Evaluation of Hydrothermal Treatment of Winter Wheat Grain with Ozonated Water
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Micromycete Contamination of Winter Wheat Grain
2.2. Evaluation of the Quality Parameters of Winter Wheat Cereals
3. Discussion
3.1. Evaluation of Micromycete Contamination of Winter Wheat Grain
3.2. Evaluation of the Quality Parameters of Winter Wheat Cereals
4. Materials and Methods
4.1. Materials
4.2. Determination of the Moisture Content of Winter Wheat Grains
4.3. Assessment of Micromycete Contamination of Winter Wheat Grain and Flour
4.4. Evaluation of the Quality Characteristics of Winter Wheat Grain
4.5. Statistical Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Li, L.; Shu, Z.; Wang, P.; Zeng, X.; Shen, W.; Ding, W.; Shi, Y. Properties of Flour from Pearled Wheat Kernels as Affected by Ozone Treatment. Food Chem. 2021, 341, 128203. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Otterdijk, R.v.; Meybeck, A. Global Food Losses and Food Waste; Food and Agriculture Organization of The United Nations: Rome, Italy, 2011. [Google Scholar]
- Kumar, D.; Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Zannini, E.; Arendt, E.K. Recent Advances in Physical Post-Harvest Treatments for Shelf-Life Extension of Cereal Crops. Foods 2018, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Skendi, A. 1—Introduction to cereal processing and by-products. In Sustainable Recovery and Reutilization of Cereal Processing by-Products; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; pp. 1–25. [Google Scholar]
- Rahman, M.S. Handbook of Food Preservation; CRC Press: Baton Rouge, LA, USA, 2007; p. 1088. [Google Scholar]
- Food and Drug Administration. Guidelines for Microbiological Quality Assessment of Processed Food have been Revised; Food and Drug Administration: Silver Spring, MD, USA, 2022.
- Schofield, J.D.; Bottomley, R.C.; Timms, M.F.; Booth, M.R. The Effect of Heat on Wheat Gluten and the Involvement of Sulphydryl-Disulphide Interchange Reactions. J. Cereal Sci. 1983, 1, 241–253. [Google Scholar] [CrossRef]
- Guerrieri, N.; Alberti, E.; Lavelli, V.; Cerletti, P. Use of Spectroscopic and Fluorescence Techniques to Assess Heat Induced Molecular Modifications of Gluten. Cereal Chem. 1996, 73, 368–374. [Google Scholar]
- Tiwari, B.K.; Brennan, C.S.; Curran, T.; Gallagher, E.; Cullen, P.J.; O’Donnell, C.P. Application of Ozone in Grain Processing. J. Cereal Sci. 2010, 51, 248–255. [Google Scholar] [CrossRef]
- Sivaranjani, S.; Prasath, V.A.; Pandiselvam, R.; Kothakota, A.; Mousavi Khaneghah, A. Recent Advances in Applications of Ozone in the Cereal Industry. Food Sci. Technol. 2021, 146, 111412. [Google Scholar] [CrossRef]
- Obadi, M.; Zhu, K.; Peng, W.; Sulieman, A.A.; Mohammed, K.; Zhou, H. Effects of Ozone Treatment on the Physicochemical and Functional Properties of Whole Grain Flour. J. Cereal Sci. 2018, 81, 127–132. [Google Scholar] [CrossRef]
- Paulikienė, S.; Raila, A.; Žvirdauskienė, R.; Zvicevičius, E. Application of an Environmentally Friendly Preventive Measure for the Preservation of Fresh Vegetables. J. Food Sci. Technol. 2019, 56, 2147–2157. [Google Scholar] [CrossRef]
- Dubois, M.; Coste, C.; Despres, A.-G.; Efstathiou, T.; Nio, C.; Dumont, E.; Parent-Massin, D. Safety of Oxygreen®, an Ozone Treatment on Wheat Grains. Part 2. Is there a Substantial Equivalence between Oxygreen-Treated Wheat Grains and Untreated Wheat Grains? Food Addit. Contam. 2006, 23, 1–15. [Google Scholar] [CrossRef]
