Genetic Approaches to Increase Arabinoxylan and β-Glucan Content in Wheat
Abstract
:1. Introduction
Wheat Grain and Dietary Fiber
2. Arabinoxylan (AX)
2.1. Genetic Control of Arabinoxylan Content and Structure
2.2. QTLs Linked to Arabinoxylan Content
2.3. Breeding Approaches to Improve Arabinoxylan
2.4. Plant Breeding and Arabinoxylan Heritability
3. Mixed Linkage β-Glucan
3.1. Genetic Control of β-Glucan Content and Structure
3.2. QTLs Linked to β-Glucan Content
3.3. Breeding Approaches to Improve β-Glucan
3.3.1. Triticum and Aegilops Species
3.3.2. Other Members of the Triticeae Species
3.4. Heritability of the β-Glucan Trait
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jones, J.M. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutr. J. 2014, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Bacete, L.; Mélida, H.; Miedes, E.; Molina, A. Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses. Plant J. 2018, 93, 614–636. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, G.; Ferrari, S.; Giovannoni, M.; Mattei, B.; Cervone, F. Cell wall traits that influence plant development, immunity and bioconversion. Plant J. 2018, 97, 134–147. [Google Scholar] [CrossRef]
- Rui, Y.; Dinneny, J.R. A wall with integrity: Surveillance and maintenance of the plant cell wall under stress. New Phytol. 2019, 225, 1428–1439. [Google Scholar] [CrossRef]
- Adamberg, K.; Jaagura, M.; Aaspõllu, A.; Nurk, E.; Adamberg, S. The composition of faecal microbiota is related to the amount and variety of dietary fibres. Int. J. Food Sci. Nutr. 2020, 71, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Pan, M.; Pan, S.; Li, W.; Zhong, Y.; Hu, J.; Nie, S. Effects of insoluble and soluble fibers isolated from barley on blood glucose, serum lipids, liver function and caecal short-chain fatty acids in type 2 diabetic and normal rats. Food Chem. Toxicol. 2020, 135, 110937. [Google Scholar] [CrossRef] [PubMed]
- Partula, V.; Deschasaux, M.; Druesne-Pecollo, N.; Latino-Martel, P.; Desmetz, E.; Chazelas, E.; Kesse-Guyot, E.; Julia, C.; Fezeu, L.K.; Galan, P.; et al. Associations between consumption of dietary fibers and the risk of cardiovascular diseases, cancers, type 2 diabetes, and mortality in the prospective NutriNet-Santé cohort. Am. J. Clin. Nutr. 2020, 112, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Rodriguez, J.; Zhang, Z.; Seethaler, B.; Sánchez, C.R.; Roumain, M.; Hiel, S.; Bindels, L.B.; Cani, P.D.; Paquot, N.; et al. Prebiotic dietary fibre intervention improves fecal markers related to inflammation in obese patients: Results from the Food4Gut randomized placebo-controlled trial. Eur. J. Nutr. 2021, 60, 3159–3170. [Google Scholar] [CrossRef]
- Montiel-Rojas, D.; Nilsson, A.; Santoro, A.; Franceschi, C.; Bazzocchi, A.; Battista, G.; de Groot, L.C.P.G.M.; Feskens, E.J.M.; Berendsen, A.; Pietruszka, B.; et al. Dietary Fibre May Mitigate Sarcopenia Risk: Findings from the NU-AGE Cohort of Older European Adults. Nutrients 2020, 12, 1075. [Google Scholar] [CrossRef]
- Williams, B.A.; Mikkelsen, D.; Flanagan, B.M.; Gidley, M.J. “Dietary fibre”: Moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J. Anim. Sci. Biotechnol. 2019, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Grundy, M.M.-L.; Edwards, C.H.; Mackie, A.R.; Gidley, M.J.; Butterworth, P.J.; Ellis, P.R. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br. J. Nutr. 2016, 116, 816–833. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef] [PubMed]
- Tosh, S.M.; Bordenave, N. Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota. Nutr. Rev. 2020, 78, 13–20. [Google Scholar] [CrossRef]
- Cheng, W.-Y.; Lam, K.-L.; Kong, A.P.-S.; Cheung, P.C.-K. Prebiotic supplementation (beta-glucan and inulin) attenuates circadian misalignment induced by shifted light-dark cycle in mice by modulating circadian gene expression. Food Res. Int. 2020, 137, 109437. [Google Scholar] [CrossRef]
- Harris, S.; Powers, S.; Monteagudo-Mera, A.; Kosik, O.; Lovegrove, A.; Shewry, P.; Charalampopoulos, D. Determination of the prebiotic activity of wheat arabinogalactan peptide (AGP) using batch culture fermentation. Eur. J. Nutr. 2019, 59, 297–307. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Li, H.; Ren, Y.; Geng, Y.; Lu, Z.; Shi, J.; Xu, Z. Similarities and differences of oligo/poly-saccharides’ impact on human fecal microbiota identified by in vitro fermentation. Appl. Microbiol. Biotechnol. 2021, 105, 7475–7486. [Google Scholar] [CrossRef]
- Harris, S.; Monteagudo-Mera, A.; Kosik, O.; Charalampopoulos, D.; Shewry, P.; Lovegrove, A. Comparative prebiotic activity of mixtures of cereal grain polysaccharides. AMB Express 2019, 9, 203. [Google Scholar] [CrossRef]
- Stephen, A.M.; Champ, M.M.-J.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef]
- Piro, M.C.; Muylle, H.; Haesaert, G. Exploiting Rye in Wheat Quality Breeding: The Case of Arabinoxylan Content. Plants 2023, 12, 737. [Google Scholar] [CrossRef] [PubMed]
- Barron, C.; Surget, A.; Rouau, X. Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. J. Cereal Sci. 2007, 45, 88–96. [Google Scholar] [CrossRef]
- Shewry, P.R.; Wan, Y.; Hawkesford, M.J.; Tosi, P. Spatial distribution of functional components in the starchy endosperm of wheat grains. J. Cereal Sci. 2019, 91, 102869. [Google Scholar] [CrossRef]
- Bechtel, D.B.; Abecassis, J.; Shewry, P.R.; Evers, A.D. CHAPTER 3: Development, Structure, and Mechanical Properties of the Wheat Grain. In WHEAT: Chemistry and Technology; AACC International: St. Paul, MN, USA, 2009; pp. 51–95. [Google Scholar] [CrossRef]
- Meziani, S.; Nadaud, I.; Tasleem-Tahir, A.; Nurit, E.; Benguella, R.; Branlard, G. Wheat aleurone layer: A site enriched with nutrients and bioactive molecules with potential nutritional opportunities for breeding. J. Cereal Sci. 2021, 100, 103225. [Google Scholar] [CrossRef]
- Buri, R.C.; Von Reding, W.; Gavin, M.H. Description and Characterization of Wheat Aleurone. Cereal Foods World 2004, 49, 274. [Google Scholar]
- Brouns, F.; Hemery, Y.; Price, R.; Anson, N.M. Wheat Aleurone: Separation, Composition, Health Aspects, and Potential Food Use. Crit. Rev. Food Sci. Nutr. 2012, 52, 553–568. [Google Scholar] [CrossRef]
- Toole, G.A.; Le Gall, G.; Colquhoun, I.J.; Nemeth, C.; Saulnier, L.; Lovegrove, A.; Pellny, T.; Wilkinson, M.D.; Freeman, J.; Mitchell, R.A.C.; et al. Temporal and spatial changes in cell wall composition in developing grains of wheat cv. Hereward. Planta 2010, 232, 677–689. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Tosi, P.; Lovegrove, A.; Corol, D.I.; Ward, J.L.; Palmer, R.; Powers, S.; Passmore, D.; Webster, G.; Marcus, S.E.; et al. The Gsp-1 genes encode the wheat arabinogalactan peptide. J. Cereal Sci. 2017, 74, 155–164. [Google Scholar] [CrossRef]
