Responses of Ephemeral Plants to Precipitation Changes and Their Effects on Community in Central Asia Cold Desert
Abstract
:1. Introduction
2. Results
2.1. Effects of Precipitation Changes on Plant Survival and Growth
2.2. Effect of Precipitation Change on Plant Production
2.3. Effect of Precipitation Change on Plant Aboveground Biomass and Leaf Traits
2.4. Trait Correlation Networks for Four Plant Species
2.5. Effect of Precipitation Change on Importance Values and Vegetation Coverage
3. Discussion
3.1. Effect of Precipitation Changes on Ephemeral Plants
3.2. Adaptation Strategies of Ephemeral Plants to Changes in Precipitation
3.3. Effects of Precipitation Changes on the Herbaceous Layer Pattern
4. Methods
4.1. Study Site
4.2. Experimental Design
4.3. Measurement and Sampling
4.3.1. Survivorship, Lifetime and Plant Height
4.3.2. Seed Production and Hundred-Grain Weight
4.3.3. Leaf Area, Specific Leaf Area and Aboveground Biomass
4.3.4. Importance Value and Vegetation Coverage
4.3.5. Trait Coordination Networks
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willem, L. Climate change 2007: The physical science basis. S. Afr. Geogr. J. 2007, 92, 86–87. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 171. [Google Scholar] [CrossRef] [Green Version]
- De Boeck, H.J.; Bloor, J.M.; Kreyling, J.; Ransijn, J.C.; Nijs, I.; Jentsch, A.; Zeiter, M. Patterns and drivers of biodiversity–stability relationships under climate extremes. J. Ecol. 2018, 106, 890–902. [Google Scholar] [CrossRef]
- Seager, R.; Ting, M.; Held, I.; Kushnir, Y.; Lu, J.; Vecchi, G.; Huang, H.P.; Harnik, N.; Leetmaa, A.; Lau, N.C. Model projections of an imminent transition to a more arid climate in southwestern. N. Am. Sci. 2007, 316, 1181–1184. [Google Scholar] [CrossRef]
- Fan, L.; Li, Y.; Ma, J.; Mao, J.; Wang, L. Snow and rainfall independently affect the density, composition and productivity of ephemerals in a temperate desert. Sci. Total Environ. 2022, 807, 151033. [Google Scholar] [CrossRef]
- Qiu, J.; Tan, D.; Fan, D. Characteristics of photosynthesis and biomass allocation of spring ephemerals in the junggar desert. J. Plant Ecol. 2007, 31, 883–891. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.L.; Tang, L.S.; Wu, L.F.; Ma, J.; Li, Y.; Güsewell, S. The limited role of snow water in the growth and development of ephemeral plants in a cold desert. J. Veg. Sci. 2014, 25, 681–690. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, C. On the general characteristics of plant diversity of Gurbantunggut Sandy Desert. Acta Ecol. Sin. 2002, 22, 1923–1932, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.; Jin, J.; Lei, J.; Zhang, W.; Qian, Y. Distribution of ephemeral plants and their significance in dune stabilization in Gurbantunggut Desert. J. Geogr. Sci. 2003, 13, 323–330. [Google Scholar] [CrossRef]
- Ding, J.; Fan, L.; Cao, Y.; Liu, M.; Ma, J.; Li, Y.; Tang, L. Spatial distribution of the herbaceous layer and its relationship to soil physical–chemical properties in the southern margin of the Gurbantonggut Desert, northwestern China. Acta Ecol. Sin. 2016, 36, 327–332. [Google Scholar] [CrossRef]
- Huang, G.; Li, C.H.; Li, Y. Phenological responses to nitrogen and water addition are linked to plant growth patterns in a desert herbaceous community. Ecol. Evol. 2018, 8, 5139–5152. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, B.; Zhang, Y. Stabilization of dune surface and formation of mobile belt at the top of longitudinal dunes in Gurbantonggut Desert, Xinjiang, China. J. Desert Res. 2003, 23, 6, (In Chinese with English Abstract). [Google Scholar]
- Yang, Y.; Fang, J.; Ma, W.; Wang, W. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophys. Res. Lett. 2008, 35, 23. [Google Scholar] [CrossRef] [Green Version]
- Knapp, A.K.; Avolio, M.L.; Beier, C.; Carroll, C.J.; Collins, S.L.; Dukes, J.S.; Fraser, L.H.; Griffin-Nolan, R.J.; Hoover, D.L.; Jentsch, A.; et al. Pushing precipitation to the extremes in distributed experiments: Recommendations for simulating wet and dry years. Glob. Chang. Biol. 2017, 23, 1774–1782. [Google Scholar] [CrossRef] [Green Version]
- Gutterman, Y. Environmental factors and survival strategies of annual plant species in the Negev Desert, Israel. Plant Spec. Biol. 2000, 15, 113–125. [Google Scholar] [CrossRef]
