Transcriptome Insights into Candidate Genes of the SWEET Family and Carotenoid Biosynthesis during Fruit Growth and Development in Prunus salicina ‘Huangguan’
Abstract
:1. Introduction
2. Results
2.1. Determination of Soluble Sugar Content in Plum Fruit during the Developmental Period
2.2. Quality Assessment through Transcriptome Analysis
2.3. DEGs’ Analysis during Fruit Development
2.4. KEGG Pathway Enrichment Analysis of DEGs
2.5. Sugar Metabolism-Related DEGs
2.6. Structure and Motif Analysis of PsSWEET Genes and Correlation with Soluble Sugar Content
2.7. Differentially Expressed Carotenoid Biosynthetic Genes
3. Discussion
3.1. Sugar Metabolism in Plum
3.2. Role of SWEETs in Regulating Sugar Metabolism
3.3. Role of CCS in Accelerating Fruit Color Change
4. Materials and Methods
4.1. Plant Material and Fruit Sampling
4.2. Determination of Sugar Content
4.3. RNA Extraction and RNA-seq Library Construction and Sequencing
4.4. Transcriptome Analysis
4.5. Transcriptome Data-Based Identification of SWEET Genes in Plum
4.6. Physico-Chemical Characterization of PsSWEETs
4.7. Phylogenetic Analysis of Plum, Arabidopsis, and Rice SWEETs
4.8. Conserved Structural Domains and Conserved Motifs in PsSWEETs
4.9. Prediction of Promoter Cis-Acting Elements and Transcription Factor Binding Sites for PsSWEETs
4.10. Ethylene Treatment
4.11. Gene Amplification and Transient Expression Vector Construction
4.12. Transient Expression on Peppers
4.13. RT-qPCR Analysis
4.14. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dongariyal, A.; Dimri, D.C.; Kumar, P.; Choudhary, A.; Jat, P.K.; Basile, B.; Mataffo, A.; Corrado, G.; Singh, A. Pollen-Pistil Interaction in Response to Pollination Variants in Subtropical Japanese Plum (Prunus salicina Lindl.) Varieties. Plants 2022, 11, 3081. [Google Scholar] [CrossRef]
- Yu, X.; Ali, M.M.; Li, B.; Fang, T.; Chen, F. Transcriptome Data-based Identification of Candidate Genes Involved in Metabolism and Accumulation of Soluble Sugars during Fruit Development in ‘Huangguan’ Plum. J. Food Biochem. 2021, 45, e13878. [Google Scholar] [CrossRef]
- Seymour, G.B.; Østergaard, L.; Chapman, N.H.; Knapp, S.; Martin, C. Fruit Development and Ripening. Annu. Rev. Plant Biol. 2013, 64, 219–241. [Google Scholar] [CrossRef]
- Cruz-Hernández, A.; Paredes-lópez, O. Fruit Quality: New Insights for Biotechnology. Crit. Rev. Food Sci. Nutr. 2012, 52, 272–289. [Google Scholar] [CrossRef]
- Wen, S.; Neuhaus, H.E.; Cheng, J.; Bie, Z. Contributions of Sugar Transporters to Crop Yield and Fruit Quality. J. Exp. Bot. 2022, 73, 2275–2289. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.S.; Hong, C.; Wang, Q.Y.; Lu, M.; An, H.M. Sugar composition and transcriptome analysis in developing ‘Fengtang’ plum (Prunus salicina Lindl.) reveal candidate genes regulating sugar accumulation. Plant Physiol. Biochem. 2023, 202, 107955. [Google Scholar] [CrossRef] [PubMed]