- Igrejas, G.; Ikeda, T.M.; Guzmán, C. (Eds.) Wheat Quality for Improving Processing and Human Health; Springer International Publishing: Cham, Switzerland, 2020; p. 542. ISBN 978-3-030-34162-6. [Google Scholar] [CrossRef]
- Hazard, B.; Trafford, K.; Lovegrove, A.; Griffiths, S.; Uauy, C.; Shewry, P. Strategies to improve wheat for human health. Nat. Food 2020, 1, 475–480. [Google Scholar] [CrossRef]
- Bonnin, E.; Le Goff, A.; Saulnier, L.; Chaurand, M.; Thibault, J.-F. Preliminary Characterisation of Endogenous Wheat Arabinoxylan-degrading Enzymic Extracts. J. Cereal Sci. 1998, 28, 53–62. [Google Scholar] [CrossRef]
- Mitchell, R.A.; Dupree, P.; Shewry, P.R. A Novel Bioinformatics Approach Identifies Candidate Genes for the Synthesis and Feruloylation of Arabinoxylan. Plant Physiol. 2007, 144, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Botticella, E.; Savatin, D.V.; Sestili, F. The Triple Jags of Dietary Fibers in Cereals: How Biotechnology Is Longing for High FiberGrains. Front. Plant Sci. 2021, 12, 745579. [Google Scholar] [CrossRef] [PubMed]
- Kosik, O.; Powers, S.J.; Chatzifragkou, A.; Prabhakumari, P.C.; Charalampopoulos, D.; Hess, L.; Brosnan, J.; Shewry, P.R.; Lovegrove, A. Changes in the arabinoxylan fraction of wheat grain during alcohol production. Food Chem. 2017, 221, 1754–1762. [Google Scholar] [CrossRef]
- Szentmiklóssy, M.; Török, K.; Pusztai, É.; Kemény, S.; Tremmel-Bede, K.; Rakszegi, M.; Tömösközi, S. Variability and cluster analysis of arabinoxylan content and its molecular profile in crossed wheat lines. J. Cereal Sci. 2020, 95, 103074. [Google Scholar] [CrossRef]
- Saulnier, L.; Peneau, N.; Thibault, J.-F. Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. J. Cereal Sci. 1995, 22, 259–264. [Google Scholar] [CrossRef]
- Gebruers, K.; Dornez, E.; Bedõ, Z.; Rakszegi, M.; Frás, A.; Boros, D.; Courtin, C.M.; Delcour, J.A. Environment and Genotype Effects on the Content of Dietary Fiber and Its Components in Wheat in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2010, 58, 9353–9361. [Google Scholar] [CrossRef] [PubMed]
- Rakha, A.; Saulnier, L.; Åman, P.; Andersson, R. Enzymatic fingerprinting of arabinoxylan and β-glucan in triticale, barley and tritordeum grains. Carbohydr. Polym. 2012, 90, 1226–1234. [Google Scholar] [CrossRef]
- Gebruers, K.; Dornez, E.; Boros, D.; Fraś, A.; Dynkowska, W.; Bedő, Z.; Rakszegi, M.; Delcour, J.A.; Courtin, C.M. Variation in the Content of Dietary Fiber and Components Thereof in Wheats in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9740–9749. [Google Scholar] [CrossRef]
- De Santis, M.A.; Kosik, O.; Passmore, D.; Flagella, Z.; Shewry, P.R.; Lovegrove, A. Data set of enzyme fingerprinting of dietary fibre components (arabinoxylan and β-glucan) in old and modern Italian durum wheat genotypes. Data Brief 2018, 16, 1062–1068. [Google Scholar] [CrossRef]
- Saini, H.S.; Henry, R.J. Fractionation and Evaluation of Triticale Pentosans: Comparison with Wheat and Rye. Cereal Chem. 1989, 66, 11–14. [Google Scholar]
- Shewry, P.R.; Piironen, V.; Lampi, A.-M.; Edelmann, M.; Kariluoto, S.; Nurmi, T.; Fernandez-Orozco, R.; Andersson, A.A.M.; Åman, P.; Fraś, A.; et al. Effects of Genotype and Environment on the Content and Composition of Phytochemicals and Dietary Fiber Components in Rye in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2010, 58, 9372–9383. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Gruppen, H.; Schols, H.A. Characterization of (Glucurono)arabinoxylans from Oats Using Enzymatic Fingerprinting. J. Agric. Food Chem. 2015, 63, 10822–10830. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, J.A.; Thyagarajan, A.; Sardari, R.R.; Olsson, O. Characterization of high Arabinoxylan oat lines identified from a mutagenized oat population. Food Chem. 2023, 404, 134687. [Google Scholar] [CrossRef]
- Ordaz-Ortiz, J.; Saulnier, L. Structural variability of arabinoxylans from wheat flour. Comparison of water-extractable and xylanase-extractable arabinoxylans. J. Cereal Sci. 2005, 42, 119–125. [Google Scholar] [CrossRef]
- Saulnier, L.; Sado, P.-E.; Branlard, G.; Charmet, G.; Guillon, F. Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties. J. Cereal Sci. 2007, 46, 261–281. [Google Scholar] [CrossRef]
- Nyström, L.; Lampi, A.-M.; Andersson, A.A.M.; Kamal-Eldin, A.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Li, L.; Ward, J.L.; Fraś, A.; et al. Phytochemicals and Dietary Fiber Components in Rye Varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9758–9766. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Lampi, A.-M.; Nyström, L.; Piironen, V.; Li, L.; Ward, J.L.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Boros, D.; et al. Phytochemical and Dietary Fiber Components in Barley Varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9767–9776. [Google Scholar] [CrossRef]
- Pellny, T.K.; Lovegrove, A.; Freeman, J.; Tosi, P.; Love, C.G.; Knox, J.P.; Shewry, P.R.; Mitchell, R.A. Cell Walls of Developing Wheat Starchy Endosperm: Comparison of Composition and RNA-Seq Transcriptome. Plant Physiol. 2012, 158, 612–627. [Google Scholar] [CrossRef]
- Zeng, W.; Lampugnani, E.R.; Picard, K.L.; Song, L.; Wu, A.-M.; Farion, I.M.; Zhao, J.; Ford, K.; Doblin, M.S.; Bacic, A. Asparagus IRX9, IRX10, and IRX14A Are Components of an Active Xylan Backbone Synthase Complex that Forms in the Golgi Apparatus. Plant Physiol. 2016, 171, 93–109. [Google Scholar] [CrossRef]
- Lovegrove, A.; Wilkinson, M.D.; Freeman, J.; Pellny, T.K.; Tosi, P.; Saulnier, L.; Shewry, P.R.; Mitchell, R.A. RNA Interference Suppression of Genes in Glycosyl Transferase Families 43 and 47 in Wheat Starchy Endosperm Causes Large Decreases in Arabinoxylan Content. Plant Physiol. 2013, 163, 95–107. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Kosik, O.; Halsey, K.; Walpole, H.; Evans, J.; Wood, A.J.; Ward, J.L.; Mitchell, R.A.C.; Lovegrove, A.; Shewry, P.R. RNAi suppression of xylan synthase genes in wheat starchy endosperm. PLoS ONE 2021, 16, e0256350. [Google Scholar] [CrossRef] [PubMed]
- Pellny, T.K.; Patil, A.; Wood, A.J.; Freeman, J.; Halsey, K.; Plummer, A.; Kosik, O.; Temple, H.; Collins, J.D.; Dupree, P.; et al. Loss of TaIRX9b gene function in wheat decreases chain length and amount of arabinoxylan in grain but increases cross-linking. Plant Biotechnol. J. 2020, 18, 2316–2327. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Wiemels, R.E.; Soya, A.; Whitley, R.; Held, M.; Faik, A. Composition, Assembly, and Trafficking of a Wheat Xylan Synthase Complex. Plant Physiol. 2016, 170, 1999–2023. [Google Scholar] [CrossRef] [PubMed]
- Anders, N.; Wilson, L.F.L.; Sorieul, M.; Nikolovski, N.; Dupree, P. β-1,4-Xylan backbone synthesis in higher plants: How complex can it be? Front. Plant Sci. 2023, 13, 1076298. [Google Scholar] [CrossRef]
