Genetic Polymorphism in the Amaranthaceae Species in the Context of Stress Tolerance
Abstract
:1. Introduction
2. Results
2.1. Genetic Diversity of Auxin Response Factor 6 Gene Family in Amaranthaceae Species
2.2. Genetic Diversity of Superoxide Dismutase Gene Family for Amaranthaceae Species
2.3. Inter-Primer Binding Site (iPBS) Genome Fingerprinting Analysis for Amaranthaceae Species
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Exon-Primed Intron-Crossing Profiling for Genetic Polymorphism Analysis of Auxin Response Factor and Superoxide Dismutase Genes of Amaranthaceae Species
4.3. Inter-Primer Binding Site (iPBS) Genome Fingerprinting
4.4. Statistical Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Da Silva, J.G.; Bianchini, A.; Costa, P.M.C.; de Almeida Lobo, F.; de Almeida, J.P.M.; de Moraes, M.F. Amaranth Response to Water Stress. J. Exp. Agric. Int. 2019, 40, 1–9. [Google Scholar] [CrossRef]
- Bressani, R.; Gonzáles, J.M.; Zúñiga, J.; Breuner, M.; Elías, L.G. Yield, Selected Chemical Composition and Nutritive Value of 14 Selections of Amaranth Grain Representing Four Species. J. Sci. Food Agric. 1987, 38, 347–356. [Google Scholar] [CrossRef]
- Písaříková, B.; Kráčmar, S.; Herzig, I. Amino Acid Contents and Biological Value of Protein in Various Amaranth Species. Czech J. Anim. Sci. 2005, 50, 169–174. [Google Scholar] [CrossRef]
- Belitz, H.-D.; Grosch, W. Cereals and Cereal Products. In Food Chemistry; Belitz, H.-D., Grosch, W., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 631–692. ISBN 978-3-662-07281-3. [Google Scholar]
- Smith, T.J. Squalene: Potential Chemopreventive Agent. Expert Opin. Investig. Drugs 2000, 9, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Martirosyan, D.M.; Miroshnichenko, L.A.; Kulakova, S.N.; Pogojeva, A.V.; Zoloedov, V.I. Amaranth Oil Application for Coronary Heart Disease and Hypertension. Lipids Health Dis. 2007, 6, 1. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Drought Stress Enhances Nutritional and Bioactive Compounds, Phenolic Acids and Antioxidant Capacity of Amaranthus Leafy Vegetable. BMC Plant Biol. 2018, 18, 258. [Google Scholar] [CrossRef]
- Caselato-Sousa, V.M.; Amaya-Farfán, J. State of Knowledge on Amaranth Grain: A Comprehensive Review. J. Food Sci. 2012, 77, R93–R104. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Holse, M.; Hansen, Å.; Arendt, E.K.; Gallagher, E. Impact of Baking on Vitamin E Content of Pseudocereals Amaranth, Quinoa, and Buckwheat. Cereal Chem. 2009, 86, 511–515. [Google Scholar] [CrossRef]
- Kupper, C. Dietary Guidelines and Implementation for Celiac Disease. Gastroenterology 2005, 128, S121–S127. [Google Scholar] [CrossRef]
- Pagano, A.E. Whole Grains, and the Gluten-Free Diet. Pract. Gastroenterol. 2006, 30, 66. [Google Scholar]
- Vysochina, G.I. Amaranth (Amaranthus L.): Chemical Composition and Prospects for Use (A Review). Chem. Plant Raw Mater. 2013, 2, 5–14. [Google Scholar]
- Bhargava, A.; Srivastava, S. Response of Amaranthus sp. to Salinity Stress: A Review. In Emerging Research in Alternative Crops; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Sarker, U.; Oba, S. Augmentation of Leaf Color Parameters, Pigments, Vitamins, Phenolic Acids, Flavonoids and Antioxidant Activity in Selected Amaranthus Tricolor under Salinity Stress. Sci. Rep. 2018, 8, 12349. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Basra, S.M.A.; Saddiq, M.S.; Yang, A.; Akhtar, S.S.; Jacobsen, S.-E. The Extraordinary Salt Tolerance of Quinoa. In Emerging Research in Alternative Crops; Hirich, A., Choukr-Allah, R., Ragab, R., Eds.; Environment & Policy; Springer International Publishing: Cham, Switzerland, 2020; pp. 125–143. ISBN 978-3-319-90472-6. [Google Scholar]