- O’Connor, T.; Haines, L.; Snyman, H. Influence of precipitation and species composition on phytomass of a semi-arid African grassland. J. Ecol. 2001, 89, 850–860. [Google Scholar] [CrossRef]
- Jankju, M. Individual performances and the interaction between arid land plants affected by the growth season water pulses. Arid Land Res. Manag. 2008, 22, 123–133. [Google Scholar] [CrossRef]
- Antunes, C.; Díaz-Barradas, M.C.; Zunzunegui, M.; Vieira, S.; Máguas, C. Water source partitioning among plant functional types in a semi-arid dune ecosystem. J. Veg. Sci. 2018, 29, 671–683. [Google Scholar] [CrossRef]
- Noy-Meir, I. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, J.; Wang, Y.; Luo, W.; Song, C. Responses of ephemeral plant germination and growth to water and heat conditions in the southern part of Gurbantunggut Desert. Chin. Sci. Bull. 2006, 51, 110–116. [Google Scholar] [CrossRef]
- Padilla, F.M.; Pugnaire, F.I. Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct. Ecol. 2007, 21, 489–495. [Google Scholar] [CrossRef]
- Chaves, M.M.; Pereira, J.S.; Maroco, J.; Rodrigues, M.L.; Pinheiro, C. How plants cope with water stress in the field? Photosynthesis and growth. Ann. Bot. 2002, 89, 907–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Dijkstra, F.A.; Zhang, K.; Tan, H.; Zhao, Y.; Li, X. Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert. Plant Soil 2016, 398, 339–350. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Ali, S.T.; Liu, H.D.; Wang, Y.D.; Zhang, J.G. Photosynthetic responses of two woody halophyte species to saline groundwater irrigation in the Taklimakan desert. Water 2022, 14, 1385. [Google Scholar] [CrossRef]
- Zang, Y.X.; Min, X.J.; Dios, V.R.D.; Ma, J.Y.; Sun, W. Extreme drought affects the productivity, but not the composition, of a desert plant community in Central Asia differentially across microtopographies. Sci. Total Environ. 2020, 717, 137251. [Google Scholar] [CrossRef]
- Kirschner, G.K.; Xiao, T.T.; Blilou, I. Rooting in the desert: A developmental overview on desert plants. Genes 2021, 12, 709. [Google Scholar] [CrossRef]
- Galmés, J.; Flexas, J.; Savé, R.; Medrano, H. Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: Responses to water stress and recovery. Plant Soil 2007, 290, 139–155. [Google Scholar] [CrossRef]
- Tiemuerbieke, B.; Min, X.J.; Zang, Y.X.; Zang, Y.X.; Xing, P.; Ma, J.Y.; Sun, W. Water use patterns of co-occurring C3 and C4 shrubs in the Gurbantonggut desert in northwestern China. Sci. Total Environ. 2018, 634, 341–354. [Google Scholar] [CrossRef]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef]
- Prevey, J.S.; Seastedt, T.R. Effects of precipitation change and neighboring plants on population dynamics of Bromus tectorum. Oecologia 2015, 179, 765–775. [Google Scholar] [CrossRef]
- Yu, K.; Saha, M.V.; D’Odorico, P. The effects of interannual rainfall variability on tree–grass composition along Kalahari rainfall gradient. Ecosystems 2017, 20, 975–988. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xie, Z.; Zhao, R.; Zhang, Y. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. Appl. Soil Ecol. 2018, 127, 87–95. [Google Scholar] [CrossRef]
- Narantsetseg, A.; Kang, S.; Lkhamsuren, B.E.; Jang, K.; Ko, D.W. Assessment of biotic and abiotic factors controlling herbaceous biodiversity in Mongolian steppes. Ecol. Inform. 2015, 29, 221–229. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Zhang, L.; Zhang, L.; Cao, Q.; Liu, H.; Zhang, D. Is plant life-history of biseasonal germination consistent in response to extreme precipitation? Plants 2021, 10, 1642. [Google Scholar] [CrossRef]
- Weltzin, J.F.; McPherson, G.R. Implications of precipitation redistribution for shifts in temperate savanna ecotones. Ecology 2000, 81, 1902–1913. [Google Scholar] [CrossRef]