- Anders, N.; Wilkinson, M.D.; Lovegrove, A.; Freeman, J.; Tryfona, T.; Pellny, T.K.; Weimar, T.; Mortimer, J.C.; Stott, K.; Baker, J.M.; et al. Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc. Natl. Acad. Sci. USA 2012, 109, 989–993. [Google Scholar] [CrossRef]
- Freeman, J.; Ward, J.L.; Kosik, O.; Lovegrove, A.; Wilkinson, M.D.; Shewry, P.R.; Mitchell, R.A. Feruloylation and structure of arabinoxylan in wheat endosperm cell walls from RNAi lines with suppression of genes responsible for backbone synthesis and decoration. Plant Biotechnol. J. 2017, 15, 1429–1438. [Google Scholar] [CrossRef]
- Kozlova, L.V.; Nazipova, A.R.; Gorshkov, O.V.; Gilmullina, L.F.; Sautkina, O.V.; Petrova, N.V.; Trofimova, O.I.; Ponomarev, S.N.; Ponomareva, M.L.; Gorshkova, T.A. Identification of genes involved in the formation of soluble dietary fiber in winter rye grain and their expression in cultivars with different viscosities of wholemeal water extract. Crop J. 2021, 10, 532–549. [Google Scholar] [CrossRef]
- Jobling, S.A. Membrane pore architecture of the CslF6 protein controls (1-3,1-4)-β-glucan structure. Sci. Adv. 2015, 1, e1500069. [Google Scholar] [CrossRef]
- Kaur, S.; Dhugga, K.S.; Beech, R.; Singh, J. Genome-wide analysis of the cellulose synthase-like (Csl) gene family in bread wheat (Triticum aestivum L.). BMC Plant Biol. 2017, 17, 193. [Google Scholar] [CrossRef]
- Marcotuli, I.; Gadaleta, A.; Mangini, G.; Signorile, A.M.; Zacheo, S.A.; Blanco, A.; Simeone, R.; Colasuonno, P. Development of a High-Density SNP-Based Linkage Map and Detection of QTL for β-Glucans, Protein Content, Grain Yield per Spike and Heading Time in Durum Wheat. Int. J. Mol. Sci. 2017, 18, 1329. [Google Scholar] [CrossRef]
- Geng, L.; Li, M.; Xie, S.; Wu, D.; Ye, L.; Zhang, G. Identification of genetic loci and candidate genes related to β-glucan content in barley grain by genome-wide association study in International Barley Core Selected Collection. Mol. Breed. 2021, 41, 6. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.L.; Poutanen, K.; Gebruers, K.; Piironen, V.; Lampi, A.-M.; Nyström, L.; Andersson, A.A.M.; Boros, D.; Rakszegi, M.; Bedő, Z.; et al. The HEALTHGRAIN Cereal Diversity Screen: Concept, Results, and Prospects. J. Agric. Food Chem. 2008, 56, 9699–9709. [Google Scholar] [CrossRef] [PubMed]
- Quraishi, U.M.; Murat, F.; Abrouk, M.; Pont, C.; Confolent, C.; Oury, F.X.; Ward, J.; Boros, D.; Gebruers, K.; Delcour, J.; et al. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct. Integr. Genom. 2011, 11, 71–83. [Google Scholar] [CrossRef]
- Nguyen, V.-L.; Huynh, B.-L.; Wallwork, H.; Stangoulis, J. Identification of Quantitative Trait Loci for Grain Arabinoxylan Concentration in Bread Wheat. Crop Sci. 2011, 51, 1143–1150. [Google Scholar] [CrossRef]
- Marcotuli, I.; Houston, K.; Waugh, R.; Fincher, G.B.; Burton, R.A.; Blanco, A.; Gadaleta, A. Genome Wide Association Mapping for Arabinoxylan Content in a Collection of Tetraploid Wheats. PLoS ONE 2015, 10, e0132787. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, D.; Yan, J.; Zhang, Y.; Xia, X.; Tian, Y.; He, Z.; Zhang, Y. QTL mapping of grain arabinoxylan contents in common wheat using a recombinant inbred line population. Euphytica 2015, 208, 205–214. [Google Scholar] [CrossRef]
- Lovegrove, A.; Wingen, L.U.; Plummer, A.; Wood, A.; Passmore, D.; Kosik, O.; Freeman, J.; Mitchell, R.A.C.; Hassall, K.; Ulker, M.; et al. Identification of a major QTL and associated molecular marker for high arabinoxylan fibre in white wheat flour. PLoS ONE 2020, 15, e0227826. [Google Scholar] [CrossRef] [PubMed]
- Ibba, M.I.; Juliana, P.; Hernández-Espinosa, N.; Posadas-Romano, G.; Dreisigacker, S.; Sehgal, D.; Crespo-Herrera, L.; Singh, R.; Guzmán, C. Genome-wide association analysis for arabinoxylan content in common wheat (T. aestivum L.) flour. J. Cereal Sci. 2021, 98, 103166. [Google Scholar] [CrossRef]
- Tremmel-Bede, K.; Láng, L.; Török, K.; Tömösközi, S.; Vida, G.; Shewry, P.R.; Bedő, Z.; Rakszegi, M. Development and characterization of wheat lines with increased levels of arabinoxylan. Euphytica 2017, 213, 291. [Google Scholar] [CrossRef]
- Dubcovsky, J.; Gill, K.S.; Dvořák, J.; Lagudah, E.S.; McCouch, S.R.; Appels, R.; Sorrells, M.E.; Gustafson, J.P.; Somers, D.; Chao, S.; et al. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 1995, 38, 45–59. [Google Scholar] [CrossRef]
- Cadalen, T.; Boeuf, C.; Bernard, S.; Bernard, M. An intervarietal molecular marker map in Triticum aestivum L. Em. Thell. and comparison with a map from a wide cross. Theor. Appl. Genet. 1997, 94, 367–377. [Google Scholar] [CrossRef]
- Martinant, J.P.; Cadalen, T.; Billot, A.; Chartier, S.; Leroy, P.; Bernard, M.; Saulnier, L.; Branlard, G. Genetic analysis of water-extractable arabinoxylans in bread wheat endosperm. Theor. Appl. Genet. 1998, 97, 1069–1075. [Google Scholar] [CrossRef]
- Charmet, G.; Masood-Quraishi, U.; Ravel, C.; Romeuf, I.; Balfourier, F.; Perretant, M.R.; Joseph, J.L.; Rakszegi, M.; Guillon, F.; Sado, P.E.; et al. Genetics of dietary fibre in bread wheat. Euphytica 2009, 170, 155–168. [Google Scholar] [CrossRef]
- Rakszegi, M.; Molnár, I.; Lovegrove, A.; Darkó, É.; Farkas, A.; Láng, L.; Bedő, Z.; Doležel, J.; Molnár-Láng, M.; Shewry, P. Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour. Front. Plant Sci. 2017, 8, 1529. [Google Scholar] [CrossRef] [PubMed]
- Marcotuli, I.; Colasuonno, P.; Cutillo, S.; Simeone, R.; Blanco, A.; Gadaleta, A. β-glucan content in a panel of Triticum and Aegilops genotypes. Genet. Resour. Crop Evol. 2019, 66, 897–907. [Google Scholar] [CrossRef]
- Ivanizs, L.; Marcotuli, I.; Rakszegi, M.; Kalapos, B.; Szőke-Pázsi, K.; Farkas, A.; Türkösi, E.; Gaál, E.; Kruppa, K.; Kovács, P.; et al. Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis. Int. J. Mol. Sci. 2022, 23, 3821. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Shewry, P.R.; Piironen, V.; Lampi, A.-M.; Edelmann, M.; Kariluoto, S.; Nurmi, T.; Fernandez-Orozco, R.; Ravel, C.; Charmet, G.; Andersson, A.A.M.; et al. The HEALTHGRAIN Wheat Diversity Screen: Effects of Genotype and Environment on Phytochemicals and Dietary Fiber Components. J. Agric. Food Chem. 2010, 58, 9291–9298. [Google Scholar] [CrossRef]
- Mackay, I.; Horwell, A.; Garner, J.; White, J.; McKee, J.; Philpott, H. Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor. Appl. Genet. 2010, 122, 225–238. [Google Scholar] [CrossRef]
- Lovegrove, A.; Pellny, T.K.; Hassall, K.L.; Plummer, A.; Wood, A.; Bellisai, A.; Przewieslik-Allen, A.; Burridge, A.J.; Ward, J.L.; Shewry, P.R. Historical changes in the contents and compositions of fibre components and polar metabolites in white wheat flour. Sci. Rep. 2020, 10, 5920. [Google Scholar] [CrossRef]