- Marti, A.F.I.; Saski, C.A.; Manganaris, G.A.; Gasic, K.; Crisosto, C.H. Genomic Sequencing of Japanese Plum (Prunus salicina Lindl.) Mutants Provides a New Model for Rosaceae Fruit Ripening Studies. Front. Plant Sci. 2018, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Moscatello, S.; Frioni, T.; Blasi, F.; Proietti, S.; Pollini, L.; Verducci, G.; Rosati, A.; Walker, R.P.; Battistelli, A.; Cossignani, L.; et al. Changes in Absolute Contents of Compounds Affecting the Taste and Nutritional Properties of the Flesh of Three Plum Species Throughout Development. Foods 2019, 8, 486. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Farcuh, M.; Cohen, Y.; Crisosto, C.; Sadka, A.; Blumwald, E. Non-Climacteric Ripening and Sorbitol Homeostasis in Plum Fruits. Plant Sci. 2015, 231, 30–39. [Google Scholar] [CrossRef]
- Farcuh, M.; Li, B.; Rivero, R.M.; Shlizerman, L.; Sadka, A.; Blumwald, E. Sugar Metabolism Reprogramming in a Non-Climacteric Bud Mutant of a Climacteric Plum Fruit during Development on the Tree. J. Exp. Bot. 2017, 68, 5813–5828. [Google Scholar] [CrossRef] [PubMed]
- Sahamishirazi, S.; Moehring, J.; Claupein, W.; Graeff-Hoenninger, S. Quality Assessment of 178 Cultivars of Plum Regarding Phenolic, Anthocyanin and Sugar Content. Food Chem. 2017, 214, 694–701. [Google Scholar] [CrossRef]
- Jiang, C.; Fang, Z.; Zhou, D.; Pan, S.; Ye, X. Changes in Secondary Metabolites, Organic Acids and Soluble Sugars during the Development of Plum Fruit Cv. ‘Furongli’ (Prunus salicina Lindl). J. Sci. Food Agric. 2019, 99, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.-L. Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef] [PubMed]
- Stein, O.; Granot, D. An Overview of Sucrose Synthases in Plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef]
- Shammai, A.; Petreikow, M.; Yeselson, Y.; Faigenboim, A.; Moy-Komemi, M.; Cohen, S.; Cohen, D.; Besaulov, E.; Efrati, A.; Houminer, N.; et al. Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum (tomato) determines the hexose composition of ripening tomato fruit. Plant J. 2018, 96, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-Q.; Hou, B.-H.; Lalonde, S.; Takanaga, H.; Hartung, M.L.; Qu, X.-Q.; Guo, W.-J.; Kim, J.-G.; Underwood, W.; Chaudhuri, B.; et al. Sugar Transporters for Intercellular Exchange and Nutrition of Pathogens. Nature 2010, 468, 527–532. [Google Scholar] [CrossRef]
- Ji, J.; Yang, L.; Fang, Z.; Zhang, Y.; Zhuang, M.; Lv, H.; Wang, Y. Plant SWEET Family of Sugar Transporters: Structure, Evolution and Biological Functions. Biomolecules 2022, 12, 205. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.-Y.; Ho, L.-H.; Neuhaus, H.E.; Guo, W.-J. Transporter SlSWEET15 Unloads Sucrose from Phloem and Seed Coat for Fruit and Seed Development in Tomato. Plant Physiol. 2021, 187, 2230–2245. [Google Scholar] [CrossRef]
- Kumawat, S.; Sharma, Y.; Vats, S.; Sudhakaran, S.; Sharma, S.; Mandlik, R.; Raturi, G.; Kumar, V.; Rana, N.; Kumar, A.; et al. Understanding the Role of SWEET Genes in Fruit Development and Abiotic Stress in Pomegranate (Punica granatum L.). Mol. Biol. Rep. 2022, 49, 1329–1339. [Google Scholar] [CrossRef]
- Baba, S.A.; Mohiuddin, T.; Basu, S.; Swarnkar, M.K.; Malik, A.H.; Wani, Z.A.; Abbas, N.; Singh, A.K.; Ashraf, N. Comprehensive Transcriptome Analysis of Crocus Sativus for Discovery and Expression of Genes Involved in Apocarotenoid Biosynthesis. BMC Genom. 2015, 16, 698. [Google Scholar] [CrossRef]