- Terletskaya, N.V.; Erbay, M.; Zorbekova, A.N.; Prokofieva, M.Y.; Saidova, L.T.; Mamirova, A. Influence of Osmotic, Salt, and Combined Stress on Morphophysiological Parameters of Chenopodium quinoa Photosynthetic Organs. Agriculture 2023, 13, 1. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Urwin, P.E. The Interaction of Plant Biotic and Abiotic Stresses: From Genes to the Field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef] [PubMed]
- Kahlon, P.S.; Stam, R. Polymorphisms in Plants to Restrict Losses to Pathogens: From Gene Family Expansions to Complex Network Evolution. Curr. Opin. Plant Biol. 2021, 62, 102040. [Google Scholar] [CrossRef]
- Soderlund, C.; Nelson, W.; Shoemaker, A.; Paterson, A. SyMAP: A System for Discovering and Viewing Syntenic Regions of FPC Maps. Genome Res. 2006, 16, 1159–1168. [Google Scholar] [CrossRef]
- Mallory, M.A.; Hall, R.V.; McNabb, A.R.; Pratt, D.B.; Jellen, E.N.; Maughan, P.J. Development and Characterization of Microsatellite Markers for the Grain Amaranths. Crop Sci. 2008, 48, 1098–1106. [Google Scholar] [CrossRef]
- Rastogi, A.; Shukla, S. Amaranth: A New Millennium Crop of Nutraceutical Values. Crit. Rev. Food Sci. Nutr. 2013, 53, 109–125. [Google Scholar] [CrossRef]
- Clouse, J.W.; Adhikary, D.; Page, J.T.; Ramaraj, T.; Deyholos, M.K.; Udall, J.A.; Fairbanks, D.J.; Jellen, E.N.; Maughan, P.J. The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly. Plant Genome 2016, 9, plantgenome2015.07.0062. [Google Scholar] [CrossRef]
- de Oliveira Sousa, T.; Fonseca, W.L.; dos Santos, A.S.; da Silva Oliveira, J.B.; dos Santos, A.S.; Pacheco, L.P.; Chaves, D.V.; Zuffo, A.M. Suppression effect of Crotalaria ochroleuca cover crop on Amaranthus deflexus emergence and development. Aust. J. Crop Sci. 2016, 10, 1484–1488. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Johnson, D.E. Germination ecology of spiny (Amaranthus spinosus) and slender amaranth (A. viridis): Troublesome weeds of direct-seeded rice. Weed Sci. 2009, 57, 379–385. [Google Scholar] [CrossRef]
- Marinaş, I.C.; Chifiriuc, C.; Oprea, E.; Lazăr, V. Antimicrobial and antioxidant activities of alcoholic extracts obtained from vegetative organs of A. retroflexus. Roum. Arch. Microbiol. Immunol. 2014, 73, 35–42. [Google Scholar] [PubMed]
- Di Fabio, A.; Parraga, G. Origin, Production and Utilization of Pseudocereals. In Pseudocereals: Chemistry and Technology; Haros, C.M., Schonlechner, R., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 1–27. [Google Scholar] [CrossRef]
- de la Rosa, A.P.B.; Fomsgaard, I.S.; Laursen, B.; Mortensen, A.G.; Olvera-Martínez, L.; Silva-Sánchez, C.; Mendoza-Herrera, A.; González-Castañeda, J.; De León-Rodríguez, A. Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. J. Cereal Sci. 2009, 49, 117–121. [Google Scholar] [CrossRef]
- Oteri, M.; Gresta, F.; Costale, A.; Lo Presti, V.; Meineri, G.; Chiofalo, B. Amaranthus hypochondriacus L. as a Sustainable Source of Nutrients and Bioactive Compounds for Animal Feeding. Antioxidants 2021, 10, 876. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Schulman, A.H. IRAP and REMAP for Retrotransposon-Based Genotyping and Fingerprinting. Nat. Protoc. 2006, 1, 2478–2484. [Google Scholar] [CrossRef]