- De Santis, M.A.; Kosik, O.; Passmore, D.; Flagella, Z.; Shewry, P.R.; Lovegrove, A. Comparison of the dietary fibre composition of old and modern durum wheat (Triticum turgidum spp. durum) genotypes. Food Chem. 2017, 244, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Hassall, K.L.; Grausgruber, H.; Andersson, A.A.M.; Lampi, A.; Piironen, V.; Rakszegi, M.; Ward, J.L.; Lovegrove, A. Do modern types of wheat have lower quality for human health? Nutr. Bull. 2020, 45, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Hazard, B.; Lovegrove, A.; Uauy, C. Improving starch and fibre in wheat grain for human health. Biochemist 2020, 42, 40–45. [Google Scholar] [CrossRef]
- Tremmel-Bede, K.; Szentmiklóssy, M.; Tömösközi, S.; Török, K.; Lovegrove, A.; Shewry, P.R.; Láng, L.; Bedő, Z.; Vida, G.; Rakszegi, M. Stability analysis of wheat lines with increased level of arabinoxylan. PLoS ONE 2020, 15, e0232892. [Google Scholar] [CrossRef] [PubMed]
- Synytsya, A.; Novak, M. Structural analysis of glucans. Ann. Transl. Med. 2014, 2, 17. [Google Scholar] [CrossRef]
- Beresford, G.; Stone, B.A. (1→3), (1→4)-β-D-glucan content of Triticum grains. J. Cereal Sci. 1983, 1, 111–114. [Google Scholar] [CrossRef]
- Lazaridou, A.; Biliaderis, C.G.; Izydorczyk, M.S. Cereal β-Glucans: Structures, Physical Properties, and Physiological Functions. In Functional Food Carbohydrates, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 2–72. ISBN 9781420003512. [Google Scholar]
- Lawton, C.L.; Walton, J.; Hoyland, A.; Howarth, E.; Allan, P.; Chesters, D.; Dye, L. Short Term (14 Days) Consumption of Insoluble Wheat Bran Fibre-Containing Breakfast Cereals Improves Subjective Digestive Feelings, General Wellbeing and Bowel Function in a Dose Dependent Manner. Nutrients 2013, 5, 1436–1455. [Google Scholar] [CrossRef]
- MacNicol, J.L.; Murrant, C.; Pearson, W. The influence of a simulated digest of an equine dietary feed additive G’s formula on contractile activity of gastric smooth muscle in vitro. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1919–1926. [Google Scholar] [CrossRef]
- Brandl, B.; Lee, Y.-M.; Dunkel, A.; Hofmann, T.; Hauner, H.; Skurk, T. Effects of Extrinsic Wheat Fiber Supplementation on Fecal Weight; A Randomized Controlled Trial. Nutrients 2020, 12, 298. [Google Scholar] [CrossRef]
- Ban, Y.; Qiu, J.; Ren, C.; Li, Z. Effects of different cooking methods of oatmeal on preventing the diet-induced increase of cholesterol level in hypercholesterolemic rats. Lipids Health Dis. 2015, 14, 135. [Google Scholar] [CrossRef]
- Jovanovski, E.; Khayyat, R.; Zurbau, A.; Komishon, A.; Mazhar, N.; Sievenpiper, J.L.; Mejia, S.B.; Ho, H.V.T.; Li, D.; Jenkins, A.L.; et al. Should Viscous Fiber Supplements Be Considered in Diabetes Control? Results From a Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care 2019, 42, 755–766. [Google Scholar] [CrossRef]
- AbuMweis, S.; Thandapilly, S.J.; Storsley, J.; Ames, N. Effect of barley β-glucan on postprandial glycaemic response in the healthy human population: A meta-analysis of randomized controlled trials. J. Funct. Foods 2016, 27, 329–342. [Google Scholar] [CrossRef]
- Yu, S.; Wang, J.; Li, Y.; Wang, X.; Ren, F.; Wang, X. Structural Studies of Water-Insoluble β-Glucan from Oat Bran and Its Effect on Improving Lipid Metabolism in Mice Fed High-Fat Diet. Nutrients 2021, 13, 3254. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, I.; Pettolino, F.A.; Wilson, S.M.; Doblin, M.S.; Johansen, B.; Bacic, A.; Willats, W.G.T. Mixed-linkage (1→3),(1→4)-β-d-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J. 2008, 54, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Havrlentová, M.; Kraic, J. Content of β-D-Glucan in Cereal Grains. J. Food Nutr. Res. 2006, 45, 97–103. [Google Scholar]
- Cui, S.W.; Wang, Q. Cell wall polysaccharides in cereals: Chemical structures and functional properties. Struct. Chem. 2009, 20, 291–297. [Google Scholar] [CrossRef]
- Veličković, D.; Ropartz, D.; Guillon, F.; Saulnier, L.; Rogniaux, H. New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging. J. Exp. Bot. 2014, 65, 2079–2091. [Google Scholar] [CrossRef]
- Rakszegi, M.; Lovegrove, A.; Balla, K.; Láng, L.; Bedő, Z.; Veisz, O.; Shewry, P.R. Effect of heat and drought stress on the structure and composition of arabinoxylan and β-glucan in wheat grain. Carbohydr. Polym. 2014, 102, 557–565. [Google Scholar] [CrossRef]
- Roulin, S.; Buchala, A.J.; Fincher, G.B. Induction of (1→3,1→4)-*- D -glucan hydrolases in leaves of dark-incubated barley seedlings. Planta 2002, 215, 51–59. [Google Scholar] [CrossRef]
- Burton, R.A.; Fincher, G.B. Current challenges in cell wall biology in the cereals and grasses. Front. Plant Sci. 2012, 3, 130. [Google Scholar] [CrossRef]
- Francin-Allami, M.; Bouder, A.; Geairon, A.; Alvarado, C.; Le-Bot, L.; Daniel, S.; Shao, M.; Laudencia-Chingcuanco, D.; Vogel, J.P.; Guillon, F.; et al. Mixed-Linkage Glucan Is the Main Carbohydrate Source and Starch Is an Alternative Source during Brachypodium Grain Germination. Int. J. Mol. Sci. 2023, 24, 6821. [Google Scholar] [CrossRef] [PubMed]
- Bain, M.; van de Meene, A.; Costa, R.; Doblin, M.S. Characterisation of Cellulose Synthase Like F6 (CslF6) Mutants Shows Altered Carbon Metabolism in β-D-(1,3;1,4)-Glucan Deficient Grain in Brachypodium distachyon. Front. Plant Sci. 2021, 11, 602850. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.L.; Collins, H.M.; Singh, R.R.; Kibble, N.A.J.; Yap, K.; Taylor, J.; Fincher, G.B.; Burton, R.A. Method for hull-less barley transformation and manipulation of grain mixed-linkage beta-glucan. J. Integr. Plant Biol. 2018, 60, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Romano, G.; Del Coco, L.; Milano, F.; Durante, M.; Palombieri, S.; Sestili, F.; Visioni, A.; Jilal, A.; Fanizzi, F.P.; Laddomada, B. Phytochemical Profiling and Untargeted Metabolite Fingerprinting of the MEDWHEALTH Wheat, Barley and Lentil Wholemeal Flours. Foods 2022, 11, 4070. [Google Scholar] [CrossRef] [PubMed]
- Henry, R. Pentosan and (1 → 3),(1 → 4)-β-Glucan concentrations in endosperm and wholegrain of wheat, barley, oats and rye. J. Cereal Sci. 1987, 6, 253–258. [Google Scholar] [CrossRef]
- Walling, J.G.; Sallam, A.H.; Steffenson, B.J.; Henson, C.; Vinje, M.A.; Mahalingam, R. Quantitative trait loci impacting grain β-glucan content in wild barley (Hordeum vulgare ssp. spontaneum) reveals genes associated with cell wall modification and carbohydrate metabolism. Crop Sci. 2022, 62, 1213–1227. [Google Scholar] [CrossRef]
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- Li, W.; Cui, S.W.; Kakuda, Y. Extraction, fractionation, structural and physical characterization of wheat β-d-glucans. Carbohydr. Polym. 2006, 63, 408–416. [Google Scholar] [CrossRef]