- Kaulmann, A.; André, C.M.; Schneider, Y.-J.; Hoffmann, L.; Bohn, T. Carotenoid and Polyphenol Bioaccessibility and Cellular Uptake from Plum and Cabbage Varieties. Food Chem. 2016, 197, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, X.; Cui, L.; Li, Y.; Liang, Y.; Wang, S.; Chen, Y.; Zhou, L.; Zhang, Y.; Li, F. Transcriptome and Metabolome Analyses Reveal Anthocyanins Pathways Associated with Fruit Color Changes in Plum (Prunus salicina Lindl.). PeerJ 2022, 10, e14413. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cao, T.-J.; Zheng, H.; Zhou, C.-F.; Wang, Z.; Wang, R.; Lu, S. Manipulation of Carotenoid Metabolic Flux by Lycopene Cyclization in Ripening Red Pepper (Capsicum annuum Var. Conoides) Fruits. J. Agric. Food Chem. 2019, 67, 4300–4310. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, S.; Gui, X.-L.; Chang, X.-B.; Gong, Z.-H. A Further Analysis of the Relationship between Yellow Ripe-Fruit Color and the Capsanthin-Capsorubin Synthase Gene in Pepper (Capsicum Sp.) Indicated a New Mutant Variant in C. Annuum and a Tandem Repeat Structure in Promoter Region. PLoS ONE 2013, 8, e61996. [Google Scholar] [CrossRef]
- Durán-Soria, S.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Sugar Signaling During Fruit Ripening. Front. Plant Sci. 2020, 11, 564917. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tieman, D.; Alseekh, S.; Fernie, A.R.; Klee, H.J. Natural variations in the Sl-AKR9 aldo/keto reductase gene impact fruit flavor volatile and sugar contents. Plant J. 2023, 115, 1134–1150. [Google Scholar] [CrossRef]
- Hu, L.; Wu, G.; Hao, C.; Yu, H.; Tan, L. Transcriptome and Selected Metabolite Analyses Reveal Points of Sugar Metabolism in Jackfruit (Artocarpus heterophyllus Lam.). Plant Sci. 2016, 248, 45–56. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, R.; Yang, Y.; Liang, G.; Zhang, H.; Deng, X.; Xi, R. Sugar Metabolism and Transcriptome Analysis Reveal Key Sugar Transporters during Camellia Oleifera Fruit Development. Int. J. Mol. Sci. 2022, 23, 822. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Cheng, Y.; Lü, J.; Chen, J.; Wang, Y.; Zhang, S.; Zhang, H. The Gene PbTMT4 from Pear (Pyrus bretschneideri) Mediates Vacuolar Sugar Transport and Strongly Affects Sugar Accumulation in Fruit. Physiol. Plant. 2018, 164, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Cho, L.-H.; Tun, W.; Jeon, J.-S.; An, G. Sucrose Signaling in Higher Plants. Plant Sci. 2021, 302, 110703. [Google Scholar] [CrossRef] [PubMed]
- Wipf, D.; Pfister, C.; Mounier, A.; Leborgne-Castel, N.; Frommer, W.B.; Courty, P.-E. Identification of Putative Interactors of Arabidopsis Sugar Transporters. Trends Plant Sci. 2021, 26, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, S.; Wipf, D.; Frommer, W.B. Transport Mechanisms for Ooganic Forms of Carbon and Nitrogen between Source and Sink. Annu. Rev. Plant Biol. 2004, 55, 341–372. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-Q.; Cheung, L.S.; Feng, L.; Tanner, W.; Frommer, W.B. Transport of Sugars. Annu. Rev. Biochem. 2015, 84, 865–894. [Google Scholar] [CrossRef]
- Chen, L.-Q.; Qu, X.-Q.; Hou, B.-H.; Sosso, D.; Osorio, S.; Fernie, A.R.; Frommer, W.B. Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport. Science 2012, 335, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.; Kühn, C. Subcellular Dynamics and Protein-Protein Interactions of Plant Sucrose Transporters. J. Plant Physiol. 2022, 273, 153696. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-F.; Qi, X.-X.; Huang, X.-S.; Xu, L.-L.; Jin, C.; Wu, J.; Zhang, S.-L. Overexpression of Sucrose Transporter Gene PbSUT2 from Pyrus Bretschneideri, Enhances Sucrose Content in Solanum lycopersicum Fruit. Plant Physiol. Biochem. 2016, 105, 150–161. [Google Scholar] [CrossRef]
