Identification of GA2ox Family Genes and Expression Analysis under Gibberellin Treatment in Pineapple (Ananas comosus (L.) Merr.)
Abstract
:1. Introduction
2. Results
2.1. Identification and Physicochemical Property Analysis of AcGA2ox Gene Family
2.2. Construction and Analysis of Phylogenetic Tree of AcGA2ox Members
2.3. Collinearity Analysis of AcGA2ox Genes
2.4. Gene Structure and Cis-Acting Element Analysis of Conserved Motif of AcGA2ox Gene Family
2.5. The AcGA2ox Gene Family Showed a Tissue-Specific Expression Pattern
2.6. Analysis of GA Hormone-Induced Expression Pattern of AcGA2ox Gene Family
2.7. Subcellular Localization of AcGA2ox Proteins
3. Discussion
4. Materials and Methods
4.1. Identification of GA2ox Gene Family Members and Analysis of Physical and Chemical Properties of Pineapple Protein
4.2. Construction of Phylogenetic Tree of GA2ox Gene Family
4.3. Prediction of Gene Structure and Cis-Acting Element of Protein Conserved Domain
4.4. Chromosome Location and Collinearity Analysis
4.5. Expression Analysis of GA2ox Gene Family in Different Tissues of Pineapple
4.6. Plant Material and Sample Preparation
4.7. RNA Isolation and qRT-PCR Analysis
4.8. Subcellular Localization of GA2ox Gene Family in Pineapple
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.L.; Ni, S.J.; Zhang, Z.; Zhao, Y.Z.; Li, X.; Mao, T.; Liu, Y.; Liu, F.C. Sustained release effects of exogenous GA3 on germination and growth of rice seedling under salt stress. China Rice 2018, 24, 42–46. [Google Scholar]
- Ouellette, L.; Tuan, P.A.; Toora, P.K.; Yamaguchi, S.; Ayele, B.T. Heterologous functional analysis and expression patterns of gibberellin 2-oxidase genes of barley (Hordeum vulgare L.). Gene 2023, 861, 147255. [Google Scholar] [PubMed]
- Wang, F.; Wang, M.; Jiang, X.J.; Bai, C.Q.; Lin, J. Effects of Gibberellin Acid (GA3) of Leaf Characters and Panicle Characters at Different Stages of Lu18S. Hunan Agric. Sci. 2018, 4, 27–30. [Google Scholar]
- Sun, X.; Wang, K.C.; Xue, Q.; Mao, X.M.; Zeng, J.L.; Chen, Q.F. Effects of gibberellin soaking on nutrient metabolism and anthesis of dormant saffron. Chin. J. Soil Sci. 2018, 49, 355–361. [Google Scholar]
- Tang, D.; Wen, T.J.; Long, L.U.; Chang, X.; Jian-Fang, H.U. Effects of gibberellin treatment on flowering-time of ‘Fenghou’ grapevin and its molecular mechanisms. J. China Agric. Univ. 2015, 20, 92–98. [Google Scholar]
- Salazar-Cerezo, S.; Martínez-Montiel, N.; García-Sánchez, J.; Pérez-y-Terrón, R.; Martínez-Contreras, R.D. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiol. Res. 2018, 208, 85–98. [Google Scholar]
- Zhang, X.R. Auxin and Gibberellins Involved in the Changes of Maize Root Morphology during Phosphorous Starvation. Master’s Thesis, School of Life Science, Shandong University, Jinan, China, 2011. [Google Scholar]
- Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [PubMed]
- Li, Q.; Wu, J.M.; Liang, H.; Huang, X.; Qiu, L.H. Gibberellins biosynthesis and signaling transduction pathway in higher plant. Biotechnol. Bull. 2014, 10, 16–22. [Google Scholar]
- Thomas, S.G.; Phillips, A.L.; Hedden, P. Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc. Natl. Acad. Sci. USA 1999, 96, 4698–4703. [Google Scholar]
- Lee, D.J.; Zeevaart, J.A.D. Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol. 2005, 138, 243–254. [Google Scholar]
