Inheritance of Early Stomatal Closure Trait in Soybean: Ellis × N09-13890 Population
Abstract
:1. Introduction
2. Results
2.1. Expression of the TR Trait
2.2. Transpiration Rate Response to Vapor Pressure Deficit (VPD)
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Condition
4.2. Progressive Soil Drying
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cattivelli, L.; Rizza, F.; Badeck, F.W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Stanca, A.M. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res. 2008, 105, 1–14. [Google Scholar] [CrossRef]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Lee, D. Climate Change: Impact on Agriculture and Costs of Adaptation; International Food Policy Research Institute: Washington, DC, USA, 2009; Volume 21. [Google Scholar]
- Mangena, P. Water Stress: Morphological and Anatomical Changes in Soybean (Glycine max L.) Plants. In Plant, Abiotic Stress and Responses to Climate Change; Andjelkovic, V., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Palmer, J.; Dunphy, E.J.; Reese, P.F. Managing Drought-Stress Soybeans in the Southeast; NC Cooperative Extension Service, 1995; Available online: https://coolbean.info/pdf/soybean_research/library/grain_production/Managing%20Drought-Stressed%20Soybeans%20in%20the%20Southeast.pdf (accessed on 2 August 2023).
- Specht, J.E.; Hume, D.J.; Kumudini, S.V. Soybean yield potential—A genetic and physiological perspective. Crop Sci. 1999, 39, 1560–1570. [Google Scholar] [CrossRef]
- Arya, H.; Singh, M.B.; Bhalla, P.L. Towards developing drought-smart soybeans. Front. Plant Sci. 2021, 12, 750664. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.D.; Sinclair, T.R. The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. J. Exp. Bot. 1998, 49, 1381–1386. [Google Scholar] [CrossRef]
- Devi, M.J.; Sinclair, T.R.; Vadez, V.; Krishnamurthy, L. Peanut genotypic variation in transpiration efficiency and decreased transpiration during progressive soil drying. Field Crops Res. 2009, 114, 280–285. [Google Scholar] [CrossRef]
- Gilbert, M.E.; Zwieniecki, M.A.; Holbrook, N.M. Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought. J. Exp. Bot. 2011, 62, 2875–2887. [Google Scholar] [CrossRef] [PubMed]
- Shekoofa, A.; Devi, J.M.; Sinclair, T.R.; Holbrook, C.C.; Isleib, T.G. Divergence in drought-resistance traits among parents of recombinant peanut inbred lines. Crop Sci. 2013, 53, 2569–2576. [Google Scholar] [CrossRef]
- Purdom, S.; Shekoofa, A.; McClure, A.; Pantalone, V.; Arelli, P. Genotype identification for a water saving trait: Exploring early stomatal closure under soil drying among mid-South soybean. J. Agron. 2021, 114, 545–554. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Q.; Han, C.; Qiao, Y.Z.; Yao, X.Q.; Yin, H.J. Influence of water stress and low irradiance on morphological and physiological characteristics of Picea asperata seedlings. Photosynthetica 2007, 45, 613–619. [Google Scholar] [CrossRef]
- Faralli, M.; Matthews, J.; Lawson, T. Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement. Curr. Opin. Plant Biol. 2019, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sadok, W.; Sinclair, T.R. Genetic variability of transpiration response to vapor pressure deficit among soybean (Glycine max [L.] Merr.) genotypes selected from a recombinant inbred line population. Field Crops Res. 2009, 113, 156–160. [Google Scholar] [CrossRef]