- Komaitis, F.; Kalliampakou, K.; Botou, M.; Nikolaidis, M.; Kalloniati, C.; Skliros, D.; Du, B.; Rennenberg, H.; Amoutzias, G.D.; Frillingos, S.; et al. Molecular and Physiological Characterization of the Monosaccharide Transporters Gene Family in Medicago Truncatula. J. Exp. Bot. 2020, 71, 3110–3125. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, S. Rice MtN3/Saliva/SWEET Family Genes and Their Homologs in Cellular Organisms. Mol. Plant 2013, 6, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y.; Oikawa, T.; Chiba, Y.; Ishimaru, Y.; Shimizu, T.; Sano, N.; Koshiba, T.; Kamiya, Y.; Ueda, M.; Seo, M. AtSWEET13 and AtSWEET14 Regulate Gibberellin-Mediated Physiological Processes. Nat. Commun. 2016, 7, 13245. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.Y.; Kumar, V.; Xu, X.F.; Yuan, D.P.; Zhu, X.F.; Li, T.Y.; Jia, B.; Xuan, Y.H. Genome-Wide Identification of the SWEET Gene Family in Wheat. Gene 2018, 642, 284–292. [Google Scholar] [CrossRef]
- Wang, S.; Yokosho, K.; Guo, R.; Whelan, J.; Ruan, Y.-L.; Ma, J.F.; Shou, H. The Soybean Sugar Transporter GmSWEET15 Mediates Sucrose Export from Endosperm to Early Embryo. Plant Physiol. 2019, 180, 2133–2141. [Google Scholar] [CrossRef]
- Feng, C.-Y.; Han, J.-X.; Han, X.-X.; Jiang, J. Genome-Wide Identification, Phylogeny, and Expression Analysis of the SWEET Gene Family in Tomato. Gene 2015, 573, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Yue, X.; Li, J.; Xie, S.; Guo, S.; Zhang, Z. Coexpression of Sucrose Synthase and the SWEET Transporter, Which Are Associated With Sugar Hydrolysis and Transport, Respectively, Increases the Hexose Content in Vitis vinifera L. Grape Berries. Front. Plant Sci. 2020, 11, 321. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yan, C.; Li, Y.; Hirata, K.; Yamamoto, M.; Yan, N.; Hu, Q. Crystal Structure of a Bacterial Homologue of SWEET Transporters. Cell Res. 2014, 24, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Cheung, L.S.; Li, S.; Eom, J.-S.; Chen, L.-Q.; Xu, Y.; Perry, K.; Frommer, W.B.; Feng, L. Structure of a Eukaryotic SWEET Transporter in a Homotrimeric Complex. Nature 2015, 527, 259–263. [Google Scholar] [CrossRef]
- Jeena, G.S.; Kumar, S.; Shukla, R.K. Structure, Evolution and Diverse Physiological Roles of SWEET Sugar Transporters in Plants. Plant Mol. Biol. 2019, 100, 351–365. [Google Scholar] [CrossRef]
- Hu, Z.; Tang, Z.; Zhang, Y.; Niu, L.; Yang, F.; Zhang, D.; Hu, Y. Rice SUT and SWEET Transporters. Int. J. Mol. Sci. 2021, 22, 11198. [Google Scholar] [CrossRef]
- Fei, H.; Yang, Z.; Lu, Q.; Wen, X.; Zhang, Y.; Zhang, A.; Lu, C. OsSWEET14 Cooperates with OsSWEET11 to Contribute to Grain Filling in Rice. Plant Sci. 2021, 306, 110851. [Google Scholar] [CrossRef]
- Fatima, U.; Balasubramaniam, D.; Khan, W.A.; Kandpal, M.; Vadassery, J.; Arockiasamy, A.; Senthil-Kumar, M. AtSWEET11 and AtSWEET12 Transporters Function in Tandem to Modulate Sugar Flux in Plants. Plant Direct 2023, 7, e481. [Google Scholar] [CrossRef]
