Floral Aroma and Pollinator Relationships in Two Sympatric Late-Summer-Flowering Mediterranean Asparagus Species
Abstract
:1. Introduction
2. Results
2.1. Flowering Phenology
2.2. Pollinator Responses and Reproductive Success
2.2.1. Pollinators
2.2.2. Reproductive Success (Breeding System)
2.3. Compounds of Floral Scents
2.4. Volatile Emission Timing
2.5. Volatile Emission and Pollinators Visits
3. Discussion
3.1. Phenology, Breeding System, and Sexuality
3.2. Pollinators and Floral Scents
4. Materials and Methods
4.1. Study Site
4.2. Flowering Phenology
4.3. Breeding System
4.4. Scent Sampling and Analysis and Identification of Compounds
4.5. Pollinator Monitoring
4.6. Statistical Analysis of the Data
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, O.H.; Dodson, C.H. Selective attraction of euglossine bees to orchid floral fragrances and its importance in long distance pollen flow. Evolution 1972, 26, 84–95. [Google Scholar] [CrossRef]
- Wang, G.; Compton, S.G.; Chen, J. The mechanism of pollinator specificity between two sympatric fig varieties: A combination of olfactory signals and contact cues. Ann. Bot. 2013, 111, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 2006, 72, 1–120. [Google Scholar] [CrossRef]
- Llusia, J.; Peñuelas, J. Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am. J. Bot. 2000, 87, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulou, D.; Demetzos, C.; Perdetzoglou, D. Diurnal and seasonal variation of the essential oil labdanes and clerodanes from Cistus monspeliensis L. leaves. Biochem. Syst. Ecol. 2002, 30, 189–203. [Google Scholar] [CrossRef]
- Barkman, T.J. Character coding of secondary chemical variation for use in phylogenetic analyses. Biochem. Syst. Ecol. 2001, 29, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Raguso, R.A.; Schlumpberger, B.O.; Kaczorowski, R.L.; Holtsford, T.P. Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes. Phytochemistry 2006, 67, 1931–1942. [Google Scholar] [CrossRef] [PubMed]
- Gögler, J.; Stökl, J.; Sramkova, A.; Twele, R.; Francke, W.; Cozzolino, S.; Cortis, P.; Scrugli, A.; Ayasse, M. Menage a trios; two endemic species of deceptive orchids and one pollinator species. Evolution 2009, 63, 2222–2234. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Piechulla, B.; Pichersky, E. Biogenesis of Floral Scents. Hortic. Rev. 2010, 24, 31–54. [Google Scholar] [CrossRef]
- Bracho-Nunez, A.; Welter, S.; Staudt, M.; Kesselmeier, J. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation. J. Geophys. Res. D Atmos. 2011, 116, 1–13. [Google Scholar] [CrossRef]
- Nogueira, P.C.L.; Bittrich, V.; Shepherd, G.J.; Lopes, A.V.; Marsaioli, A.J. The ecological and taxonomic importance of flower volatiles of Clusia species (Guttiferae). Phytochemistry 2001, 56, 443–452. [Google Scholar] [CrossRef]
- Primack, R.B. Longevity of individual flowers. Annu. Rev. Ecol. Evol. Syst. 1985, 16, 15–37. [Google Scholar] [CrossRef]
- Kochmer, J.P.; Handel, S.N. Constraints and competition in the evolution of flowering phenology. Ecol. Monogr. 1986, 56, 303–325. [Google Scholar] [CrossRef]
- Daly, K.C.; Durtschi, M.L.; Smith, B.H. Olfactory-based discrimination learning in the moth, Manduca sexta. J. Insect Physiol. 2001, 47, 375–384. [Google Scholar] [CrossRef]