- Collins, H.M.; Burton, R.A.; Topping, D.L.; Liao, M.; Bacic, A.; Fincher, G.B. REVIEW: Variability in Fine Structures of Noncellulosic Cell Wall Polysaccharides from Cereal Grains: Potential Importance in Human Health and Nutrition. Cereal Chem. 2010, 87, 272–282. [Google Scholar] [CrossRef]
- Burton, R.A.; Gidley, M.J.; Fincher, G.B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 2010, 6, 724–732. [Google Scholar] [CrossRef]
- Buckeridge, M.S.; Vergara, C.E.; Carpita, N.C. Insight into multi-site mechanisms of glycosyl transfer in (1→4)β-d-glycans provided by the cereal mixed-linkage (1→3),(1→4)β-d-glucan synthase. Phytochemistry 2001, 57, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Lovegrove, A.; Dunn, J.; Pellny, T.K.; Hood, J.; Burridge, A.J.; America, A.H.P.; Gilissen, L.; Timmer, R.; Proos-Huijsmans, Z.A.M.; van Straaten, J.P.; et al. Comparative Compositions of Grain of Bread Wheat, Emmer and Spelt Grown with Different Levels of Nitrogen Fertilisation. Foods 2023, 12, 843. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Wood, P.; Blackwell, B.; Nikiforuk, J. Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat β-D-glucan—Comparison with other cereal β-D-glucans. Carbohydr. Polym. 2000, 41, 249–258. [Google Scholar] [CrossRef]
- Schwerdt, J.G.; MacKenzie, K.; Wright, F.; Oehme, D.; Wagner, J.M.; Harvey, A.J.; Shirley, N.J.; Burton, R.A.; Schreiber, M.; Halpin, C.; et al. Evolutionary Dynamics of the Cellulose Synthase Gene Superfamily in Grasses. Plant Physiol. 2015, 168, 968–983. [Google Scholar] [CrossRef] [PubMed]
- Doblin, M.S.; Pettolino, F.A.; Wilson, S.M.; Campbell, R.; Burton, R.A.; Fincher, G.B.; Newbigin, E.; Bacic, A. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β- d -glucan synthesis in transgenic Arabidopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 5996–6001. [Google Scholar] [CrossRef]
- Garcia-Gimenez, G.; Barakate, A.; Smith, P.; Stephens, J.; Khor, S.F.; Doblin, M.S.; Hao, P.; Bacic, A.; Fincher, G.B.; Burton, R.A.; et al. Targeted mutation of barley (1,3;1,4)-β-glucan synthases reveals complex relationships between the storage and cell wall polysaccharide content. Plant J. 2020, 104, 1009–1022. [Google Scholar] [CrossRef]
- Burton, R.A.; Wilson, S.M.; Hrmova, M.; Harvey, A.J.; Shirley, N.J.; Medhurst, A.; Stone, B.A.; Newbigin, E.J.; Bacic, A.; Fincher, G.B. Cellulose Synthase-Like CslF Genes Mediate the Synthesis of Cell Wall (1,3;1,4)-ß- d -Glucans. Science 2006, 311, 1940–1942. [Google Scholar] [CrossRef]
- Nemeth, C.; Freeman, J.; Jones, H.D.; Sparks, C.; Pellny, T.K.; Wilkinson, M.D.; Dunwell, J.; Andersson, A.A.; Åman, P.; Guillon, F.; et al. Down-Regulation of the CSLF6 Gene Results in Decreased (1,3;1,4)-β-d-Glucan in Endosperm of Wheat. Plant Physiol. 2010, 152, 1209–1218. [Google Scholar] [CrossRef]
- Taketa, S.; Yuo, T.; Tonooka, T.; Tsumuraya, Y.; Inagaki, Y.; Haruyama, N.; Larroque, O.; Jobling, S.A. Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis. J. Exp. Bot. 2011, 63, 381–392. [Google Scholar] [CrossRef]
- Wong, S.C.; Shirley, N.J.; Little, A.; Khoo, K.H.P.; Schwerdt, J.; Fincher, G.B.; Burton, R.A.; Mather, D.E. Differential expression of the HvCslF6 gene late in grain development may explain quantitative differences in (1,3;1,4)-β-glucan concentration in barley. Mol. Breed. 2015, 35, 20. [Google Scholar] [CrossRef]
- Garcia-Gimenez, G.; Russell, J.; Aubert, M.K.; Fincher, G.B.; Burton, R.A.; Waugh, R.; Tucker, M.R.; Houston, K. Barley grain (1,3;1,4)-β-glucan content: Effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Sci. Rep. 2019, 9, 17250. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.A.; Jobling, S.A.; Harvey, A.J.; Shirley, N.J.; Mather, D.E.; Bacic, A.; Fincher, G.B. The Genetics and Transcriptional Profiles of the Cellulose Synthase-Like HvCslF Gene Family in Barley. Plant Physiol. 2008, 146, 1821–1833. [Google Scholar] [CrossRef] [PubMed]
- Little, A.; Schwerdt, J.G.; Shirley, N.J.; Khor, S.F.; Neumann, K.; O’donovan, L.A.; Lahnstein, J.; Collins, H.M.; Henderson, M.; Fincher, G.B.; et al. Revised Phylogeny of the Cellulose Synthase Gene Superfamily: Insights into Cell Wall Evolution. Plant Physiol. 2018, 177, 1124–1141. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, K.; Urahara, T.; Konishi, T.; Kotake, T.; Tohno-Oka, T.; Komae, K.; Kawada, N.; Tsumuraya, Y. Biosynthesis of (13),(14)-beta-glucan in developing endosperms of barley (Hordeum vulgare). Physiol. Plant. 2005, 125, 181–191. [Google Scholar] [CrossRef]
- Dimitroff, G.; Little, A.; Lahnstein, J.; Schwerdt, J.G.; Srivastava, V.; Bulone, V.; Burton, R.A.; Fincher, G.B. (1,3;1,4)-β-Glucan Biosynthesis by the CSLF6 Enzyme: Position and Flexibility of Catalytic Residues Influence Product Fine Structure. Biochemistry 2016, 55, 2054–2061. [Google Scholar] [CrossRef]
- Jin, X.; Cai, S.; Han, Y.; Wang, J.; Wei, K.; Zhang, G. Genetic variants of HvGlb1 in Tibetan annual wild barley and cultivated barley and their correlation with malt quality. J. Cereal Sci. 2011, 53, 59–64. [Google Scholar] [CrossRef]
- Marcotuli, I.; Houston, K.; Schwerdt, J.G.; Waugh, R.; Fincher, G.B.; Burton, R.A.; Blanco, A.; Gadaleta, A. Genetic Diversity and Genome Wide Association Study of β-Glucan Content in Tetraploid Wheat Grains. PLoS ONE 2016, 11, e0152590. [Google Scholar] [CrossRef]
- Clarke, B.; Liang, R.; Morell, M.K.; Bird, A.R.; Jenkins, C.L.D.; Li, Z. Gene expression in a starch synthase IIa mutant of barley: Changes in the level of gene transcription and grain composition. Funct. Integr. Genom. 2008, 8, 211–221. [Google Scholar] [CrossRef]
- Fan, M.; Herburger, K.; Jensen, J.K.; Zemelis-Durfee, S.; Brandizzi, F.; Fry, S.C.; Wilkerson, C.G. A Trihelix Family Transcription Factor Is Associated with Key Genes in Mixed-Linkage Glucan Accumulation. Plant Physiol. 2018, 178, 1207–1221. [Google Scholar] [CrossRef]
- Garcia-Gimenez, G.; Schreiber, M.; Dimitroff, G.; Little, A.; Singh, R.; Fincher, G.B.; Burton, R.A.; Waugh, R.; Tucker, M.R.; Houston, K. Identification of candidate MYB transcription factors that influence CslF6 expression in barley grain. Front. Plant Sci. 2022, 13, 883139. [Google Scholar] [CrossRef]
- Manickavelu, A.; Kawaura, K.; Imamura, H.; Mori, M.; Ogihara, Y. Molecular mapping of quantitative trait loci for domestication traits and β-glucan content in a wheat recombinant inbred line population. Euphytica 2010, 177, 179–190. [Google Scholar] [CrossRef]
- Panozzo, J.F.; Eckermann, P.J.; Mather, D.E.; Moody, D.B.; Black, C.K.; Collins, H.M.; Barr, A.R.; Lim, P.; Cullis, B.R. QTL analysis of malting quality traits in two barley populations. Aust. J. Agric. Res. 2007, 58, 858–866. [Google Scholar] [CrossRef]