- Zeppel, M.J.B.; Wilks, J.V.; Lewis, J.D. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 2014, 11, 3083–3093. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jiang, J.; Lei, J.; Zhao, C. Relationship between ephemeral plants distribution and soil moisture on longitudinal dune surface in Gurbantonggut desert. Chin. J. Appl. Ecol. 2004, 15, 556–560, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.; Shi, X.; Zhang, L.; Baskin, J.M.; Baskin, C.C.; Liu, H.; Zhang, D.Y. Effects of increased precipitation on the life history of spring- and autumn-germinated plants of the cold desert annual Erodium oxyrhynchum (Geraniaceae). AoB Plants 2019, 11, plz004. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.H.; Huang, G.; Li, Y.; Zheng, X.J.; Xu, G.Q.; Wu, X.; Wang, Y.; Liu, Y. Population dynamics and life history response to precipitation changes for a desert ephemeral plant with biseasonal germination. Front. Plant Sci. 2021, 12, 625475. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Wahid, A.; Ahmad, N.; Saleem, B.A. Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J. Agron. Crop Sci. 2009, 195, 237–246. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Zhang, L.; Baskin, J.M.; Baskin, C.C.; Zhang, L.; Liu, Y.; Zhang, D.; Zhang, Y. Is the life history flexibility of cold desert annuals broad enough to cope with predicted climate change? The case of Erodium oxyrhinchum in Central Asia. Biology 2021, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Enquist, B.J.; Brown, J.H.; West, G.B. Allometric scaling of plant energetics and population density. Nature 1998, 395, 163–165. [Google Scholar] [CrossRef]
- Xiao, S.; Chen, S.Y.; Zhao, L.Q.; Wang, G. Density effects on plant height growth and inequality in sunflower populations. J. Integr. Plant Biol. 2006, 48, 513–519. [Google Scholar] [CrossRef]
- Baker, H.G. Seed weight in relation to environmental conditions in California. Ecology 1972, 53, 997–1010. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Zhang, D.; Yin, L.; Zhang, Y. Variation in fruit and seed traits and seed germination among different populations of Eremosparton songoricum. Chin. J. Plant Ecol. 2012, 36, 10, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Schussler, J.R.; Westgate, M.E. Assimilate flux determines kernel set at low water potential in maize. Crop Sci. 1995, 35, 1074–1080. [Google Scholar] [CrossRef]
- Liu, F.; Andersen, M.N.; Jensen, C.R. Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. Funct. Plant Biol. 2003, 30, 271–280. [Google Scholar] [CrossRef]
- Hussain, M.; Malik, M.A.; Farooq, M.; Ashraf, Y. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop Sci. 2008, 194, 193–199. [Google Scholar] [CrossRef]
- Harper, J.L. Population Biology of Plants; Blackburn Press: Caldwell, NJ, USA, 1977. [Google Scholar]
- Yao, H.; Tan, D. Size-dependent reproductive output and life-history strategies in four ephemeral species of trigonella. Acta Phytoecol. Sin. 2005, 29, 954–960, (In Chinese with English Abstract). [Google Scholar]
- Wang, B.; Zhang, J.; Jiang, Z.; Yang, X.; Zhao, Y. Genetic variation of seed traits and its reproductive capacity of Haloxylon ammodendron. J. Arid. Land Resour. Environ. 2008, 1, 167–173, (In Chinese with English Abstract). [Google Scholar]
- Alqudah, A.M.; Samarah, N.H.; Mullen, R.E. Drought stress effect on crop pollination, seed set, yield and quality. In Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 193–213. [Google Scholar]
- Yuan, S.; Tang, H.; Zhang, H. On the relationships between intra-annual variation of ephemeral synusia and hydrothermal conditions. Arid Zone Res. 2015, 32, 6. [Google Scholar]
- Chen, Y.; Zhang, L.; Shi, X.; Ban, Y.; Liu, H.; Zhang, D. Life history responses of spring-and autumn-germinated ephemeral plants to increased nitrogen and precipitation in the Gurbantunggut Desert. Sci. Total Environ. 2019, 659, 756–763. [Google Scholar] [CrossRef]
- Günster, A. Variability in life history parameters of four serotinous plants in the Namib Desert. Plant Ecol. 1994, 114, 149–160. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, H.; Zhou, X.; Yin, B.; Zhou, D.; Tao, Y. Biomass allocation patterns of an ephemeral species (Erodium oxyrhinchum) in different habitats and germination types in the Gurbantunggut Desert, China. Arid Zone Res. 2022, 39, 541–550. [Google Scholar] [CrossRef]
- Baker-Brosh, K.F.; Peet, R.K. The ecological significance of lobed and toothed leaves in temperate forest trees. Ecology 1997, 78, 1250–1255. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, L.; Qi, D. Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecol. Evol. 2020, 10, 8166–8175. [Google Scholar] [CrossRef]
- Falster, D.S.; Westoby, M. Plant height and evolutionary games. Trends Ecol. Evol. 2003, 18, 337–343. [Google Scholar] [CrossRef]
- Knight, C.A.; Ackerly, D.D. Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: Congeneric species from desert and coastal environments. New Phytol. 2003, 160, 337–347. [Google Scholar] [CrossRef]