- Dobson, H.E.M. Floral volatiles in insect biology. In Insect-Plant Interactions; Bernays, E.A., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 47–81. [Google Scholar]
- Dobson, H.E.M. Relationship between floral fragrance composition and type of pollinator. In Biology of Floral Scent; Dudareva, N., Pichersky, E., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 147–198. [Google Scholar]
- Pellmyr, O. Pollination ecology of two nectariferous Cimicifuga sp. (Ranunculaceae) and the evolution of andromonoecy. Nord. J. Bot. 1986, 6, 129–138. [Google Scholar] [CrossRef]
- Grant, V. Modes and origins of mechanical and ethological isolation in Angiosperms. Proc. Natl. Acad. Sci. 1994, 91, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Véla, E. Asparagus albus. In The IUCN Red List of Threatened Species; International Union for Conservation of Nature: London, UK, 2018. [Google Scholar] [CrossRef]
- Jashemski, W.F. Gardens in villas at Boscoreale and Oplontis. In Ancient Roman Villa Gardens; McDougall, E.B., Ed.; Dumbarton Oaks Research Library: Washington, DC, USA, 1987. [Google Scholar]
- Palau Ferrer, P.C. Les plantes medicinals baleàriques. In Manuals d’Introducció a la Naturalesa 4.5a ed.; Moll: Palma de Mallorca, Spain, 1993; ISBN 84-273-0296-7. [Google Scholar]
- Rhodes, L.; Maxted, N. Asparagus acutifolius. In The IUCN Red List of Threatened Species; International Union for Conservation of Nature: London, UK, 2016. [Google Scholar] [CrossRef]
- Dinolfo, L. Distribution and Major Morphological Traits of Wild Asparagus (A. acutifolius L. and A. albus L.) in Sicily. In Proceedings of the ISHS-XV International Asparagus Symposium, Cordoba, Spain, 12–15 June 2022; Available online: https://www.ishs.org/news/distribution-and-major-morphological-traits-wild-asparagus-acutifolius-l-and-albus-l-sicily (accessed on 8 June 2023).
- Paoletti, A.; Benincasa, P.; Famiani, F.; Rosati, A. Spear yield and quality of wild asparagus (Asparagus acutifolius L.) as an understory crop in two olive systems. Agrofor. Syst. 2023, 1–13. [Google Scholar] [CrossRef]
- Sica, M.; Gamba, G.; Montieri, S.; Gaudio, L.; Aceto, S. ISSR markers show differentiation among Italian populations of Asparagus acutifolius L. BMC Genet. 2005, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Kubota, S.; Konno, I.; Kanno, A. Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theor. Appl. Genet. 2012, 124, 345. [Google Scholar] [CrossRef]
- Baker, J.G. Revision of the Genera and Species of Asparagaceae. (Continued.). Bot. J. Linn. Soc. 1875, 14, 547–632. [Google Scholar] [CrossRef]
- Norup, M.F.; Petersen, G.; Burrows, S.; Bouchenak-khelladi, Y.; Leebens-Mack, J.; Pires, J.C.; Linder, H.P.; Seberg, O. Evolution of Asparagus L. (Asparagaceae): Out-of-South Africa and multiple origins of sexual dimorphism. Mol. Phylogenetics Evol. 2015, 92, 25–44. [Google Scholar] [CrossRef]
- Charlesworth, B.; Charlesworth, D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 1978, 112, 975–997. [Google Scholar] [CrossRef]
- Charlesworth, D. Evolution of Plant Breeding Systems. Curr. Biol. 2006, 16, 726–735. [Google Scholar] [CrossRef]
- Dufay, M.; Champelovier, P.; Kafer, J.; Henry, J.P.; Mousset, S.; Marais, G.A.B. Anangiosperm-wide analysis of the gynodioecy-dioecy pathway. Ann. Bot. 2014, 114, 539–548. [Google Scholar] [CrossRef]