- Cory, A.; Baga, M.; Rossnagel, B.; Anyia, A.; Chibbar, R.N. Genetic markers for CslF6 gene associated with (1,3;1,4)-beta-glucan concentration in barley grain. J. Cereal Sci. 2012, 56, 332–339. [Google Scholar] [CrossRef]
- Chutimanitsakun, Y.; Cuesta-Marcos, A.; Chao, S.; Corey, A.; Filichkin, T.; Fisk, S.; Kolding, M.; Meints, B.; Ong, Y.-L.; Rey, J.I.; et al. Application of marker-assisted selection and genome-wide association scanning to the development of winter food barley germplasm resources. Plant Breed. 2013, 132, 563–570. [Google Scholar] [CrossRef]
- Mohammadi, M.; Blake, T.K.; Budde, A.D.; Chao, S.; Hayes, P.M.; Horsley, R.D.; Obert, D.E.; Ullrich, S.E.; Smith, K.P. A genome-wide association study of malting quality across eight U.S. barley breeding programs. Theor. Appl. Genet. 2015, 128, 705–721. [Google Scholar] [CrossRef]
- Asoro, F.G.; Newell, M.A.; Beavis, W.D.; Scott, M.P.; Tinker, N.A.; Jannink, J. Genomic, Marker-Assisted, and Pedigree-BLUP Selection Methods for β-Glucan Concentration in Elite Oat. Crop Sci. 2013, 53, 1894–1906. [Google Scholar] [CrossRef]
- Steele, K.; Dickin, E.; Keerio; Samad, S.; Kambona, C.; Brook, R.; Thomas, W.; Frost, G. Breeding low-glycemic index barley for functional food. Field Crop. Res. 2013, 154, 31–39. [Google Scholar] [CrossRef]
- Bedő, Z.; Láng, L. Wheat Breeding: Current Status and Bottlenecks. In Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics; Springer International Publishing: Cham, Switzerland, 2015; pp. 77–101. [Google Scholar] [CrossRef]
- Riley, R.; Chapman, V. The production and phenotypes of wheat-rye chromosome addition lines. Heredity 1958, 12, 301–315. [Google Scholar] [CrossRef]
- Friebe, B.; Qi, L.L.; Nasuda, S.; Zhang, P.; Tuleen, N.A.; Gill, B.S. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor. Appl. Genet. 2000, 101, 51–58. [Google Scholar] [CrossRef]
- Amrein, T.M.; Gränicher, P.; Arrigoni, E.; Amadò, R. In vitro digestibility and colonic fermentability of aleurone isolated from wheat bran. LWT 2003, 36, 451–460. [Google Scholar] [CrossRef]
- Chang, S.-B.; de Jong, H. Production of alien chromosome additions and their utility in plant genetics. Cytogenet. Genome Res. 2005, 109, 335–343. [Google Scholar] [CrossRef]
- Garg, M.; Tsujimoto, H.; Gupta, R.K.; Kumar, A.; Kaur, N.; Kumar, R.; Chunduri, V.; Sharma, N.K.; Chawla, M.; Sharma, S.; et al. Chromosome Specific Substitution Lines of Aegilops geniculata Alter Parameters of Bread Making Quality of Wheat. PLoS ONE 2016, 11, e0162350. [Google Scholar] [CrossRef]
- Kwiatek, M.T.; Wiśniewska, H.; Ślusarkiewicz-Jarzina, A.; Majka, J.; Majka, M.; Belter, J.; Pudelska, H. Gametocidal Factor Transferred from Aegilops geniculata Roth Can Be Adapted for Large-Scale Chromosome Manipulations in Cereals. Front. Plant Sci. 2017, 8, 409. [Google Scholar] [CrossRef]
- King, J.; Grewal, S.; Yang, C.-Y.; Edwards, S.H.; Scholefield, D.; Ashling, S.; Harper, J.A.; Allen, A.M.; Edwards, K.J.; Burridge, A.J.; et al. Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Ann. Bot. 2017, 121, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.R.; Lawrence, G.J.; Larroque, O.; Li, Z.; Laidlaw, H.K.; Morell, M.K.; Rahman, S. A survey of β-glucan and arabinoxylan content in wheat. J. Sci. Food Agric. 2011, 91, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Jia, Z.; Yu, Y.; Wang, S.; Che, B.; Ni, F.; Bao, Y. A wheat-Aegilops umbellulata addition line improves wheat agronomic traits and processing quality. Breed. Sci. 2019, 69, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Sanchez-Monge Laguna, E. A Hybrid between Hordeum chilense and Triticum turgidum. Cereal Res. Commun. 1980, 8, 349–353. [Google Scholar]
- Molnár-Láng, M.; Linc, G.; Szakács, É. Wheat–barley hybridization: The last 40 years. Euphytica 2013, 195, 315–329. [Google Scholar] [CrossRef]
- Giordano, D.; Reyneri, A.; Locatelli, M.; Coïsson, J.D.; Blandino, M. Distribution of bioactive compounds in pearled fractions of tritordeum. Food Chem. 2019, 301, 125228. [Google Scholar] [CrossRef]
- Zdaniewicz, M.; Pater, A.; Hrabia, O.; Duliński, R.; Cioch-Skoneczny, M. Tritordeum malt: An innovative raw material for beer production. J. Cereal Sci. 2020, 96, 103095. [Google Scholar] [CrossRef]
- Ávila, C.M.; Rodríguez-Suárez, C.; Atienza, S.G. Tritordeum: Creating a New Crop Species—The Successful Use of Plant Genetic Resources. Plants 2021, 10, 1029. [Google Scholar] [CrossRef] [PubMed]
- Molnár-Láng, M.; Kruppa, K.; Cseh, A.; Bucsi, J.; Linc, G. Identification and phenotypic description of new wheat—Six-rowed winter barley disomic additions. Genome 2012, 55, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Türkösi, E.; Cseh, A.; Darkó, É.; Molnár-Láng, M. Addition of Manas barley chromosome arms to the hexaploid wheat genome. BMC Genet. 2016, 17, 87. [Google Scholar] [CrossRef] [PubMed]
- Danilova, T.V.; Friebe, B.; Gill, B.S.; Poland, J.; Jackson, E. Development of a complete set of wheat–barley group-7 Robertsonian translocation chromosomes conferring an increased content of β-glucan. Theor. Appl. Genet. 2017, 131, 377–388. [Google Scholar] [CrossRef]
- Danilova, T.V.; Poland, J.; Friebe, B. Production of a complete set of wheat–barley group-7 chromosome recombinants with increased grain β-glucan content. Theor. Appl. Genet. 2019, 132, 3129–3141. [Google Scholar] [CrossRef]
- Colasuonno, P.; Marcotuli, I.; Cutillo, S.; Simeone, R.; Blanco, A.; Gadaleta, A. Effect of barley chromosomes on the β-glucan content of wheat. Genet. Resour. Crop Evol. 2020, 67, 561–567. [Google Scholar] [CrossRef]
- Cseh, A.; Cseh, A.; Soós, V.; Soós, V.; Rakszegi, M.; Rakszegi, M.; Türkösi, E.; Türkösi, E.; Balázs, E.; Balázs, E.; et al. Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. Ann. Appl. Biol. 2013, 163, 142–150. [Google Scholar] [CrossRef]
- Mergoum, M.; Singh, P.K.; Peña, R.J.; Lozano-del Río, A.J.; Cooper, K.V.; Salmon, D.F.; Gómez Macpherson, H. Triticale: A “New” Crop with Old Challenges. In Cereals. Handbook of Plant Breeding; Springer: New York, NY, USA, 2009; Volume 3. [Google Scholar]
- Wood, P.J. Oat and Rye β-Glucan: Properties and Function. Cereal Chem. 2010, 87, 315–330. [Google Scholar] [CrossRef]
- Irakli, M.; Biliaderis, C.G.; Izydorczyk, M.S.; Papadoyannis, I.N. Isolation, structural features and rheological properties of water-extractableβ-glucans from different Greek barley cultivars. J. Sci. Food Agric. 2004, 84, 1170–1178. [Google Scholar] [CrossRef]
- Choi, H.; Esser, A.; Murphy, K.M. Genotype × environment interaction and stability of β-glucan content in barley in the Palouse region of eastern Washington. Crop Sci. 2020, 60, 2500–2510. [Google Scholar] [CrossRef]
- International Wheat Genome Sequencing Consortium Home Page. Available online: https://www.wheatgenome.org/ (accessed on 22 August 2023).