- Grime, J.P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Bruce, W.B.; Edmeades, G.O.; Barker, T.C. Molecular and physiological approaches to maize improvement for drought tolerance. J. Exp. Bot. 2002, 53, 13–25. [Google Scholar] [CrossRef]
- Huxman, T.E.; Kimball, S.; Angert, A.L.; Gremer, J.R.; Barron-Gafford, G.A.; Venable, D.L. Understanding past, contemporary, and future dynamics of plants, populations, and communities using Sonoran Desert winter annuals. Am. J. Bot. 2013, 100, 1369–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.Q.; Liu, T.; Wang, T.; Liu, H.F.; Hao, X.R.; Ouyang, Y.N.; Zheng, B.; Li, B.L. Quantification of water resource utilization efficiency as the main driver of plant diversity in the water-limited ecosystems. Ecol. Model. 2020, 429, 108974. [Google Scholar] [CrossRef]
- Hernández, E.I.; Vilagrosa, A.; Pausas, J.G.; Bellot, J. Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol. 2010, 207, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Lu, D.; Chen, X.; Zheng, Y.; Maisupovad, B.; Tao, Y. The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls. Remote Sens. Environ. 2016, 175, 271–281. [Google Scholar] [CrossRef]
- Hesse, P.P.; Simpson, R.L. Variable vegetation cover and episodic sand movement on longitudinal desert sand dunes. Geomorphology 2006, 81, 276–291. [Google Scholar] [CrossRef]
- El-Sheikh, M.A.; Abbadi, G.A.; Bianco, P.M. Vegetation ecology of phytogenic hillocks (nabkhas) in coastal habitats of Jal Az-Zor National Park, Kuwait: Role of patches and edaphic factors. Flora 2010, 205, 832–840. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Z.; Li, C. Wind regime and sand transport in China’s Badain Jaran Desert. Aeolian Res. 2015, 17, 1–13. [Google Scholar] [CrossRef]
- Muller, R.N.; Bormann, F.H. Role of Erythronium americanum Ker. in energy flow and nutrient dynamics of a northern hardwood forest ecosystem. Science 1976, 193, 1126–1128. [Google Scholar] [CrossRef]
- Huang, G.; Su, Y.G.; Zhu, L.; Li, Y. The role of spring ephemerals and soil microbes in soil nutrient retention in a temperate desert. Plant Soil 2016, 406, 43–54. [Google Scholar] [CrossRef]
- Narita, K. Effects of seed release timing on plant life-history and seed production in a population of a desert annual, Blepharis sindica (Acanthaceae). Plant Ecol. 1998, 136, 195–203. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Tan, H.J.; Gao, Y.H.; Liu, L.C.; Wang, X.P. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: Relationship between soil water and carrying capacity for vegetation in the Tengger Desert. Sci. China 2014, 57, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.F.; Zheng, X.J.; Zhou, B.; Dai, Q.; Li, Y. Sublimation over seasonal snowpack at the southeastern edge of a desert in central Eurasia. Hydrol. Process. 2012, 26, 3911–3920. [Google Scholar] [CrossRef]
Species | Treatment | Lifetime (Day) |
---|---|---|
Alyssum linifolium | Drought | 38.96 ± 0.15 |
Control | 39 ± 0.14 | |
Wet | 39.24 ± 0.04 | |
Erodium oxyrhinchum | Drought | 50.2 ± 0.19 a |
Control | 54.28 ± 0.24 b | |
Wet | 54.8 ± 0.41 b | |
Malcolmia scorpioides | Drought | 42.68 ± 0.19 a |
Control | 49.85 ± 0.32 b | |
Wet | 43.16 ± 0.13 a | |
Hyalea pulchella | Drought | 55.52 ± 0.33 |
Control | 56 ± 0.30 | |
Wet | 56.04 ± 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, X.; Zheng, X.; Huang, G.; Tang, L.; Li, Y. Responses of Ephemeral Plants to Precipitation Changes and Their Effects on Community in Central Asia Cold Desert. Plants 2023, 12, 2841. https://doi.org/10.3390/plants12152841
Mu X, Zheng X, Huang G, Tang L, Li Y. Responses of Ephemeral Plants to Precipitation Changes and Their Effects on Community in Central Asia Cold Desert. Plants. 2023; 12(15):2841. https://doi.org/10.3390/plants12152841
Chicago/Turabian StyleMu, Xiaohan, Xinjun Zheng, Gang Huang, Lisong Tang, and Yan Li. 2023. "Responses of Ephemeral Plants to Precipitation Changes and Their Effects on Community in Central Asia Cold Desert" Plants 12, no. 15: 2841. https://doi.org/10.3390/plants12152841
APA StyleMu, X., Zheng, X., Huang, G., Tang, L., & Li, Y. (2023). Responses of Ephemeral Plants to Precipitation Changes and Their Effects on Community in Central Asia Cold Desert. Plants, 12(15), 2841. https://doi.org/10.3390/plants12152841