- Futuyma, D.J. Evolutionary Biology Today and the Call for an Extended Synthesis. Interface Focus 2017, 7, 20160145. [Google Scholar] [CrossRef]
- Guilfoyle, T.J.; Hagen, G. Getting a Grasp on Domain III/IV Responsible for Auxin Response Factor–IAA Protein Interactions. Plant Sci. 2012, 190, 82–88. [Google Scholar] [CrossRef]
- Kelley, D.R.; Arreola, A.; Gallagher, T.L.; Gasser, C.S. ETTIN (ARF3) Physically Interacts with KANADI Proteins to Form a Functional Complex Essential for Integument Development and Polarity Determination in Arabidopsis. Development 2012, 139, 1105–1109. [Google Scholar] [CrossRef]
- Mockaitis, K.; Estelle, M. Auxin Receptors and Plant Development: A New Signaling Paradigm. Annu. Rev. Cell Dev. Biol. 2008, 24, 55–80. [Google Scholar] [CrossRef]
- Su, L.; Xu, M.; Zhang, J.; Wang, Y.; Lei, Y.; Li, Q. Genome-Wide Identification of Auxin Response Factor (ARF) Family in Kiwifruit (Actinidia chinensis) and Analysis of Their Inducible Involvements in Abiotic Stresses. Physiol. Mol. Biol. Plants 2021, 27, 1261–1276. [Google Scholar] [CrossRef]
- Jain, M.; Khurana, J.P. Transcript Profiling Reveals Diverse Roles of Auxin-Responsive Genes during Reproductive Development and Abiotic Stress in Rice. FEBS J. 2009, 276, 3148–3162. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-B.; Xie, Z.-Z.; Hu, C.-G.; Zhang, J.-Z. A Review of Auxin Response Factors (ARFs) in Plants. Front. Plant Sci. 2016, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Zameer, R.; Fatima, K.; Azeem, F.; ALgwaiz, H.I.M.; Sadaqat, M.; Rasheed, A.; Batool, R.; Shah, A.N.; Zaynab, M.; Shah, A.A.; et al. Genome-Wide Characterization of Superoxide Dismutase (SOD) Genes in Daucus Carota: Novel Insights into Structure, Expression, and Binding Interaction with Hydrogen Peroxide (H2O2) under Abiotic Stress Condition. Front. Plant Sci. 2022, 13, 870241. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Yu, J.; Cheng, Y.; Ruan, M.; Wang, R.; Ye, Q.; Zhou, G.; Li, Z.; Yao, Z.; Yang, Y.; et al. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns. Front. Plant Sci. 2016, 7, 1279. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, C.; Li, L.; Reynolds, M.; Mao, X.; Jing, R. Exploitation of Drought Tolerance-Related Genes for Crop Improvement. Int. J. Mol. Sci. 2021, 22, 10265. [Google Scholar] [CrossRef]
- Jacobsen, S.E.; Mujica, A.; Ortiz, R. The Global Potential for Quinoa and Other Andean Crops. Food Rev. Int. 2003, 19, 139–148. [Google Scholar] [CrossRef]
- Jarvis, D.E.; Ho, Y.S.; Lightfoot, D.J.; Schmöckel, S.M.; Li, B.; Borm, T.J.A.; Ohyanagi, H.; Mineta, K.; Michell, C.T.; Saber, N.; et al. The Genome of Chenopodium quinoa. Nature 2017, 542, 307–312. [Google Scholar] [CrossRef]
- He, Y.-Q.; Sun, M.; Zhu, Y.-G.; Zhang, L.-D. Copia-like retrotransposon in Amaranthus. Yi Chuan Xue Bao 2002, 29, 461–466. [Google Scholar]
- Rafalski, J.A.; Vogel, J.M.; Morgante, M.; Powell, W.; Andre, C.; Tingey, S.V. 4—Generating and Using DNA Markers in Plants. In Nonmammalian Genomic Analysis; Birren, B., Lai, E., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 75–134. ISBN 978-0-12-101285-4. [Google Scholar]