- Byers, K.J.; Bradshaw, H.D., Jr.; Riffell, J.A. Three floral volatiles contribute to differential pollinator attraction in monkeyflowers (Mimulus). J. Exp. Biol. 2014, 217, 614–623. [Google Scholar] [CrossRef]
- Missbach, C.; Dweck, H.K.M.; Vogel, H.; Vilcinskas, A.; Stensmyr, M.C.; Bill, S.; Hansson, B.S.; Grosse-Wilde, E. Evolution of insect olfactory receptors. eLife 2014, 3, e02115. [Google Scholar] [CrossRef]
- Fenster, C.B.; Armbruster, W.S.; Wilson, P.; Dudash, M.R.; Thomson, J.D. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 375–403. [Google Scholar] [CrossRef]
- Rosas-Guerrero, V.; Aguilar, R.; Martén-Rodríguez, S.; Ahsworth, L.; Lopezaraiza-Mikel, M.; Bastida, J.M.; Quesada, M. A quantitative review of pollination syndrome: Do floral traits predict effective pollinators? Ecol. Lett. 2014, 17, 388–400. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Peñuelas, J. Pollination mode determines floral scent. Biochem. Syst. Ecol. 2015, 61, 44–53. [Google Scholar] [CrossRef]
- Dellinger, A.S. Pollination syndromes in the 21st century: Where do we stand and where may we go? New Phytol. 2020, 228, 1193–1213. [Google Scholar] [CrossRef]
- Dötterl, S.; Jahreiß, K.; Jhumur, U.S.; Jürgens, A. Temporal variation of flower scent in Silene otites (Caryophyllaceae): A species with a mixed pollination system. Bot. J. Linn. Soc. 2012, 169, 447–460. [Google Scholar] [CrossRef]
- Milet-Pinheiro, P.; Silva, J.; Navarro, D.; Machado, I.; Gerlach, G. Notes on pollination ecology nd floral scent chemistry of the rare neotropical orchid Catasetum galeritum Rchb.f. Plant Species Biol. 2018, 33, 158–163. [Google Scholar] [CrossRef]
- Parachnowitsch, A.L.; Raguso, R.A.; Kessler, A. Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis. New Phytol. 2012, 195, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Majetic, C.J.; Wiggam, S.D.; Ferguson, C.J.; Raguso, R.A. Timing is everything: Temporal variation in floral scent, and its connections to pollinator behavior and female reproductive success in Phlox divaricata. Am. Midl. Nat. 2015, 173, 191–207. Available online: http://www.jstor.org/stable/43822849 (accessed on 8 June 2023). [CrossRef]
- Sarabi, B.; Hassandokht, M.; Hassani, M.; Ramak Masoumi, T.; Rich, T. Evaluation of genetic diversity among some Iranian wild asparagus populations using morphological characteristics and RAPD markers. Sci. Hortic. 2010, 126, 1–7. [Google Scholar] [CrossRef]
- Riccardi, P.; Casali, P.E.; Mercati, F.; Falavigna, A.; Sunseri, F. Genetic characterization of asparagus doubled haploids collection and wild relatives. Sci. Hortic. 2011, 130, 691–700. [Google Scholar] [CrossRef]
- Harkess, A.; Zhou, J.; Xu, C.; Bowers, J.; van der Hulst, R.; Ayyampalayam, S.; Mercati, F.; Riccardi, P.; Mckain, M.; Kakrana, A.; et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 2017, 8, 1279. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, D.; Hoberg, E.; Bittner, T.; Engewald, W.; Meilchen, K. Contribution of volatile compounds to the flavor of cooked asparagus. Eur. Food Res. Technol. 2001, 13, 200–204. [Google Scholar] [CrossRef]
- Nothnagel, T.; Krämer, R.; Budahn, H.; Schrader, O.; Ulrich, D.; Rabenstein, F.; Schreyer, L. Enlargement of the genetic variability of garden asparagus (Asparagus officinalis L.) to improve resistance to biotic and abiotic stresses and quality associated compounds. Acta Hortic. 2012, 950, 143–151. [Google Scholar] [CrossRef]