- Fracasso, A.; Trindade, L.; Amaducci, S. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. J. Plant Physiol. 2016, 190, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shekoofa, A.; Sinclair, T.R.; Aninbon, C.; Holbrook, C.C.; Isleib, T.G.; Ozias-Akins, P.; Chu, Y. Expression of the limited-transpiration trait under high vapour pressure deficit in peanut populations: Runner and Virginia types. J. Agron. Crop Sci. 2017, 203, 295–300. [Google Scholar] [CrossRef]
- Sadras, V.O.; Milroy, S.P. Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. Field Crops Res. 1996, 47, 253–266. [Google Scholar] [CrossRef]
- Hufstetler, E.V.; Boerma, H.R.; Carter, T.E., Jr.; Earl, H.J. Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Sci. 2007, 47, 25–35. [Google Scholar] [CrossRef]
- Seversike, T.M.; Sermons, S.M.; Sinclair, T.R.; Carter, T.E., Jr.; Rufty, T.W. Physiological properties of a drought-resistant wild soybean genotype: Transpiration control with soil drying and expression of root morphology. Plant Soil. 2014, 374, 359–370. [Google Scholar] [CrossRef]
- Pantalone, V.; Smallwood, C.; Fallen, B. Development of ‘Ellis’ soybean with high soymeal protein, resistance to stem canker, southern root knot nematode, and frogeye leaf spot. J. Plant Regist. 2017, 11, 250–255. [Google Scholar] [CrossRef]
- Purdom, S.; Shekoofa, A.; McClure, A.; Pantalone, V.; Arelli, P.; Duncan, L. Variation in mid-south soybean genotypes for recovery of transpiration rate and leaf maintenance following severe water-deficit stress. Field Crops Res. 2022, 286, 108625. [Google Scholar] [CrossRef]
- Noh, E.; Fallen, B.; Payero, J.; Narayanan, S. Parsimonious root systems and better root distribution can improve biomass production and yield of soybean. PLoS ONE 2022, 17, e0270109. [Google Scholar] [CrossRef]
- Manavalan, L.P.; Guttikonda, S.K.; Tran, L.S.P.; Nguyen, H.T. Physiological and Molecular Approaches to Improve Drought Resistance in Soybean. Plant Cell Physiol. 2009, 50, 1260–1276. [Google Scholar] [CrossRef]
- Lecoeur, J.; Sinclair, T.R. Field pea transpiration and leaf growth in response to soil water deficits. Crop Sci. 1996, 36, 331–335. [Google Scholar] [CrossRef]
- Blum, A. Drought resistance is it really a complex trait? Funct. Plant Biol. 2011, 38, 753–757. [Google Scholar] [CrossRef]
- Charlson, D.V.; Bhatnagar, S.; King, C.A.; Ray, J.D.; Sneller, C.H.; Carter, T.E.; Purcell, L.C. Polygenic inheritance of canopy wilting in soybean [Glycine max (L.) Merr.]. Theor. Appl. Genet. 2009, 119, 587–594. [Google Scholar] [CrossRef]
- Yang, Z.J.; Sinclair, T.R.; Zhu, M.; Messina, C.D.; Cooper, M.; Hammer, G.L. Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environ. Exp. Bot. 2012, 78, 157–162. [Google Scholar] [CrossRef]
- Kwon, M.Y.; Woo, S.Y. Plant’s responses to drought and shade environments. Afr. J. Biotechnol. 2016, 15, 29–31. [Google Scholar]
- Sinclair, T.R. (Ed.) Limited-transpiration rate under elevated atmospheric vapor pressure deficit. In Water-Conservation Traits to Increase Crop Yields in Water-Deficit Environments; Springer: Cham, Switzerland, 2017; pp. 11–16. [Google Scholar]
Lines | n | FTSWthreshold | Confidence Interval (p < 0.05) | R2 | |
---|---|---|---|---|---|
Set 1 | 19-31_1 | 55 | 0.66 | 0.572–0.743 a | 0.88 |
19-31_2 | 53 | 0.55 | 0.498–0.595 ab | 0.96 | |
19-31_3 | 53 | 0.63 | 0.568–0.700 a | 0.92 | |
19-31_4 | 55 | 0.66 | 0.593–0.727 a | 0.92 | |
19-31_5 | 53 | 0.48 | 0.423–0.535 b | 0.91 | |
19-31_6 | 52 | 0.58 | 0.497–0.655 ab | 0.88 | |
19-31_7 | 53 | 0.68 | 0.574–0.784 a | 0.83 | |
19-31_8 | 52 | 0.56 | 0.509–0.609 ab | 0.95 | |