- Varbanova, M.; Yamaguchi, S.; Yang, Y.; McKelvey, K.; Hanada, A.; Borochov, R.; Yu, F.; Jikumara, Y.; Ross, J.; Cortes, D.; et al. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 2007, 19, 32–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, T.; Kobayashi, M.; Itoh, H.; Tagiri, A.; Kayano, T.; Tanaka, H.; Iwahori, S.; Matsuoka, M. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol. 2001, 125, 1508–1516. [Google Scholar] [PubMed] [Green Version]
- Ribeiro, D.M.; Araújo, W.L.; Fernie, A.R.; Schippers, J.H.M.; Mueller-Roeber, B. Translatome metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. J. Exp. Bot. 2012, 63, 2769–2786. [Google Scholar] [PubMed]
- Yang, Y.H.; Wang, S.N.; Xu, H.; Sun, H.Y.; Zhao, H.S.; Chen, D.F.; Gao, Z.M. Genome-wide identification of the enzyme genes involved in gibberellin biosynthesis and their expression analysis in moso bamboo. Genom. Appl. Biol. 2018, 37, 3966–3977. [Google Scholar]
- Jiang, S.; Dai, C.B.; Sun, Y.H. Cloning, expression and subcellular localization of gibberellin 2-oxidase gene NtGA2ox1 from Nicotinana tobacum. Genom. Appl. Biol. 2020, 39, 132–137. [Google Scholar]
- Giacomelli, L.; Rota-Stabelli, O.; Masuero, D.; Acheampong, A.K.; Moretto, M.; Caputi, L.; Vrhovsek, U.; Moser, C. Gibberellin metabolism in Vitis vinifera L. during bloom fruit-set: Functional characterization evolution of grapevine gibberellin oxidases. J. Exp. Bot. 2013, 64, 4403–4419. [Google Scholar]
- Appleford, N.E.J.; Wilkinson, M.D.; Ma, Q.; Evans, D.J.; Stone, M.C.; Pearce, S.P.; Powers, S.J.; Thomas, S.G.; Jones, H.D.; Phillips, A.L.; et al. Decreased shoot stature grain α-amylase activity following ectopic expression of a gibberellin 2-oxidase gene in transgenic wheat. J. Exp. Bot. 2007, 58, 3213–3226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, C.; Mei, Z.; Duan, J.; Chen, H.; Feng, H.; Cai, W. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress. PLoS ONE 2014, 9, e87110. [Google Scholar]
- Lo, S.-F.; Yang, S.-Y.; Chen, K.-T.; Hsing, Y.-I.; Zeevaart, J.A.; Chen, L.-J.; Yu, S.-M. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 2008, 20, 2603–2618. [Google Scholar]
- Huang, J.; Tang, D.; Shen, Y.; Qin, B.; Hong, L.; You, A.; Li, M.; Wang, X.; Yu, H.; Gu, M.; et al. Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J. Genet. Genom. 2010, 37, 23–36. [Google Scholar] [CrossRef]
- Moyle, R.; Fairbairn, D.J.; Ripi, J.; Crowe, M.; Botella, J.R. Developing pineapple fruit has a small transcriptome dominated by metallothionein. J. Exp. Bot. 2005, 56, 101–112. [Google Scholar] [PubMed] [Green Version]
- Chen, P.; Li, Y.; Zhao, L.; Hou, Z.; Yan, M.; Hu, B.; Liu, Y.; Azam, S.M.; Zhang, Z.; Rahman, Z.U.; et al. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development. Front. Plant Sci. 2017, 8, 2150. [Google Scholar] [PubMed]
- Zhang, Q.; Rao, X.; Zhang, L.; He, C.; Yang, F.; Zhu, S. Mechanism of internal browning of pineapple: The role of gibberellins catabolism gene (AcGA2ox) and GAs. Sci. Rep. 2016, 6, 33344–33359. [Google Scholar]
- Kim, G.B.; Son, S.U.; Yu, H.J.; Mun, J.H. MtGA2ox10 encoding C20-GA2-oxidase regulates rhizobial infection and nodule development in Medicago truncatula. Sci. Rep. 2019, 9, 5952–5966. [Google Scholar]
- Li, Y.; Shan, X.; Jiang, Z.; Zhao, L.; Jin, F. Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions. Plant Physiol. Biochem. 2021, 166, 621–633. [Google Scholar]