- Di Maro, A.; Pacifico, S.; Fiorentino, A.; Galasso, S.; Gallicchio, M.; Guida, V.; Severino, V.; Monaco, P.; Parente, A. Raviscanina wild asparagus (Asparagus acutifolius L.): A nutritionally valuable crop with antioxidant and antiproliferative properties. Food Res. Int. 2013, 53, 180–188. [Google Scholar] [CrossRef]
- Morrison, W.R.; Ingrao, A.; Ali, J.; Szendrei, Z. Identification of plant semiochemicals and evaluation of their interactions with early spring insect pests of asparagus. J. Plant Interact. 2016, 11, 11–19. [Google Scholar] [CrossRef]
- Ingrao, A.J.; Walters, J.; Szendrei, Z. Biological control of asparagus pests using synthetic herbivore-induced volatiles. Environ. Entomol. 2019, 48, 202–210. [Google Scholar] [CrossRef]
- Dodd, A.N.; Salathia, N.; Hall, A.; Kevei, E.; Toth, R.; Nagy, F.; Hibberd, J.M.; Millar, A.J.; Webb, A.A.R. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 2005, 309, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Callaway, R.M. Positive interactions among plants. Bot. Rev. 1995, 61, 306–349. [Google Scholar] [CrossRef]
- Kelly, D.; Sork, V.L. Mast seeding in perennial plants: Why, how, where? Annu. Rev. Ecol. Evol. Syst. 2002, 33, 427–447. [Google Scholar] [CrossRef]
- Moeller, D.A. Facilitative interactions among plants via shared pollinators. Ecology 2004, 85, 3289–3301. [Google Scholar] [CrossRef]
- De Jong, T.J.; Shmida, A.; Thuijsman, F. Sex allocation in plants and the evolution of monoecy. Evol. Ecol. Res. 2008, 10, 1087–1109. [Google Scholar]
- Dötterl, S.; Glück, U.; Jürgens, A.; Woodring, J.; Aas, G. Floral reward, advertisement, and attractiveness to honey bees in dioecious Salix caprea. PLoS ONE 2014, 9, e93421. [Google Scholar] [CrossRef]
- Knauer, A.C.; Schiestl, F.P. The effect of pollinators and herbivores on selection for floral signals: A case study in Brassica rapa. Ecol. Evol. 2016, 31, 1–20. [Google Scholar] [CrossRef]
- Burdon, R.C.F.; Raguso, R.A.; Gegear, R.J.; Pierce, E.C.; Kessler, A.; Parachnowitsch, A.L. Scented nectar and the challenge of measuring honest signals in pollination. J. Ecol. 2020, 108, 2132–2144. [Google Scholar] [CrossRef]
- Knauer, A.C.; Kokko, H.; Schiestl, F.P. Pollinator behaviour and resource limitation maintain honest floral signalling. Funct. Ecol. 2021, 35, 2536–2549. [Google Scholar] [CrossRef]
- Knauer, A.C.; Schiestl, F.P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 2014, 18, 135–143. [Google Scholar] [CrossRef]
- Blight, M.; Lemetayer, M.; Pham-Delegue, M.H.; Pickett, J.A.; Marion-Poll, F.; Wadhams, L.J. Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by honeybees, Apis mellifera. J. Chem. Ecol. 1997, 23, 1715–1727. [Google Scholar] [CrossRef]
- Le Metayer, M.; Marion-Poll, F.; Sandoz, J.C.; Pham-Delegue, M.H.; Blight, M.M.; Wadhams, L.J.; Masson, C.; Woodcock, C.M. Effect of conditioning on discrimination of oilseed rape volatiles by the honeybee: Use of a combined gas chromatography-proboscis extension behavioural assay. Chem. Senses 1997, 22, 391–398. [Google Scholar] [CrossRef]
- Valterová, I.; Kunze, J.; Gumbert, A.; Luxová, A.; Liblikas, I.; Kalinová, B.; Borg-Karlson, A.-K. Male bumble bee pheromonal components in the scent of deceit pollinated orchids; unrecognized pollinator cues? Arthropod-Plant Interact. 2007, 1, 137–145. [Google Scholar] [CrossRef]