19-31_9 | 40 | 0.65 | 0.583–0.717 a | 0.94 | |
19-31_10 | 35 | 0.61 | 0.509–0.701 ab | 0.87 | |
Set 2 | 19-31_11 | 51 | 0.71 | 0.674–0.740 b | 0.99 |
19-31_12 | 70 | 0.64 | 0.595–0.690 b | 0.94 | |
19-31_13 | 73 | 0.80 | 0.744–0.860 a | 0.94 | |
19-31_14 | 59 | 0.61 | 0.570–0.649 b | 0.96 | |
19-31_15 * | - | - | - | - | |
19-31_16 | 46 | 0.72 | 0.661–0.779 ab | 0.95 | |
19-31_17 | 60 | 0.66 | 0.613–0.710 b | 0.95 | |
19-31_18 | 53 | 0.65 | 0.544–0.746 ab | 0.85 | |
19-31_19 | 64 | 0.72 | 0.666–0.781 ab | 0.93 | |
19-31_20 | 42 | 0.70 | 0.640–0.758 ab | 0.97 | |
Set 3 | 19-31_21 | 48 | 0.38 | 0.314–0.444 a | 0.90 |
19-31_22 | 48 | 0.21 | 0.186–0.239 b | 0.93 | |
19-31_23 | 47 | 0.35 | 0.305–0.390 a | 0.93 | |
19-31_24 | 49 | 0.18 | 0.156–0.199 b | 0.94 | |
19-31_25 | 33 | 0.34 | 0.293–0.385 a | 0.95 | |
19-31_26 | 46 | 0.25 | 0.211–0.297 ab | 0.88 | |
19-31_27 | 46 | 0.40 | 0.344–0.462 a | 0.89 | |
19-31_28 | 47 | 0.32 | 0.269–0.374 a | 0.88 | |
19-31_29 | 48 | 0.22 | 0.185–0.253 b | 0.90 | |
19-31_30 | 44 | 0.32 | 0.286–0.355 a | 0.94 |
Lines | Replications | Duration of Experiment | Day/Night Growth Temp (°C) | Temp Max (°C) | Temp Min (°C) | |
---|---|---|---|---|---|---|
Set 1 | 19-31_1 | 7 | 13 d | 40:30 | 43.0 | 22.8 |
19-31_2 | 7 | 13 d | 39:30 | 43.0 | 22.8 | |
19-31_3 | 7 | 13 d | 38:30 | 43.0 | 22.8 | |
19-31_4 | 7 | 13 d | 38:30 | 43.0 | 22.8 | |
19-31_5 | 7 | 12 d | 39:30 | 43.0 | 22.8 | |
19-31_6 | 7 | 12 d | 39:30 | 43.0 | 22.8 | |
19-31_7 | 7 | 13 d | 40:30 | 43.0 | 22.8 | |
19-31_8 | 7 | 12 d | 39:30 | 43.0 | 22.8 | |
19-31_9 | 7 | 13 d | 39:30 | 43.0 | 22.8 | |
19-31_10 | 7 | 13 d | 38:30 | 43.0 | 22.8 | |
Set 2 | 19-31_11 | 7 | 13 d | 28:22 | 37.0 | 11.5 |
19-31_12 | 7 | 14 d | 28:22 | 37.0 | 11.5 | |
19-31_13 | 7 | 13 d | 28:22 | 37.0 | 11.5 | |
19-31_14 | 7 | 16 d | 27:21 | 37.0 | 11.5 | |
19-31_15 * | - | - | - | 37.0 | - | |
19-31_16 | 7 | 18 d | 27:21 | 37.0 | 11.5 | |
19-31_17 | 7 | 15 d | 27:22 | 37.0 | 11.5 | |
19-31_18 | 7 | 13 d | 28:22 | 37.0 | 11.5 | |
19-31_19 | 7 | 16 d | 27:21 | 37.0 | 11.5 | |
19-31_20 | 7 | 11 d | 27:22 | 37.0 | 11.5 | |
Set 3 | 19-31_21 | 7 | 11 d | 30:23 | 44.5 | 17.5 |
19-31_22 | 7 | 11 d | 30:23 | 44.5 | 17.5 | |
19-31_23 | 7 | 11 d | 30:23 | 44.5 | 17.5 | |
19-31_24 | 7 | 11 d | 30:23 | 44.5 | 17.5 | |
19-31_25 | 7 | 11 d | 30:23 | 44.5 | 17.5 | |
19-31_26 | 7 | 10 d | 29:24 | 44.5 | 17.5 | |
19-31_27 | 7 | 11 d | 30:23 | 44.5 | 17.5 | |
19-31_28 | 7 | 11 d | 30:23 | 44.5 | 17.5 | |
19-31_29 | 7 | 11 d | 30:23 | 44.5 | 17.5 | |
19-31_30 | 7 | 10 d | 29:24 | 44.5 | 17.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shekoofa, A.; Moser, V.; Dhakal, K.; Poudel, I.; Pantalone, V. Inheritance of Early Stomatal Closure Trait in Soybean: Ellis × N09-13890 Population. Plants 2023, 12, 3227. https://doi.org/10.3390/plants12183227
Shekoofa A, Moser V, Dhakal K, Poudel I, Pantalone V. Inheritance of Early Stomatal Closure Trait in Soybean: Ellis × N09-13890 Population. Plants. 2023; 12(18):3227. https://doi.org/10.3390/plants12183227
Chicago/Turabian StyleShekoofa, Avat, Victoria Moser, Kripa Dhakal, Isha Poudel, and Vince Pantalone. 2023. "Inheritance of Early Stomatal Closure Trait in Soybean: Ellis × N09-13890 Population" Plants 12, no. 18: 3227. https://doi.org/10.3390/plants12183227
APA StyleShekoofa, A., Moser, V., Dhakal, K., Poudel, I., & Pantalone, V. (2023). Inheritance of Early Stomatal Closure Trait in Soybean: Ellis × N09-13890 Population. Plants, 12(18), 3227. https://doi.org/10.3390/plants12183227