- Zhang, J.Q.; Hu, H.K.; Xu, C.M.; Hu, Y.Y.; Huang, Y.J.; Xia, G.H.; Huang, J.Q.; Chang, Y.Y.; Ye, L.; Lou, H.Q.; et al. Cloning, Subcellular Localization and Function Verification of Gibberellin 2-Oxidase Gene in Walnut (Juglans regia). Sci. Silvae Sin. 2019, 55, 50–60. [Google Scholar]
- Xie, Y.; Chen, L. Epigenetic Regulation of Gibberellin Metabolism and Signaling. Plant Cell Physiol. 2020, 61, 1912–1918. [Google Scholar]
- Yang, Y.; Wassie, M.; Liu, N.-F.; Deng, H.; Zeng, Y.-B.; Xu, Q.; Hu, L.-X. Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass (Cynodon dactylon). Front. Plant Sci. 2022, 13, 95–107. [Google Scholar]
- Liu, X.; Wang, J.; Sabir, I.A.; Sun, W.; Wang, L.; Xu, Y.; Zhang, N.; Liu, H.; Jiu, S.; Liu, L.; et al. PavGA2ox-2L inhibits the plant growth and development interacting with PavDWARF in sweet cherry (Prunus avium L.). Plant Physiol. Biochem. 2022, 186, 299–309. [Google Scholar]
- Wang, Y.; Du, F.; Wang, J.; Li, Y.; Zhang, Y.; Zhao, X.; Zheng, T.; Li, Z.; Xu, J.; Wang, W.; et al. Molecular Dissection of the Gene OsGA2ox8 Conferring Osmotic Stress Tolerance in Rice. Int. J. Mol. Sci. 2021, 22, 9107. [Google Scholar] [CrossRef]
- Albertos, P.; Wlk, T.; Griffiths, J.; Pimenta Lange, M.J.; Unterholzner, S.J.; Rozhon, W.; Lange, T.; Jones, A.M.; Poppenberger, B. Brassinosteroid-regulated bHLH transcription factor CESTA induces the gibberellin 2-oxidase GA2ox7. Plant Physiol. 2022, 188, 2012–2025. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liang, G.; Lu, S.; Wang, P.; Liu, T.; Ma, Z.; Zuo, C.; Sun, X.; Chen, B.; Mao, J. Genome-Wide Identification and Expression Analysis of GA2ox, GA3ox, and GA20ox Are Related to Gibberellin Oxidase Genes in Grape (Vitis vinifera L.). Genes 2019, 10, 680–691. [Google Scholar] [PubMed] [Green Version]
- Han, F.; Zhu, B. Evolutionary analysis of three gibberellin oxidase genes in rice, Arabidopsis, and soybean. Genes 2011, 473, 23–35. [Google Scholar]
- Huang, Y.; Liu, Y.; Zhang, M.; Chai, M.; He, Q.; Jakanda, B.H.; Chen, F.; Chen, H.; Jin, X.; Cai, H.; et al. Genome-wide identification and expression analysis of the ERF transcription factor family in pineapple (Ananas comosus (L.) Merr.). PeerJ 2020, 8, 15–26. [Google Scholar] [CrossRef]
- Wuddineh, W.A.; Mazarei, M.; Zhang, J.; Poovaiah, C.R.; Mann, D.G.J.; Ziebell, A.; Sykes, R.W.; Davis, M.F.; Udvardi, M.K.; Stewart, C.N. Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance. Plant Biotechnol. J. 2015, 13, 636–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, A.O.; Nunes-Nesi, A.; Araújo, W.L.; Fernie, A.R. To Bring Flowers or Do a Runner: Gibberellins Make the Decision. Mol. Plant 2018, 11, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wan, H.; Zhu, W.; Dai, X.; Yu, Y.; Zeng, C. Identification and Expression Analysis of the Isopentenyl Transferase (IPT) Gene Family under Lack of Nitrogen Stress in Oilseed (Brassica napus L.). Plants 2023, 12, 2166–2186. [Google Scholar] [CrossRef]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; López, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Chao, J.; Li, Z.; Sun, Y.; Aluko, O.O.; Wu, X.; Wang, Q.; Liu, G. MG2C: A user-friendly online tool for drawing genetic maps. Mol. Hortic. 2021, 1, 16. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Z.; Wang, L.; Li, W.; Zhao, L.; Huang, X.; Azam, S.M.; Qin, Y. Genome-Wide Identification of Auxin Response Factor (ARF) Genes Family and its Tissue-Specific Prominent Expression in Pineapple (Ananas comosus (L.) Merr.). Trop. Plant Biol. 2017, 10, 86–96. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Shi, H.; Guo, M.; Chai, M.; He, Q.; Yan, M.; Cao, D.; Zhao, L.; Cai, H. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genom. 2018, 19, 159. [Google Scholar] [CrossRef] [Green Version]
- Chai, M.; Cheng, H.; Yan, M.; Priyadarshani, S.; Zhang, M.; He, Q.; Huang, Y.; Chen, F.; Liu, L.; Huang, X.; et al. Identification and expression analysis of the DREB transcription factor family in pineapple (Ananas comosus (L.) Merr.). PeerJ 2020, 8, 9006–9033. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Zhang, M.; Chai, M.; He, Q.; Huang, X.; Zhao, L.; Qin, Y. Epigenetic regulation of anthocyanin biosynthesis by an antagonistic interaction between H2A.Z and H3K4me3. N. Phytol. 2019, 221, 295–308. [Google Scholar] [CrossRef]
Chromosome | Number | Name | Chromosome | Number | Name |
---|---|---|---|---|---|
LG01 | 1 | AcGA2ox40 | LG14 | 0 | |
LG02 | 3 | AcGA2ox4, AcGA2ox5, AcGA2ox41 | LG15 | 0 | |
LG03 | 5 | AcGA2ox25, AcGA2ox29, AcGA2ox31, AcGA2ox32, AcGA2ox42 | LG16 | 0 | |
LG04 | 5 | AcGA2ox7, AcGA2ox8, AcGA2ox26, AcGA2ox27, AcGA2ox37 | LG17 | 2 | AcGA2ox11, AcGA2ox12 |
LG05 | 2 | AcGA2ox33, AcGA2ox35 | LG18 | 1 | AcGA2ox6 |
LG06 | 3 | AcGA2ox9, AcGA2ox10, AcGA2ox28 | LG19 | 0 | |
LG07 | 2 | AcGA2ox13, AcGA2ox34 | LG20 | 0 | |
LG08 | 1 | AcGA2ox17 | LG21 | 1 | AcGA2ox14 |
LG09 | 3 | AcGA2ox18, AcGA2ox19, AcGA2ox36 | LG22 | 2 | AcGA2ox15, AcGA2ox39 |
LG10 | 2 | AcGA2ox20, AcGA2ox21 | LG23 | 1 | AcGA2ox16 |
LG11 | 1 | AcGA2ox38 | LG24 | 0 | |
LG12 | 3 | AcGA2ox1, AcGA2ox2, AcGA2ox3 | LG25 | 3 | AcGA2ox22, AcGA2ox23, AcGA2ox24 |
LG13 | 1 | AcGA2ox30 |
Species | Clade I | Clade II-A | Clade II-B | Clade II-C |
---|---|---|---|---|
Arabidopsis thaliana | 0 | 0 | 5 | 4 |
Ananas comosus | 25 | 8 | 3 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Qi, J.; Chen, J.; Ma, S.; Liu, K.; Su, H.; Chai, M.; Huang, Y.; Xi, X.; Cao, Z.; et al. Identification of GA2ox Family Genes and Expression Analysis under Gibberellin Treatment in Pineapple (Ananas comosus (L.) Merr.). Plants 2023, 12, 2673. https://doi.org/10.3390/plants12142673
Zhu W, Qi J, Chen J, Ma S, Liu K, Su H, Chai M, Huang Y, Xi X, Cao Z, et al. Identification of GA2ox Family Genes and Expression Analysis under Gibberellin Treatment in Pineapple (Ananas comosus (L.) Merr.). Plants. 2023; 12(14):2673. https://doi.org/10.3390/plants12142673
Chicago/Turabian StyleZhu, Wenhui, Jingang Qi, Jingdong Chen, Suzhuo Ma, Kaichuang Liu, Han Su, Mengnan Chai, Youmei Huang, Xinpeng Xi, Zhuangyuan Cao, and et al. 2023. "Identification of GA2ox Family Genes and Expression Analysis under Gibberellin Treatment in Pineapple (Ananas comosus (L.) Merr.)" Plants 12, no. 14: 2673. https://doi.org/10.3390/plants12142673
APA StyleZhu, W., Qi, J., Chen, J., Ma, S., Liu, K., Su, H., Chai, M., Huang, Y., Xi, X., Cao, Z., Qin, Y., & Cai, H. (2023). Identification of GA2ox Family Genes and Expression Analysis under Gibberellin Treatment in Pineapple (Ananas comosus (L.) Merr.). Plants, 12(14), 2673. https://doi.org/10.3390/plants12142673