- Chen, G.; Gong, W.C.; Ge, J.; Dunn, B.L.; Sun, W.B. Floral scents of typical Buddleja species with different pollination syndromes. Biochem. Syst. Ecol. 2012, 44, 173–178. [Google Scholar] [CrossRef]
- Singer, R.B. The Pollination Mechanism in Trigonidium obtusum Lindl (Orchidaceae:Maxillariinae): Sexual Mimicry and Trap-flowers. Ann. Bot. 2002, 89, 157–163. [Google Scholar] [CrossRef]
- Arnold, S.E.J.; Forbes, S.J.; Hall, D.R.; Farman, D.I.; Bridgemohan, P.; Spinelli, G.R.; Bray, D.P.; Perry, G.B.; Greys, L.; Belmain, S.R.; et al. Floral Odors and the Interaction between Pollinating Ceratopogonid Midges and Cacao. J. Chem. Ecol. 2019, 45, 869–878. [Google Scholar] [CrossRef]
- Simkin, A.J.; Underwood, B.A.; Auldridge, M.; Loucas, H.M.; Shibuya, K.; Schmelz, E.; Clark, D.G.; Klee, H.J. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiol. 2004, 136, 3504–3514. [Google Scholar] [CrossRef]
- Maia, A.C.D.; Gibernau, M.; Dötterl, S.; Navarro, D.M.; Seifert, K.; Müller, T.; Schlindwein, C. The floral scent of Taccarum ulei (Araceae): Attraction of scarab beetle pollinators to an unusual aliphatic acyloin. Phytochemistry 2013, 93, 71–78. [Google Scholar] [CrossRef]
- Pereira, J.; Schlindwein, C.; Antonini, Y.; Maia, A.C.D.; Dötterl, S.; Martins, M.; Navarro, D.M.A.F.; Oliveira, R. Philodendron adamantinum (Araceae) lures its single cyclocephaline scarab pollinator with specific dominant floral scent volatiles. Biol. J. Linn. Soc. 2014, 111, 679–691. [Google Scholar] [CrossRef]
- Faria, L.R.; Zanella, F.C. Beta-ionone attracts Euglossa mandibularis (Hymenoptera, Apidae) males in western Paraná forests. Rev. Bras. Entomol. 2015, 59, 260–264. [Google Scholar] [CrossRef]
- Ômura, H.; Honda, K.; Hayashi, N. Floral scent of Osmanthus fragrans discourages foraging behavior of cabbage butterfly, Pieris rapae. J. Chem. Ecol. 2000, 26, 655–666. [Google Scholar] [CrossRef]
- Gruber, M.Y.; Xu, N.; Grenkow, L.; Li, X.; Onyilagha, J.; Soroka, J.J.; Westcott, N.D.; Hegedus, D.D. Responses of the crucifer flea beetle to Brassica volatiles in an olfactometer. Environ. Entomol. 2009, 38, 1467–1479. [Google Scholar] [CrossRef] [PubMed]
- Caceres, L.A.; Lakshminarayan, S.; Yeung, K.K.C.; McGarvey, B.D.; Hannoufa, A.; Sumarah, M.W.; Benitez, I.; Scott, I.M. Repellent and Attractive Effects of α-, β-, and Dihydro-β- Ionone to Generalist and Specialist Herbivores. J. Chem. Ecol. 2016, 42, 107–117. [Google Scholar] [CrossRef]
- Ogunwande, I.A.; Avoseh, N.O.; Flamini, G.; Hassan, A.S.O.; Ogunmoye, A.O.; Ogunsanwo, A.O.; Yusuf, K.O.; Kelechi, A.O.; Tiamiyu, Z.A.; Tabowei, G.O. Essential Oils from the Leaves of Six Medicinal Plants of Nigeria. Nat. Prod. Commun. 2013, 8, 243–248. [Google Scholar] [CrossRef]
- He, Z.Q.; Shen, X.Y.; Cheng, Z.Y.; Wang, R.L.; Lai, P.X.; Xing, X. Chemical Composition, Antibacterial, Antioxidant and Cytotoxic Activities of the Essential Oil of Dianella ensifolia. Rec. Nat. Prod. 2020, 14, 160–165. [Google Scholar] [CrossRef]
- Irwin, R.E.; Dorsett, B. Volatile Production by Buds and Corollas of Two Sympatric, Confamilial Plants, Ipomopsis aggregata and Polemonium foliosissimum. J. Chem. Ecol. 2002, 28, 565–578. [Google Scholar] [CrossRef]
- Rivas-Martínez, S. Global Bioclimatics (Clasificación Bioclimática de la Tierra). 2004. Available online: www.globalbioclimatics.org (accessed on 8 June 2023).