- Dubois, M.; Canadas, D.; Despres-Pernot, A.; Coste, C.; Pfohl-Leszkowicz, A. Oxygreen Process Applied on Nongerminated and Germinated Wheat: Role of Hydroxamic Acids. J. Agric. Food Chem. 2008, 56, 1116–1121. [Google Scholar] [CrossRef]
- Rozado, A.F.; Faroni, L.R.A.; Urruchi, W.M.I.; Guedes, R.N.C.; Paes, J.L. Ozone Application Against Sitophilus zeamais and Tribolium castaneum on Stored Maize. Rev. Bras. Eng. Agrícola Ambient. 2008, 12, 282–285. [Google Scholar] [CrossRef]
- Savi, G.D.; Piacentini, K.C.; Bittencourt, K.O.; Scussel, V.M. Ozone Treatment Efficiency on Fusarium Graminearum and Deoxynivalenol Degradation and its Effects on Whole Wheat Grains (Triticum aestivum L.) Quality and Germination. J. Stored Prod. Res. 2014, 59, 245–253. [Google Scholar] [CrossRef]
- Zhu, F. Effect of Ozone Treatment on the Quality of Grain Products. Food Chem. 2018, 264, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Y.; Li, H.; Li, L.; Zheng, X. Effect of Ozone Treatment on Processing Properties of Wheat Bran and Shelf Life Characteristics of Noodles Fortified with Wheat Bran. J. Food Sci. Technol. 2020, 57, 3893–3902. [Google Scholar] [CrossRef] [PubMed]
- Mendez, F.; Maier, D.E.; Mason, L.J.; Woloshuk, C.P. Penetration of Ozone into Columns of Stored Grains and Effects on Chemical Composition and Processing Performance. J. Stored Prod. Res. 2003, 39, 33–44. [Google Scholar] [CrossRef]
- LST 1524:2019; Wheat. Requirements for Purchase and Supply. Lithuanian Standards Board: Vilnius, Lithuania, 2020.
- Allen, B.; Wu, J.; Doan, H. Inactivation of Fungi Associated with Barley Grain by Gaseous Ozone. J. Environ. Sci. Health Part B 2003, 38, 617–630. [Google Scholar] [CrossRef] [PubMed]
- White, S.D.; Murphy, P.T.; Leandro, L.F.; Bern, C.J.; Beattie, S.E.; van Leeuwen, J. Mycoflora of High-Moisture Maize Treated with Ozone. J. Stored Prod. Res. 2013, 55, 84–89. [Google Scholar] [CrossRef]
- Trombete, F.M.; Porto, Y.D.; Freitas-Silva, O.; Pereira, R.V.; Direito, G.M.; Saldanha, T.; Fraga, M.E. Efficacy of Ozone Treatment on Mycotoxins and Fungal Reduction in Artificially Contaminated Soft Wheat Grains. J. Food Process. Preserv. 2017, 41, e12927. [Google Scholar] [CrossRef]
- Porto, Y.D.; Trombete, F.M.; Freitas-Silva, O.; de Castro, I.M.; Direito, G.M.; Ascheri, J.L.R. Gaseous Ozonation to Reduce Aflatoxins Levels and Microbial Contamination in Corn Grits. Microorganisms 2019, 7, 220. [Google Scholar] [CrossRef]
- Brito, J.G.D., Jr.; Faroni, L.R.D.; Cecon, P.R.; Benevenuto, W.C.A.d.N.; Benevenuto, A.A., Jr.; Heleno, F.F. Efficacy of Ozone in the Microbiological Disinfection of Maize Grains. Braz. J. Food Technol. 2018, 21, e2017022. [Google Scholar]
- Savi, G.D.; Piacentini, K.C.; Scussel, V.M. Ozone Treatment Efficiency in Aspergillus and Penicillium Growth Inhibition and Mycotoxin Degradation of Stored Wheat Grains (Triticum aestivum L.). J. Food Process. Preserv. 2015, 39, 940–948. [Google Scholar] [CrossRef]
- Santos, R.R.; Faroni, L.R.D.; Cecon, P.R.; Ferreira, A.P.S.; Pereira, O.L. Ozone as Fungicide in Rice Grains. Rev. Bras. Eng. Agrícola Ambient. 2016, 20, 230–235. [Google Scholar] [CrossRef]
- Wu, J.; Doan, H.; Cuenca, M.A. Investigation of Gaseous Ozone as an Anti-fungal Fumigant for Stored Wheat. J. Chem. Technol. Biotechnol. 2006, 81, 1288–1293. [Google Scholar] [CrossRef]
- Gozé, P.; Rhazi, L.; Lakhal, L.; Jacolot, P.; Pauss, A.; Aussenac, T. Effects of Ozone Treatment on the Molecular Properties of Wheat Grain Proteins. J. Cereal Sci. 2017, 75, 243–251. [Google Scholar] [CrossRef]