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Mulet-Cabero, A.-I.; Egger, L.; Portmann, R.; Ménard, O.; Marze, S.; Minekus, M.; Le Feunteun, S.; Sarkar, A.; Grundy, M.M.-L.; Carrière, F.; et al. A standardised semi-dynamic in vitro digestion method suitable for food—An international consensus. Food Funct. 2020, 11, 1702–1720. [Google Scholar] [CrossRef] [PubMed]
- Thuenemann, E.C.; Giuseppina, G.M.; Rich, G.T.; Faulks, R.M. Dynamic Gastric Model (DGM). In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Gouseti, O.; Lovegrove, A.; Kosik, O.; Fryer, P.J.; Mills, C.; Gates, F.K.; Tucker, G.; Latty, C.; Shewry, P.R.; Bakalis, S. Exploring the Role of Cereal Dietary Fiber in Digestion. J. Agric. Food Chem. 2019, 67, 8419–8424. [Google Scholar] [CrossRef] [PubMed]
TO-AX [%] | WE-AX [%] | n | Analytical Method | Reference | |
---|---|---|---|---|---|
Wholemeal | |||||
wheat (%dw) | 6.36 | 0.56 | 22 | GC | [37] |
wheat (%dw) | 5.80 | - | 26 | GC | [38] |
wheat (%dw) | 6.20 | - | 1 | Uppsala method | [39] |
winter wheat | 1.90 | 0.50 | 131 | GC | [40] |
spring wheat | 2.00 | 0.50 | 20 | GC | [40] |
durum wheat (%dw) | 4.06 | 0.57 | 15 | HPAEC | [41] |
durum wheat | 1.95 | 0.40 | 10 | GC | [40] |
spelt | 1.75 | 0.35 | 5 | GC | [40] |
einkorn | 1.95 | 0.60 | 5 | GC | [40] |
emmer | 1.70 | 0.25 | 5 | GC | [40] |
rye (%dw) | 6.69 | 3.89 | 2 | GC | [42] |
rye (%dw) | 7.93 | - | 5 | GC | [43] |
rye (%dw) | 8.60 | - | 1 | Uppsala method | [39] |
triticale (wheat × rye, %dw) | 6.70 | - | 8 | Uppsala method | [39] |
spring barley (dw) | 8.10 | - | 20 | Uppsala method | [39] |
tritordeum (durum wheat × wild barley, %dw) | 6.90 | - | 5 | Uppsala method | [39] |
oat (%dw) | 11.60 | 0.90 | 1 | HPAEC | [44] |
oat (%dw) | 8.35 | - | 141 | HPAEC | [45] |
Flour | |||||
wheat (%dw) | 2.18 | 0.51 | 20 | GC | [46] |
wheat (%dw) | 1.99 | 0.54 | 26 | GC | [38] |
wheat (synthetic × Opata cross, %dw) | 2.35 | 0.51 | 90 | GC | [47] |
rye (%dw) | 3.64 | 1.21 | 11 | GC | [48] |
rye (%dw) | 3.12 | 1.36 | 5 | GC | [43] |
spring barley (%dw) | 1.93 | 0.23 | 6 | GC | [49] |
winter barley (%dw) | 1.88 | 0.27 | 4 | GC | [49] |
oat (%dw) | 3.30 | - | 1 | HPAEC | [45] |
Polysaccharide | Protein Function | Gene Name and ID (if Known) | Reference |
---|---|---|---|
AX | backbone synthesis (GT43) | TaGT43_1 * TraesCS7A02G441400, TraesCS7B02G340100, TraesCS7D02G430700 | [50,53,59] |
TaGT43_2 * TraesCS4A02G107400, TraesCS4B02G197000, TraesCS4D02G197300 | |||
TaGT43_3 TraesCS3A02G270100, TraesCS3B02G304000, TraesCS3D02G269800 | |||
TaGT43_4 TraesCS1A02G391000, TraesCS1B02G419100, TraesCS1D02G399000 | |||
backbone synthesis (GT47) | TaGT47_1 TraesCS3A02G440100, TraesCS3B02G474200, TraesCS3D02G432900 | ||
TaGT47_2 * TraesCS3A02G440800, TraesCS3B02G474900, TraesCS3D02G433400 | |||
TaGT47_4 TraesCS2A02G288300, TraesCS2B02G305100, TraesCS2D02G286600 | |||
TaGT47_3, TaGT47_5, TaGT47_6, TaGT47_10, TaGT47_13, TaGT47_14 | |||
arabinosylation (GT61) | TaGT61_1/TaXAT1 * TraesCS6A02G309400 | [50,57] | |
TaGT61_2/TaXAT2 TraesCS1B02G371300 | |||
TaGT61_9, TaGT61_11, TaGT61_13, TaGT61_14 | |||
feruloylation (BAHD) | TaBAHD1 *, TaBAHD3 *, TaBAHD4, TaBAHD5 | [50,54] | |
TaBAHD2 TraesCS3A02G119500, TraesCS3A02G119700, TraesCS3D02G121800 | |||
β-glucan | synthesis/regulating G3:G4 ratio | TaCslF6 * TraesCS7A02G298600, TraesCS7B02G188400, TraesCS7D02G294300 | [60,61,62,63] |
synthesis | CslH1 TraesCS2A02G302300, TraesCS2B02G318100, TraesCS2D02G300900 | [61,62,63] | |
synthesis | TaCslJ1/2 TraesCS3A02G094600, TraesCS3B02G110100, TraesCS3D02G095600, TraesCS3D02G094800 | [61] |
Plant Material | Trait | QTL ID | Chr | Nearest Marker or Interval | LOD Score | Candidate Genes | Ref |
---|---|---|---|---|---|---|---|
T.aestivum (bread wheat) | Wf RV/WE-AX | 1-ARE | 1B | >4.7 | [65] | ||
2-CtCs | 1B | >3.8 | |||||
Wf WE-AX | 3-R6C7 | 1B | 14.5 | ||||
Wf RV/WE-AX | 4-RER | 3B | 3.74 | ||||
5-CtCs | 3D | 3.99 | |||||
6-RER | 3D | 4.96 | |||||
7-CtCs | 4B | 3.81 | |||||
8-CtCs | 5D | 26.8 | |||||
9-CtCs | 6B | 3.82 | |||||
Wf WE-AX | 10-R6C7 | 6B | 16.4 | ||||
Wf RV | 11-VxI* | 6B | 16.5 | ||||
Wf RV/WE-AX | 12-RER | 7A | 13.9 | ||||
Wf RV | MQTL1 | 1B | Xwpt5061 | 7.63 | ribosomal protein | ||
MQTL2 | 3D | XksuD14 | 17.7 | kinase inhibitor | |||
MQTL3 | 6B | Xwpt-8641 | 2.61 | translation initiation factor | |||
T.aestivum (bread wheat) | Wm TO-AX | QGax.aww-2A.1 * | 2A | wpt-3114-2A | [66] | ||
QGax.aww-3D.1 | 3D | wpt-0485-3D | |||||
QGax.aww-4D.1 * | 4D | gpw-95001-4D | |||||
QGax.aww-6B.1 | 6B | gwm680-6B | |||||
T.durum (tetraploid wheat) | Wm TO-AX | QGax.mgb-1A.1 | 1A | wsnp_Ex_c45880_51550172 | GH47, Gal7/GH35 | [67] | |
QGax.mgb-1A.2 | 1A | RFL_Contig399_976 | GT31 | ||||
QGax.mgb-1B.1 | 1B | Ex_c40520_1484 | |||||
QGax.mgb-1B.2 | 1B | BS00039135_51 | |||||
QGax.mgb-2A.1 | 2A | BS00073381_51 | |||||
QGax.mgb-2A.2 | 2A | GENE-0762_808 | |||||
QGax.mgb-2B.1 | 2B | Tdurum_contig45838_263 | TaUGT1/GT1, cisZog2B/GT1, GT4 | ||||
QGax.mgb-3A.1 | 3A | Kukri_c17966_634 | CelC/GH1 | ||||
QGax.mgb-3B.1 | 3B | GENE-4918_283 | |||||
Qgax.mgb-4B.1 | 4B | Tdurum_contig42229_113 | |||||
QGax.mgb-5A.1 | 5A | Ex_c95453_1499 | GT8, Ugt12887/GT1 | ||||
QGax.mgb-5A.2 | 5A | BS00068254_51 | GT2, CE8 | ||||
QGax.mgb-5A.3 | 5A | tplb0056b09_1000 | TaUGT1/GT1 | ||||
QGax.mgb-6A.1 | 6A | BobWhite_c27145_318 | |||||
QGax.mgb-6B.1 | 6B | BS00063217_51 | |||||
QGax.mgb-7A.1 | 7A | Tdurum_contig69003_459 | Gsl12/GT2/GT48 (β-1,3-glucan synthase) | ||||
QGax.mgb-7A.2 | 7A | wsnp_Ex_c21854_31021668 | Cel8/GH9 | ||||
QGax.mgb-7A.3 | 7A | GENE-4672_55 | |||||
QGax.mgb-7B.1 | 7B | Kukri_c42653_179 | |||||
T.aestivum (bread wheat) | Wm TO-AX | QgTOT-AX.caas-1B | 1B | HVM23–Sec1 | 10.5 | [68] | |
QgTOT-AX.caas-1D | 1D | Xwmc336–Xbarc152 | 3.1 | ||||
QgTOT-AX.caas-3B | 3B | Xbarc115–Xbarc344 | 2.9 | ||||
QgTOT-AX.caas-5B | 5B | Xbarc142–Xwmc28 | 3.3 | ||||
Wm WU-AX | QgWU-AX.caas-1B | 1B | HVM23–Sec1 | 5.5 | |||
QgWU-AX.caas-3B | 3B | Xbarc115–Xbarc344 | 4.2 | ||||
Wm WE-AX | QgWE-AX.caas-1A | 1A | Xbarc148–Xwmc449 | 6.8 | |||
QgWE-AX.caas-1B | 1B | HVM23–Sec1 | 10.5 | ||||
QgWE-AX.caas-2B | 2B | Xwmc441–Xcfe52 | 9.2 | ||||
QgWE-AX.caas-3B | 3B | Xbarc115–Xbarc344 | 3.9 | ||||
QgWE-AX.caas-5A | 5A | Xgwm443–Xcwem44 | 4.1 | ||||
QgWE-AX.caas-5B | 5B | Xbarc142–Xwmc28 | 8.7 | ||||
QgWE-AX.caas-6B | 6B | Xbarc79–Xbarc178 | 3.7 | ||||
QgWE-AX.caas-7A | 7A | Xbarc174–Xbarc108 | 3.3 | ||||
QgWE-AX.caas-7B | 7B | Xbarc1181–Xwmc517 | 6.5 | ||||
T.aestivum (bread wheat) | Wf TO-AX | Y34Val-1A | 1A | AX-94522489 | 2.4 | [69] | |
Y34Ukr-1A * | 1A | AX-94902531 | 3.2 | ||||
Y34Cla-1B * | 1B | AX-94385888 | 3.2 | ||||
Y34Val-1B | 1B | AX-94524314 | 2.5 | ||||
Y34Ukr-1B * | 1B | AX-94845742 | 5.1 | ||||
Y34Ukr-2A | 2A | AX-95164135 | 2.9 | ||||
Y34Cla-2D | 2D | AX-94538798 | 2.5 | ||||