- Fantinato, E.; Del Vecchio, S.; Slaviero, A.; Conti, L.; Acosta, A.T.R.; Buffa, G. Does flowering synchrony contribute to the sustainment of dry grassland biodiversity? Flora 2016, 222, 96–103. [Google Scholar] [CrossRef]
- Tomàs, J.; Cardona, C.; Ferriol, P.; Llorens, L.; Gil, L. Floral traits and reproductive biology of two Mediterranean species of Clematis, asynchronous and sympatric, are key food sources for pollinator survival. S. Afr. J. Bot. 2022, 151, 85–94. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Dong, J.H.; Wu, H.; Wang, Y.H.; Xiao, H.X. Optimization of SPME–GC–MS and characterization of floral scents from Aquilegia japonica and A. amurensis flowers. BMC Chem. 2021, 15, 26. [Google Scholar] [CrossRef] [PubMed]
- Dafni, A. Pollination ecology. In A Practical Approach; Rickwook, E.D., Hames, B.C., Eds.; The Practical Approach Series; IRL Press at Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Ozler, H.; Pehlivan, S. Comparison of pollen morphological structures of some taxa belonging to Asparagus L. and Fritillaria L. (Liliaceae) from Turkey. Bangladesh J. Bot. 2007, 36, 111–120. [Google Scholar] [CrossRef]
- Auer, W. Asparagus acutifolius. PalDat—A Palynological Database. 2020. Available online: https://www.paldat.org/pub/Asparagus_acutifolius/304762 (accessed on 8 June 2023).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Package ‘Vegan’: Commun. Ecol. Package. R package version 2.5-2. 2018. Available online: https://CRAN.R-project.org/package=vegan (accessed on 13 August 2023).
- Clarke, K.R.; Gorley, R.N.; Somerfield, P.J.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd ed.; PRIMER-E Ltd.: Plymouth, UK, 2014. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
Species | Hour (UTC) | ||||
---|---|---|---|---|---|
05 | 08 | 11 | 14 | 17 | |
A. acutifolius (females) | 1 (0–2) | 2 (1–4) | 10 (7–14) | 8 (3–10) | 7 (0–2) |
A. acutifolius (hermaphrodites) | 2 (1–2) | 7 (4.9) | 9 (6–15) | 3 (1–6) | 1 (0–1) |
A. albus | 8 (5–10 | 46 (32–62) | 22 (18–25) | 6 (2–8) | 0 |
A. acutifolius (Females) | A. acutifolius (Hermaphrodites) | A. albus | ||||
---|---|---|---|---|---|---|
Year | % ± s.d. | N | % ± s.d. | N | % ± s.d. | N |
2016 | 77.6 (6.73) | 9 | 96.7 (2.25) | 6 | 96.6 (3.38) | 10 |
2019 | 68.7 (7.79) | 10 | 93.2 (3.19) | 5 | 98.1 (1.07) | 7 |
2022 | 80.0 (4.93) | 11 | 96.50 (1.41) | 8 | 95.5 (1.52) | 6 |
Species | Treatment | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
A. acutifolius (females) | 23.4 (2.3) | 62.0 (5.4 | |||||
A. acutifolius (hermaphrodites) | 0.4 (1.3) | 0.3 (0.2) | 0.3 (0.2) | 0.2 (0.4) | 1.2 (1.4) | 1.1 (1.5) | 0 |
A. albus | 54.2 (6.9) | 19.0 (3.2) | 10.0 (1.6) | 11.0 (2.5) | 60.0 (4.2) | 18.6 (2.4) | 0 |
Compound | Identification | Kovats Index | Asparagus acutifolius | Asparagus albus | ||
---|---|---|---|---|---|---|
Mean ± SD | Occurrence | Mean ± SD | Occurrence | |||
Monoterpenes and relatives | ||||||
Sulcatone (= 6-Methyl-5-hepten-2-one) | a,c | 1340 | 0.6 ± 0.81 | 40 | ||
(Z)-Geranyl acetone | a,b | 1420 | 3.07 ± 0.6 | 100 | ||
(E)-Geranyl acetone | a,b,c | 1870 | 15.89 ± 2.4 | 100 | ||