- Han, L.; Zhu, Y.; Liu, M.; Zhou, Y.; Lu, G.; Lan, L.; Wang, X.; Zhao, Y.; Zhang, X.C. Molecular Mechanism of Substrate Recognition and Transport by the AtSWEET13 Sugar Transporter. Proc. Natl. Acad. Sci. USA 2017, 114, 10089–10094. [Google Scholar] [CrossRef]
- Zhen, Q.; Fang, T.; Peng, Q.; Liao, L.; Zhao, L.; Owiti, A.; Han, Y. Developing Gene-Tagged Molecular Markers for Evaluation of Genetic Association of Apple SWEET Genes with Fruit Sugar Accumulation. Hortic. Res. 2018, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, C.; Wang, M.; Li, T.; Liu, X.; Jiang, J. Plasma Membrane-Localized SlSWEET7a and SlSWEET14 Regulate Sugar Transport and Storage in Tomato Fruits. Hortic. Res. 2021, 8, 186. [Google Scholar] [CrossRef]
- Yan, H.; Pengfei, W.; Brennan, H.; Ping, Q.; Bingxiang, L.; Feiyan, Z.; Hongbo, C.; Haijiang, C. Diversity of Carotenoid Composition, Sequestering Structures and Gene Transcription in Mature Fruits of Four Prunus Species. Plant Physiol. Biochem. 2020, 151, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Deruere, J.; Bouvier, F.; Steppuhn, J.; Klein, A.; Camara, B.; Kuntz, M. Structure and Expression of Two Plant Genes Encoding Chromoplast-Specific Proteins: Occurrence of Partially Spliced Transcripts. Biochem. Biophys. Res. Commun. 1994, 199, 1144–1150. [Google Scholar] [CrossRef]
- Rosas-Saavedra, C.; Quiroz, L.F.; Parra, S.; Gonzalez-Calquin, C.; Arias, D.; Ocarez, N.; Lopez, F.; Stange, C. Putative Daucus Carota Capsanthin-Capsorubin Synthase (DcCCS) Possesses Lycopene β-Cyclase Activity, Boosts Carotenoid Levels, and Increases Salt Tolerance in Heterologous Plants. Plants 2023, 12, 2788. [Google Scholar] [CrossRef] [PubMed]
- Aljohar, H.I.; Maher, H.M.; Albaqami, J.; Al-Mehaizie, M.; Orfali, R.; Orfali, R.; Alrubia, S. Physical and Chemical Screening of Honey Samples Available in the Saudi Market: An Important Aspect in the Authentication Process and Quality Assessment. Saudi Pharm. J. 2018, 26, 932–942. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Yi, X.; Ali, M.M.; Zhang, L.; Wang, S.; Chen, F. Transcriptome Insights into Candidate Genes of the SWEET Family and Carotenoid Biosynthesis during Fruit Growth and Development in Prunus salicina ‘Huangguan’. Plants 2023, 12, 3513. https://doi.org/10.3390/plants12193513
Lin Z, Yi X, Ali MM, Zhang L, Wang S, Chen F. Transcriptome Insights into Candidate Genes of the SWEET Family and Carotenoid Biosynthesis during Fruit Growth and Development in Prunus salicina ‘Huangguan’. Plants. 2023; 12(19):3513. https://doi.org/10.3390/plants12193513
Chicago/Turabian StyleLin, Zhimin, Xiaoyan Yi, Muhammad Moaaz Ali, Lijuan Zhang, Shaojuan Wang, and Faxing Chen. 2023. "Transcriptome Insights into Candidate Genes of the SWEET Family and Carotenoid Biosynthesis during Fruit Growth and Development in Prunus salicina ‘Huangguan’" Plants 12, no. 19: 3513. https://doi.org/10.3390/plants12193513
APA StyleLin, Z., Yi, X., Ali, M. M., Zhang, L., Wang, S., & Chen, F. (2023). Transcriptome Insights into Candidate Genes of the SWEET Family and Carotenoid Biosynthesis during Fruit Growth and Development in Prunus salicina ‘Huangguan’. Plants, 12(19), 3513. https://doi.org/10.3390/plants12193513