- Phillips, R.L.; Vasil Indra, K. DNA-Based Markers in Plants (Advances in Cellular and Molecular Biology of Plants), 2nd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Volume 1. [Google Scholar]
- Ramakrishnan, M.; Satish, L.; Kalendar, R.; Narayanan, M.; Kandasamy, S.; Sharma, A.; Emamverdian, A.; Wei, Q.; Zhou, M. The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int. J. Mol. Sci. 2021, 22, 11387. [Google Scholar] [CrossRef]
- Sundaram, V.; Wysocka, J. Transposable Elements as a Potent Source of Diverse Cis-Regulatory Sequences in Mammalian Genomes. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190347. [Google Scholar] [CrossRef]
- Terletskaya, N.V.; Turzhanova, A.S.; Khapilina, O.N.; Zhumagul, M.Z.; Meduntseva, N.D.; Kudrina, N.O.; Korbozova, N.K.; Kubentayev, S.A.; Kalendar, R. Genetic Diversity in Natural Populations of Rhodiola Species of Different Adaptation Strategies. Genes 2023, 14, 794. [Google Scholar] [CrossRef] [PubMed]
- Baduel, P.; Colot, V. The Epiallelic Potential of Transposable Elements and Its Evolutionary Significance in Plants. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200123. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Moneim, D.; ELsarag, E.I.S.; Aloufi, S.; El-Azraq, A.M.; ALshamrani, S.M.; Safhi, F.A.A.; Ibrahim, A.A. Quinoa (Chenopodium quinoa Willd.): Genetic Diversity According to ISSR and SCoT Markers, Relative Gene Expression, and Morpho-Physiological Variation under Salinity Stress. Plants 2021, 10, 2802. [Google Scholar] [CrossRef] [PubMed]
- Hossein-Pour, A.; Haliloglu, K.; Ozkan, G.; Tan, M. Genetic Diversity and Population Structure of Quinoa (Chenopodium quinoa Willd.) Using iPBS-retrotransposons Markers. Appl. Ecol. Environ. Res. 2019, 17, 1899–1911. [Google Scholar] [CrossRef]
- Müller, K.; Borsch, T. Phylogenetics of Amaranthaceae Based on MatK/TrnK Sequence Data: Evidence from Parsimony, Likelihood, and Bayesian Analyses. Ann. Mo. Bot. Gard. 2005, 92, 66–102. [Google Scholar]
- University and Jepson Herbaria. Available online: https://ucjeps.berkeley.edu/ (accessed on 21 June 2023).
- Maughan, P.J.; Yourstone, S.M.; Jellen, E.N.; Udall, J.A. SNP Discovery via Genomic Reduction, Barcoding, and 454-Pyrosequencing in Amaranth. Plant Genome 2009, 2. [Google Scholar] [CrossRef]
- Maughan, P.J.; Smith, S.M.; Fairbanks, D.J.; Jellen, E.N. Development, Characterization, and Linkage Mapping of Single Nucleotide Polymorphisms in the Grain Amaranths (Amaranthus sp.). Plant Genome 2011, 4. [Google Scholar] [CrossRef]
- Khapilina, O.; Raiser, O.; Danilova, A.; Shevtsov, V.; Turzhanova, A.; Kalendar, R. DNA Profiling and Assessment of Genetic Diversity of Relict Species Allium altaicum Pall. on the Territory of Altai. PeerJ 2021, 9, e10674. [Google Scholar] [CrossRef]
- Terletskaya, N.V.; Shcherban, A.B.; Nesterov, M.A.; Perfil’ev, R.N.; Salina, E.A.; Altayeva, N.A.; Blavachinskaya, I.V. Drought Stress Tolerance and Photosynthetic Activity of Alloplasmic Lines T. dicoccum × T. aestivum. Int. J. Mol. Sci. 2020, 21, 3356. [Google Scholar] [CrossRef]
- Abdollahi Mandoulakani, B.; Yaniv, E.; Kalendar, R.; Raats, D.; Bariana, H.S.; Bihamta, M.R.; Schulman, A.H. Development of IRAP- and REMAP-Derived SCAR Markers for Marker-Assisted Selection of the Stripe Rust Resistance Gene Yr15 Derived from Wild Emmer Wheat. Theor. Appl. Genet. 2015, 128, 211–219. [Google Scholar] [CrossRef]