- Li, M.; Zhu, K.; Wang, B.; Guo, X.; Peng, W.; Zhou, H. Evaluation the Quality Characteristics of Wheat Flour and Shelf-Life of Fresh Noodles as Affected by Ozone Treatment. Food Chem. 2012, 135, 2163–2169. [Google Scholar] [CrossRef]
- An, H.J.; King, J.M. Using Ozonation and Amino Acids to Change Pasting Properties of Rice Starch. J. Food Sci. 2009, 74, C278–C283. [Google Scholar] [CrossRef]
- Chan, H.T.; Bhat, R.; Karim, A.A. Physicochemical and Functional Properties of Ozone-Oxidized Starch. J. Agric. Food Chem. 2009, 57, 5965–5970. [Google Scholar] [CrossRef]
- Chan, H.; Leh, C.P.; Bhat, R.; Senan, C.; Williams, P.A.; Karim, A.A. Molecular Structure, Rheological and Thermal Characteristics of Ozone-Oxidized Starch. Food Chem. 2011, 126, 1019–1024. [Google Scholar] [CrossRef]
- Sandhu, H.P.S.; Manthey, F.A.; Simsek, S. Ozone Gas Affects Physical and Chemical Properties of Wheat (Triticum aestivum L.) Starch. Carbohydr. Polym. 2012, 87, 1261–1268. [Google Scholar] [CrossRef]
- Oladebeye, A.O.; Oshodi, A.A.; Amoo, I.A.; Karim, A.A. Functional, Thermal and Molecular Behaviours of Ozone-Oxidised Cocoyam and Yam Starches. Food Chem. 2013, 141, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.; Vanier, N.L.; Moomand, K.; Pinto, V.Z.; Colussi, R.; da Rosa Zavareze, E.; Dias, A.R.G. Ozone Oxidation of Cassava Starch in Aqueous Solution at Different pH. Food Chem. 2014, 155, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Kim, M.J.; Kwak, H.S.; Lim, S.; Kim, S.S. Effects of Ozone Treatment on Physicochemical Properties of Korean Wheat Flour. Food Sci. Biotechnol. 2017, 26, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Castanha, N.; da Matta, M.D., Jr.; Augusto, P.E.D. Potato Starch Modification using the Ozone Technology. Food Hydrocoll. 2017, 66, 343–356. [Google Scholar] [CrossRef]
- Gozé, P.; Rhazi, L.; Pauss, A.; Aussenac, T. Starch Characterization After Ozone Treatment of Wheat Grains. J. Cereal Sci. 2016, 70, 207–213. [Google Scholar] [CrossRef]
- Obadi, M.; Zhu, K.; Peng, W.; Ammar, A.; Zhou, H. Effect of Ozone Gas Processing on Physical and Chemical Properties of Wheat Proteins. Trop. J. Pharm. Res. 2016, 15, 2147. [Google Scholar] [CrossRef]
- Violleau, F.; Pernot, A.-G.; Surel, O. Effect of Oxygreen® Wheat Ozonation Process on Bread Dough Quality and Protein Solubility. J. Cereal Sci. 2012, 55, 392–396. [Google Scholar] [CrossRef]
- Chittrakorn, S.; Earls, D.; MacRitchie, F. Ozonation as an Alternative to Chlorination for Soft Wheat Flours. J. Cereal Sci. 2014, 60, 217–221. [Google Scholar] [CrossRef]
- Wang, L.; Shao, H.; Luo, X.; Wang, R.; Li, Y.; Li, Y.; Luo, Y.; Chen, Z. Effect of Ozone Treatment on Deoxynivalenol and Wheat Quality. PLoS ONE 2016, 11, e0147613. [Google Scholar] [CrossRef]
- Mei, J.; Liu, G.; Huang, X.; Ding, W. Effects of Ozone Treatment on Medium Hard Wheat (Triticum aestivum L.) Flour Quality and Performance in Steamed Bread Making. CYTA J. Food 2016, 14, 449–456. [Google Scholar]
- Li, M.M.; Guan, E.Q.; Bian, K. Effect of Ozone Treatment on Deoxynivalenol and Quality Evaluation of Ozonised Wheat. Food additives & contaminants. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 544–553. [Google Scholar]
- Trombete, F.; Minguita, A.; Porto, Y.; Freitas-Silva, O.; Freitas-Sá, D.; Freitas, S.; Carvalho, C.; Saldanha, T.; Fraga, M. Chemical, Technological, and Sensory Properties of Wheat Grains (Triticum aestivum L.) as Affected by Gaseous Ozonation. Int. J. Food Prop. 2016, 19, 2739–2749. [Google Scholar] [CrossRef]