Y34Cla-5D | 5D | AX-94877826 | 1.6 | ||||
Wf RV/WE-AX | Y34Val-1A * | 1A | AX-94430904 | 3.8 | |||
Y34Alt-1B * | 1B | AX-94618000 | 12.6 | ||||
Y34Val-1B * | 1B | AX-94807857 | 7.8 | ||||
Y34Cla-2B * | 2B | AX-94421649 | 3.1 | ||||
Y34Alt-2B | 2B | AX-94546045 | 2.7 | ||||
Y34Alt-2D * | 2D | AX-94452103 | 3.2 | ||||
Y34Cla-3A | 3A | AX-94603083 | 2 | ||||
Y34Alt-3B * | 3B | AX-94382595 | 6.1 | ||||
Y34Ukr-3B | 3B | AX-94769959 | 2.9 | ||||
Y34Cla-3B * | 3B | AX-95629178 | 5.9 | ||||
Y34Alt-4B | 4B | AX-94853726 | 2.4 | ||||
Y34Alt-4D * | 4D | AX-94766682 | 3.5 | ||||
Y34Val-6B * | 6B | AX-94593804 | 4.4 | ||||
T.aestivum (bread wheat) | Wf TO-AX | 1 | 1B | 1B_646895451 | TraesCS1B02G424500/GH16 | [70] | |
2 | 1B | 1B_653086336 | |||||
3 | 1B | 1B_653681771 | TraesCS1B02G429500/GT61 | ||||
4 | 1B | 1B_654915479 | |||||
5 | 5B | 5B_14665450 | |||||
Wf WE-AX | 6 | 1B | 1B_646895451 | TraesCS1B02G424500/GH16 | |||
7 | 1B | 1B_653086336 | |||||
8 | 1B | 1B_653681771 | TraesCS1B02G429500/GT61 | ||||
9 | 1B | 1B_654915479 | |||||
10 | 2B | 2B_184634480 | TraesCS2B02G204300/GH43 | ||||
11 | 6B | 6B_26597224 | |||||
12 | 7A | 7A_234827309 | TraesCS7A02G250500/peroxidase TraesCS7A02G251400/GH13/peroxidase | ||||
13 | 7A | 7A_264333614 | |||||
14 | 7A | 7A_458678969 | TraesCS7A02G317700/GH9 TraesCS7A02G319100/peroxidase | ||||
15 | 7A | 7A_474572231 | |||||
16 | 7A | 7A_516508921 | TraesCS7A02G349200/GH11 TraesCS7A02G352000/peroxidase TraesCS7A02G352900/peroxidase TraesCS7A02G353000/peroxidase TraesCS7A02G353200/peroxidase TraesCS7A02G353300/peroxidase TraesCS7A02G353400/peroxidase | ||||
17 | 7A | 7A_700824770 | TraesCS7A02G514300/GT1 | ||||
18 | 7B | 7B_454100716 |
Germplasm or Cross | Change in AX/β-Glucan Amount | Reference |
---|---|---|
AX | ||
Yumai34 × Ukrainka | ~+ 5–9 mg/g TO-AX compared to cv Ukrainka ~ + 3–4 mg/g WE-AX compared to cv Ukrainka | [71] |
Yumai34 × Lupus | ~+ 3–4 mg/g TO-AX compared to cv Lupus ~+ 2–3 mg/g WE-AX compared to cv Lupus | |
Aegilops geniculata Addition line: 5U 7U | less TO-AX, more WE-AX compared to cv Chinese Spring | [76] |
+7 mg/g compared to control +7 mg/g compared to control | ||
Aegilops biuncialis Addition line: 1U | less TO-AX, more WE-AX compared to cv Chinese Spring | |
+5 mg/g compared to control | ||
β-glucan | ||
Aegilops umbellulata (2n = 2x = 14, UU) | +62 mg/g compared to cv Chinese Spring (1 year) | [77] |
Aegilops markgrafii (n = 2x = 14, CC) | +37.4–36.7 mg/g compared to cv Chinese Spring (2 years) | |
Aegilops biuncialis (2n = 4x = 28, UbUbMbMb) | +26.68–28.66 mg/g compared to control wheat (2 years) | [78] |
Aegilops geniculata (2n = 4x = 28, Ug UgMgMg) Addition line: 5U 7U 7M | ~+43 mg/g compared to control wheat | [76] |
+4 mg/g compared to control +4 mg/g compared to control +2 mg/g compared to control | ||
Aegilops biuncialis (2n = 4x = 28, UbUbMbMb) Addition line: 7M | ~+20 mg/g compared to control wheat | |
+4 mg/g compared to control |
Sample | G3:G4 | Other Info | Source |
---|---|---|---|
Immature endosperm (17 dpa) | 1.2 | cv. Cadenza | [50] |
Immature endosperm (21 dpa) | 1.2 | cv. Cadenza | [50] |
Immature endosperm (42 dpa) | 1.3 | cv. Cadenza | [50] |
Immature endosperm (28 dpa) | 1.3 | cv. Cadenza | [50] |
Immature endosperm (35 dpa) | 1.4 | cv. Cadenza | [50] |
Immature endosperm (14 dpa) | 1.4 | cv. Cadenza | [50] |
Wholemeal flour | 1.4 | Chinese Spring 5Ug addition line; estimated from graph | [76] |
Immature endosperm (21 dpa) | 1.5 | cv. Hereward | [28] |
Wholemeal flour | 1.6 | Ae. biuncialis; estimated from graph | [76] |
Break 1 milling fraction | 1.8 | cv. Hereward | [28] |
Wholemeal flour | 1.9 | Ae. geniculata; estimated from graph | [76] |
Wholemeal flour | 1.9 | Chinese Spring 6Ug addition line; estimated from graph | [76] |
Reduction 1 milling fraction | 1.9 | cv. Hereward | [28] |
Wholemeal flour | 2.0 | Chinese Spring 3Ub addition line; estimated from graph | [76] |
Wholemeal flour | 2.2 | cv. Chinese Spring; estimated from graph | [76] |
Wholemeal flour | 2.3 | Bread wheat (high nitrogen) | [115] |
Wholemeal flour | 2.4 | Bread wheat (low nitrogen) | [115] |
Wholemeal flour | 2.5 | cv. Hereward | [28] |
Fine bran milling fraction | 2.6 | cv. Hereward | [28] |
Coarse bran milling fraction | 3.1 | cv. Hereward | [28] |
White wheat bran powder 50 | 4.3 | Purified beta glucan; mean of 7 fractions | [111] |
Wheat bran | 4.5 | [116] |
Plant Material | QTL | Chrs | Closest Marker | LOD Score | Candidate Gene | Ref |
---|---|---|---|---|---|---|
T.aestivum × T. spelta RIL (F8) | QBgn | 3A | Xbarc45 | 2.83 | glucan endo-1,3-β-glucosidase | [134] |
QBgn | 1B | Xhbg406 | 3.31 | - | ||
QBgn | 5B | Xgwm540 | 5.31 | - | ||
QBgn | 6D | Xcfd80 | 3.07 | - | ||
T. turgidum L. ssp: durum, turanicum, polonicum, turgidum, carthlicum, dicoccum, dicoccoides, aethiopicum | QGbg.mgb-1A.1 | 1A | IWB42976 | 3.2 | - | [130] |
QGbg.mgb-1A.2 | 1A | IWB45341 | 2.8 | endo-β-1,4-glucanase | ||
QGbg.mgb-2A.1 | 2A | IWB66738 | 3.3 | starch synthase II | ||
QGbg.mgb-2A.2 | 2A | IWB26593 | 3.1 | b-amylase | ||
QGbg.mgb-2B | 2B | IWB1898 | 3.5 | (1,4)-b xylanase | ||
QGbg.mgb-3B | 3B | IWB11735 | 2.9 | Xip-II xylanase inhibitor | ||
QGbg.mgb-5B | 5B | IWB70546 | 3.2 | - | ||
QGbg.mgb-7A.1 | 7A | IWB74166 | 3.4 | isoamylase | ||
QGbg.mgb-7A.2 | 7A | IWB68797 | 3.2 | fructan 1-exohydrolase | ||
T. turgidum L. ssp. durum cv Duilio × Avonlea RIL (F2:7) | QGbg.mgb-2A.1 | 2A | IWB1280 | 4.5 | - | [62] |
QGbg.mgb-2B.1 | 2B | IWB30115 | 4.7 | - | ||
QGbg.mgb-2B.2 | 2B | IWB23783 | 3.8 | β-glucosidase 1a | ||
Aegilops biuncialis | 1 | 4M/6U | 100022501_F_0 | 4.5 | glutathione S-transferase 3-like | [78] |
Aegilops biuncialis | 2 | 5M | 100013840_F_1 | 3.1 | - | |
Aegilops biuncialis | 3 | 1M/1U | 100079925_F_0 | 3.6 | - | |
T.aestivum L. (line Mv9kr1) | 1 | 4ABD | 100022501_F_0 | 4.5 | microsomal glutathione S-transferase 3 * | |
T.aestivum L. (line Mv9kr1) | 2 | 5ABD | 100013840_F_1 | 3.1 | - | |
T.aestivum L. (line Mv9kr1) | 3 | 1ABD | 100079925_F_0 | 3.6 | putative peptide transporter * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prins, A.; Kosik, O. Genetic Approaches to Increase Arabinoxylan and β-Glucan Content in Wheat. Plants 2023, 12, 3216. https://doi.org/10.3390/plants12183216
Prins A, Kosik O. Genetic Approaches to Increase Arabinoxylan and β-Glucan Content in Wheat. Plants. 2023; 12(18):3216. https://doi.org/10.3390/plants12183216
Chicago/Turabian StylePrins, Anneke, and Ondrej Kosik. 2023. "Genetic Approaches to Increase Arabinoxylan and β-Glucan Content in Wheat" Plants 12, no. 18: 3216. https://doi.org/10.3390/plants12183216
APA StylePrins, A., & Kosik, O. (2023). Genetic Approaches to Increase Arabinoxylan and β-Glucan Content in Wheat. Plants, 12(18), 3216. https://doi.org/10.3390/plants12183216