Falloure KM, Kolomiets MV. Ketols Emerge as Potent Oxylipin Signals Regulating Diverse Physiological Processes in Plants. Plants. 2023; 12(11):2088. https://doi.org/10.3390/plants12112088
Chicago/Turabian StyleBerg-Falloure, Katherine M., and Michael V. Kolomiets. 2023. "Ketols Emerge as Potent Oxylipin Signals Regulating Diverse Physiological Processes in Plants" Plants 12, no. 11: 2088. https://doi.org/10.3390/plants12112088
APA StyleBerg-Falloure, K. M., & Kolomiets, M. V. (2023). Ketols Emerge as Potent Oxylipin Signals Regulating Diverse Physiological Processes in Plants. Plants, 12(11), 2088. https://doi.org/10.3390/plants12112088