- Kalendar, R.; Shustov, A.V.; Schulman, A.H. Palindromic Sequence-Targeted (PST) PCR, Version 2: An Advanced Method for High-Throughput Targeted Gene Characterization and Transposon Display. Front. Plant Sci. 2021, 12, 691940. [Google Scholar] [CrossRef] [PubMed]
- Harrisson, K.A.; Pavlova, A.; Telonis-Scott, M.; Sunnucks, P. Using Genomics to Characterize Evolutionary Potential for Conservation of Wild Populations. Evol. Appl. 2014, 7, 1008–1025. [Google Scholar] [CrossRef] [PubMed]
- Givnish, T.J.; Evans, T.M.; Zjhra, M.L.; Patterson, T.B.; Berry, P.E.; Sytsma, K.J. Molecular Evolution, Adaptive Radiation, and Geographic Diversification in the Amphiatlantic Family Rapateaceae: Evidence from ndhF Sequences and Morphology. Evolution 2000, 54, 1915–1937. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, P.; Rangabhashiyam, S.; Srivastava, K.K. Global Climate Change, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0-12-822928-6. [Google Scholar]
- Deivendran, S. Genetic Variability of Populations of Nilaparvata lugens (Stal) (Delphacidae: Hemiptera) as Revealed by Random Amplified Polymorphic DNA. Biolife 2015, 3, 40–49. [Google Scholar]
- Tajima, F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Kingsolver, J.G.; Diamond, S.E. Phenotypic Selection in Natural Populations: What Limits Directional Selection? Am. Nat. 2011, 177, 346–357. [Google Scholar] [CrossRef]
- Rueffler, C.; Van Dooren, T.J.M.; Leimar, O.; Abrams, P.A. Disruptive Selection and Then What? Trends Ecol. Evol. 2006, 21, 238–245. [Google Scholar] [CrossRef]
- Villanea, F.A.; Safi, K.N.; Busch, J.W. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism. PLoS ONE 2015, 10, e0125003. [Google Scholar] [CrossRef]
- Agong, S.G.; Ayiecho, P.O. The Rate of Outcrossing in Grain Amaranths. Plant Breed. 1991, 107, 156–160. [Google Scholar] [CrossRef]
- Kalendar, R.; Boronnikova, S.; Seppanen, M. Isolation and Purification of DNA from Complicated Biological Samples. Methods Mol. Biol. 2021, 2222, 57–67. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. Genalex 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
Scheme 6. | Na | Ne | I | Ho | uHe | NPB |
---|---|---|---|---|---|---|
ARF6 genes | ||||||
A. caudatus | 1.000 | 1.264 | 0.242 | 0.158 | 0.176 | 49.09% |
A. deflexus | 1.255 | 1.276 | 0.266 | 0.171 | 0.190 | 56.36% |
A. hypochondriacus | 1.018 | 1.223 | 0.222 | 0.141 | 0.157 | 49.09% |
A. retroflexus | 0.764 | 1.144 | 0.149 | 0.093 | 0.103 | 34.55% |
A. spinosis (epinard) | 0.582 | 1.080 | 0.103 | 0.060 | 0.067 | 27.27% |
Ch. quinoa | 0.455 | 1.110 | 0.106 | 0.068 | 0.076 | 21.82% |
Mean | 0.845 | 1.183 | 0.181 | 0.115 | 0.128 | 39.70% |
SE | 0.053 | 0.016 | 0.013 | 0.009 | 0.010 | 5.64% |
SOD genes | ||||||
A. caudatus | 0.611 | 1.119 | 0.103 | 0.069 | 0.077 | 18.52% |
A. deflexus | 1.019 | 1.257 | 0.220 | 0.149 | 0.165 | 38.89% |
A. hypochondriacus | 0.370 | 1.064 | 0.048 | 0.034 | 0.038 | 7.41% |
A. retroflexus | 0.815 | 1.123 | 0.123 | 0.078 | 0.086 | 27.78% |
A. spinosis (epinard) | 0.593 | 1.166 | 0.146 | 0.098 | 0.109 | 25.93% |
Ch. quinoa | 0.981 | 1.324 | 0.257 | 0.178 | 0.198 | 42.59% |
Mean | 0.731 | 1.176 | 0.149 | 0.101 | 0.112 | 26.85% |
SE | 0.048 | 0.018 | 0.014 | 0.010 | 0.011 | 5.30% |
iPBS profiling | ||||||
A. caudatus | 0.734 | 1.235 | 0.191 | 0.131 | 0.146 | 32.81% |
A. deflexus | 1.078 | 1.229 | 0.228 | 0.144 | 0.160 | 51.56% |