- Freitas, R.d.S.d.; Faroni, L.R.D.; de Queiroz, M.E.L.R.; Heleno, F.F.; Prates, L.H.F. Degradation Kinetics of Pirimiphos-Methyl Residues in Maize Grains Exposed to Ozone Gas. J. Stored Prod. Res. 2017, 74, 1–5. [Google Scholar] [CrossRef]
- Beltrán, D.; Selma, M.V.; Marín, A.; Gil, M.I. Ozonated Water Extends the Shelf Life of Fresh-Cut Lettuce. J. Agric. Food Chem. 2005, 53, 5654–5663. [Google Scholar] [CrossRef] [PubMed]
- Pascual, A.; Llorca, I.; Canut, A. Use of Ozone in Food Industries for Reducing the Environmental Impact of Cleaning and Disinfection Activities. Trends Food Sci. Technol. 2007, 18 (Suppl. S1), S29–S35. [Google Scholar] [CrossRef]
- Ölmez, H.; Akbas, M.Y. Optimization of Ozone Treatment of Fresh-Cut Green Leaf Lettuce. J. Food Eng. 2009, 90, 487–494. [Google Scholar] [CrossRef]
- Berghofer, L.K.; Hocking, A.D.; Miskelly, D.; Jansson, E. Microbiology of Wheat and Flour Milling in Australia. Int. J. Food Microbiol. 2003, 85, 137–149. [Google Scholar] [CrossRef]
- Smilanick, J.L. Use of Ozone in Storage and Packing Facilities. In Proceedings of the Washington Tree Fruit Postharvest Conference, Wenatchee, WA, USA, 2–3 December 2003. [Google Scholar]
- Suslow, T.V. Ozone Applications for Postharvest Disinfections of Edible Horticultural Crops; Publication 8133; University of California, Division of Agriculture and Natural Resources: Riverside, CA, USA, 2004; p. 8. [Google Scholar]
- LST EN ISO 6887-1:2017; Microbiology of the Food Chain—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 1: General Rules for the Preparation of the Initial Suspension and Decimal Dilutions. International Organization for Standardization: London, UK, 2017.
- LST EN ISO 6887-4:2017; Microbiology of the Food Chain—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 4: Specific Rules for the Preparation of Miscellaneous Products. International Organization for Standardization: London, UK, 2017.
- LST ISO 21527-2:2008/P:2013; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than Or Equal to 0,95. International Organization for Standardization: London, UK, 2008.
- LST EN ISO 12099; Animal Feeding Stuff, Cereals and Milled Cereal Products—Guidelines for the Application of Near Infrared Spectrometry. International Organization for Standardization: London, UK, 2017.
Parameter | Unit of Measurement | Indicator Values | |
---|---|---|---|
Class I | Class II | ||
Moisture, not more than | % | 14.0 | 14.0 |
Protein content in the dry matter, not less than | % | 13.0 | 11.5 |
Sedimentation rate, not less than | mL | 35.0 | 25.0 |
Gluten, not less than | % | 28.0 | 23.0 |
Starch | % | 65.0–75.0 | 65.0–75.0 |
Mass per hectolitre, not less than | kg hL−1 | 73.0 | 73.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulikienė, S.; Žvirdauskienė, R. Evaluation of Hydrothermal Treatment of Winter Wheat Grain with Ozonated Water. Plants 2023, 12, 3267. https://doi.org/10.3390/plants12183267
Paulikienė S, Žvirdauskienė R. Evaluation of Hydrothermal Treatment of Winter Wheat Grain with Ozonated Water. Plants. 2023; 12(18):3267. https://doi.org/10.3390/plants12183267
Chicago/Turabian StylePaulikienė, Simona, and Renata Žvirdauskienė. 2023. "Evaluation of Hydrothermal Treatment of Winter Wheat Grain with Ozonated Water" Plants 12, no. 18: 3267. https://doi.org/10.3390/plants12183267
APA StylePaulikienė, S., & Žvirdauskienė, R. (2023). Evaluation of Hydrothermal Treatment of Winter Wheat Grain with Ozonated Water. Plants, 12(18), 3267. https://doi.org/10.3390/plants12183267