6,10-Dimethylundeca-5,9-dien-2-ol) | a | 1454 | 1.18 ± 0.18 | 100 | ||
Carotenoids derivatives | ||||||
Dihydro-α-Ionone | a | 1795 | 4.96 ± 0.87 | 100 | ||
Dihydro-β-Ionone | a,b,c | 1854 | 38.25 ± 2.64 | 100 | ||
β-Ionone | a,b,c | 1938 | 24.45 ± 2.92 | 100 | ||
Sesquiterpenes | ||||||
(Z,E)-α-Farnesene * | a,b,c | 1701 | 0.39 ± 0.5 | 40 | 3.06 ± 2.15 | 79 |
(E,E)-α-Farnesene * | a,b,c | 1740 | 10.77 ± 1.16 | 100 | 19.35 ± 12.5 | 100 |
Benzene derivatives | ||||||
Benzaldehyde | a,b,c | 1512 | 1.63 ± 3.93 | 37 | ||
Phenylacetaldehyde | a,b,c | 1595 | 63.85 ± 16.23 | 100 | ||
Phenethyl acetate | a,b | 1734 | 0.78 ± 1.75 | 26 | ||
Benzyl alcohol | a,b,c | 1866 | 1.86 ± 2.26 | 63 | ||
Phenethyl alcohol | a,b,c | 1902 | 5.54 ± 9.38 | 95 | ||
Alkanes | ||||||
Pentadecane | a,b,c | 1504 | 1.42 ± 3.1 | 37 |
VOC | AvA | AvB | Cumsum |
---|---|---|---|
Phenylacetaldehyde | 63.85 | 0 | 35.9 |
Dihydro-β-Ionone | 0 | 38.25 | 57.4 |
β-Ionone | 0 | 24.46 | 71.1 |
(E)-Geranyl acetone | 0 | 15.89 | 80.0 |
(E,E)-α-Farnesene | 19.35 | 10.77 | 86.6 |
Phenethyl alcohol | 5.54 | 0 | 89.7 |
Dihydro-α-Ionone | 0 | 4.96 | 92.5 |
(Z)-Geranyl acetone | 0 | 3.07 | 94.5 |
(Z,E)-α-Farnesene | 3.06 | 0.39 | 95.8 |
Benzyl alcohol | 1.86 | 0 | 96.9 |
Benzaldehyde | 1.63 | 0 | 97.8 |
Pentadecane | 1.42 | 0 | 98.6 |
Geranyl acetol | 0 | 1.18 | 99.2 |
Phenethyl acetate | 0.78 | 0 | 99.7 |
Sulcatone | 0 | 0.60 | 100 |
VOC | Hour (UTC) | |||||
---|---|---|---|---|---|---|
05 | 08 | 11 | 14 | 17 | ||
Asparagus acutifolius | Alkanes | 33.05 | 33.24 | 33.01 | 13.70 | 12.34 |
Carotenoids derivatives | 33.56 | 33.87 | 32.81 | 56.53 | 63.12 | |
Monoterpenes | 33.32 | 32.78 | 33.10 | 26.78 | 24.01 | |
Scent production: media (max/min) | 0.6 (0.8–0.4) | 0.8 (1.0–0–7) | 0.9 (1.1–0.5) | 0.7 (0.9–0.6) | 0.3 (0.1–0.4) | |
Asparagus albus | Alkanes | 31.41 | 44.92 | 20.41 | 0 | 0 |
Benzene derivatives | 36.75 | 20.36 | 44.48 | 63.10 | 75.02 | |
Sesquiterpenes | 31.56 | 33.7 | 34.20 | 36.76 | 24.97 | |
Scent production: media (max/min) | 1.4 (1.6–1.2) | 1.7 (1.9–1.5) | 1.0 (1.1–0.6) | 0.6 (0.9–0.3) | 0.2 (0.3–0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llorens, L.; Tomàs, J.; Ferriol, P.; García, M.T.; Gil, L. Floral Aroma and Pollinator Relationships in Two Sympatric Late-Summer-Flowering Mediterranean Asparagus Species. Plants 2023, 12, 3219. https://doi.org/10.3390/plants12183219
Llorens L, Tomàs J, Ferriol P, García MT, Gil L. Floral Aroma and Pollinator Relationships in Two Sympatric Late-Summer-Flowering Mediterranean Asparagus Species. Plants. 2023; 12(18):3219. https://doi.org/10.3390/plants12183219
Chicago/Turabian StyleLlorens, Leonardo, Joan Tomàs, Pere Ferriol, María Trinitat García, and Lorenzo Gil. 2023. "Floral Aroma and Pollinator Relationships in Two Sympatric Late-Summer-Flowering Mediterranean Asparagus Species" Plants 12, no. 18: 3219. https://doi.org/10.3390/plants12183219
APA StyleLlorens, L., Tomàs, J., Ferriol, P., García, M. T., & Gil, L. (2023). Floral Aroma and Pollinator Relationships in Two Sympatric Late-Summer-Flowering Mediterranean Asparagus Species. Plants, 12(18), 3219. https://doi.org/10.3390/plants12183219