A. hypochondriacus | 0.750 | 1.205 | 0.177 | 0.119 | 0.132 | 32.81% |
A. retroflexus | 0.781 | 1.227 | 0.189 | 0.128 | 0.142 | 34.38% |
A. spinosis (epinard) | 1.141 | 1.321 | 0.282 | 0.188 | 0.209 | 53.13% |
Ch. quinoa | 0.328 | 1.068 | 0.056 | 0.039 | 0.043 | 9.38% |
Mean | 0.802 | 1.214 | 0.187 | 0.125 | 0.139 | 35.68% |
SE | 0.048 | 0.017 | 0.014 | 0.009 | 0.010 | 6.5% |
Variability | df | SS | MS | Est. Var. | % | PhiPT |
---|---|---|---|---|---|---|
Between species | 5 | 68.133 | 13.627 | 1.712 | 25% | 0.253 |
Within species | 24 | 121.600 | 5.067 | 1.067 | 75% | |
Total | 29 | 189.733 | 6.779 | 100% | ||
Between species | 5 | 158.967 | 31.793 | 5.625 | 61 | 0.605 |
Within species | 24 | 88.000 | 3.667 | 3.667 | 39 | |
Total | 29 | 246.967 | 9.292 | 100 | ||
Between species | 5 | 162.133 | 32.427 | 5.362 | 49% | 0.500 |
Within species | 24 | 134.800 | 5.617 | 5.617 | 51% | |
Total | 29 | 296.933 | 10.979 | 100% | ||
*** p < 0.001 |
m | S | ps | Θ | π | D |
---|---|---|---|---|---|
ARF6 genes | |||||
30 | 53 | 0.963636 | 0.243241 | 0.237910 | −0.081915 |
SOD genes | |||||
30 | 52 | 0.962963 | 0.243071 | 0.315411 | 1.111407 |
iPBS profiling | |||||
30 | 62 | 0.968750 | 0.244532 | 0.319971 | 1.160841 |
ID | Sequence (5′-3′) | Tm, °C * | CG, % | TL | PL | PPL, % | PIC | Amplicon Size, bp |
---|---|---|---|---|---|---|---|---|
5175-5176 | AYTTYCCACARGGYCACAGTGARCA GTCAACAAATACAAGCTGCCAGCCTGATCT | 69.3 | 50.0 | 171 | 61 | 35.68 | 0.66 | 250–5000 |
5176-5179 | TCACAYTGGCGNTCAGTNAAGGTT GTCAACAAATACAAGCTGCCAGCCTGATCT | 67.6 | 47.9 | 149 | 53 | 35.57 | 0.52 | 400–4000 |
ID | Sequence (5′-3′) | Tm, °C * | CG, % | TL | PL | PPL, % | PIC | Amplicon Size, bp |
---|---|---|---|---|---|---|---|---|
5069-5073 | CGGAGGCTCTCCAAGGTCGTSTCC AAGCCTCSGCGCGCATCATGCGTA | 73.3 | 66.7 | 241 | 72 | 29.88 | 0.33 | 100–4000 |
5069-5075 | CCGGAGGCTCTCCAAGGTCGTSTCC TCCCACAAGTCTAGGCTGATGATTGG | 68.9 | 51.9 | 292 | 141 | 44.18 | 0.35 | 150–4000 |
ID | Sequence (5′-3′) | Tm, °C * | CG, % | TL | PL | PPL, % | PIC | Amplicon size, bp |
---|---|---|---|---|---|---|---|---|
2221 | ACCTAGCTCACGATGCCA | 63.0 | 50.0 | 55.4 | 180 | 85 | 49 | 0.478 |
2232 | AGAGAGGCTCGGATACCA | 63.4 | 55.6 | 55.4 | 153 | 62 | 40 | 0.433 |
2240 | AACCTGGCTCAGATGCCA | 65.6 | 55.6 | 55.0 | 173 | 16 | 10 | 0.498 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terletskaya, N.V.; Khapilina, O.N.; Turzhanova, A.S.; Erbay, M.; Magzumova, S.; Mamirova, A. Genetic Polymorphism in the Amaranthaceae Species in the Context of Stress Tolerance. Plants 2023, 12, 3470. https://doi.org/10.3390/plants12193470
Terletskaya NV, Khapilina ON, Turzhanova AS, Erbay M, Magzumova S, Mamirova A. Genetic Polymorphism in the Amaranthaceae Species in the Context of Stress Tolerance. Plants. 2023; 12(19):3470. https://doi.org/10.3390/plants12193470
Chicago/Turabian StyleTerletskaya, Nina V., Oxana N. Khapilina, Ainur S. Turzhanova, Malika Erbay, Saule Magzumova, and Aigerim Mamirova. 2023. "Genetic Polymorphism in the Amaranthaceae Species in the Context of Stress Tolerance" Plants 12, no. 19: 3470. https://doi.org/10.3390/plants12193470
APA StyleTerletskaya, N. V., Khapilina, O. N., Turzhanova, A. S., Erbay, M., Magzumova, S., & Mamirova, A. (2023). Genetic Polymorphism in the Amaranthaceae Species in the Context of Stress Tolerance. Plants, 12(19), 3470. https://doi.org/10.3390/plants12193470