Diversity of Late Blight Resistance Genes in the VIR Potato Collection
Abstract
:1. Introduction
2. Results
2.1. LB Resistance
2.2. Rpi Genes
3. General Discussion and Conclusions
3.1. Polymorphisms of Wild Potatoes in the VIR Collection
3.2. LB Resistance
3.3. Diversity of the Rpi Genes
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birch, P.R.J.; Bryan, G.J.; Fenton, B.; Gilroy, E.M.; Hein, I.; Jones, J.T.; Prashar, A.; Taylor, M.A.; Torrance, L.; Toth, I.K. Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Secur. 2012, 4, 477–508. [Google Scholar] [CrossRef]
- Bradshaw, J.E. Review and analysis of limitations in ways to improve conventional potato breeding. Potato Res. 2017, 60, 171–193. [Google Scholar] [CrossRef]
- Wang, M.; Allefs, S.; van den Berg, R.G.; Vleeshouwers, V.G.; van der Vossen, E.A.; Vosman, B. Allele mining in Solanum: Conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theor. Appl. Genet. 2008, 116, 933–943. [Google Scholar] [CrossRef]
- Hein, I.; Birch, P.R.J.; Danan, S.; Lefebvre, V.; Odeny, D.A.; Gebhardt, C.; Trognitz, F.; Bryan, G.J. Progress in mapping and cloning qualitative and quantitative resistance against Phytophthora infestans in potato and its wild relatives. Potato Res. 2009, 52, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Vleeshouwers, V.G.; Raffaele, S.; Vossen, J.H.; Champouret, N.; Oliva, R.; Segretin, M.E.; Rietman, H.; Cano, L.M.; Lokossou, A.; Kessel, G.; et al. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol. 2011, 49, 507–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodewald, J.; Trognitz, B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Mol. Plant Pathol. 2013, 14, 740–757. [Google Scholar] [CrossRef] [PubMed]
- van Weymers, P.S.M.; Baker, K.; Chen, X.; Harrower, B.; Cooke, D.E.L.; Gilroy, E.M.; Birch, P.R.J.; Thilliez, G.J.A.; Lees, A.K.; Lynott, J.S.; et al. Utilizing “omic” technologies to identify and prioritize novel sources of resistance to the oomycete pathogen Phytophthora infestans in potato germplasm collections. Front. Plant Sci. 2016, 7, 672. [Google Scholar] [CrossRef] [Green Version]
- Khavkin, E.E. Plant–pathogen molecular dialogue: Evolution, mechanisms and agricultural implementation. Russ. J. Plant Phys. 2021, 68, 197–211. [Google Scholar] [CrossRef]
- Blossei, J.; Gaebelein, R.; Hammann, T.; Uptmoor, R. Late blight resistance in wild potato species—Resources for future potato (Solanum tuberosum) breeding. Plant Breed. 2022, 141, 314–331. [Google Scholar] [CrossRef]
- Bethke, P.C.; Halterman, D.A.; Jansky, S. Are we getting better at using wild potato species in light of new tools? Crop. Sci. 2017, 57, 1241–1258. [Google Scholar] [CrossRef]
- Machida-Hirano, R.; Niino, T. Potato genetic resources. In The Potato Genome; Kumar, C.S., Xie, C., Kumar, T.J., Eds.; Springer: Cham, Switzerland, 2017; pp. 11–30. [Google Scholar] [CrossRef]
- Aguilera-Galvez, C.; Champouret, N.; Rietman, H.; Lin, X.; Wouters, D.; Chu, Z.; Jones, J.; Vossen, J.; Visser, R.; Wolters, P.J.; et al. Two different R gene loci co-evolved with Avr2 of Phytophthora infestans and confer distinct resistance specificities in potato. Stud. Mycol. 2018, 89, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, R. Genomic-led potato breeding for increasing genetic gains: Achievements and outlook. Crop. Breed. Genet. Genom. 2020, 2, e200010. [Google Scholar] [CrossRef]
- Paluchowska, P.; Śliwka, J.; Yin, Z. Late blight resistance genes in potato breeding. Planta 2022, 255, 127. [Google Scholar] [CrossRef] [PubMed]
- Witek, K.; Lin, X.; Karki, H.S.; Jupe, F.; Witek, A.I.; Steuernagel, B.; Jones, J.D. A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nat. Plants 2021, 7, 198–208. [Google Scholar] [CrossRef]
- Lin, X.; Jia, Y.; Heal, R.; Prokchorchik, M.; Sindalovskaya, M.; Olave-Achury, A.; Makechemu, M.; Fairhead, S.; Noureen, A.; Heo, J.; et al. The Solanum americanum pangenome and effectoromics reveal new resistance genes against potato late blight. bioRxiv 2022. [Google Scholar] [CrossRef]
- Vossen, J.H.; Jo, K.-R.; Vosman, B. Mining the genus Solanum for increasing disease resistance. In Genomics of Plant Genetic Resources; Crop Productivity, Food Security and Nutritional Quality; Tuberosa, R., Graner, A., Frison, E., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 2, pp. 27–46. [Google Scholar] [CrossRef]
- Hardigan, M.A.; Bamberg, J.; Buell, C.R.; Douches, D.S. Taxonomy and genetic differentiation among wild and cultivated germplasm of Solanum sect. Petota. Plant Genome 2015, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machido-Hirano, R. Diversity of potato genetic resources. Breed. Sci. 2015, 65, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Kiru, S.D.; Rogozina, E.V. Mobilization, conservation and study of cultivated and wild potato genetic resources. Vavilov J. Genet. Breed. 2017, 21, 7–15. [Google Scholar] [CrossRef]
- Jansky, S.H.; Spooner, D.M. The evolution of potato breeding. Plant Breed. Rev. 2018, 41, 169–214. [Google Scholar] [CrossRef]
- Li, Y.; Colleoni, C.; Zhang, J.; Liang, Q.; Hu, Y.; Ruess, H.; Simon, R.; Liu, Y.; Liu, H.; Yu, G.; et al. Genomic analyses yield markers for identifying agronomically important genes in potato. Mol. Plant 2018, 11, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Bethke, P.C.; Halterman, D.; Jansky, S. Potato germplasm enhancement enters the genomics era. Agronomy 2019, 9, 575. [Google Scholar] [CrossRef] [Green Version]
- Ghislain, M.; Douches, D.S. The genes and genomes of the potato. In The Potato Crop; Campos, H., Ortiz, O., Eds.; Springer: Cham, Switzerland, 2020; pp. 139–162. [Google Scholar] [CrossRef]
- Karki, H.S.; Jansky, S.H.; Halterman, D.A. Screening of wild potatoes identifies new sources of late blight resistance. Plant Dis. 2021, 105, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Pérez, W.; Salas, A.; Raymundo, R.; Huaman, Z.; Nelson, R.; Bonierbale, M. Evaluation of wild potato species for resistance to late blight. CIP Program Rep. 1999, 2000, 49–62. [Google Scholar]
- Pérez, W.; Ñahui, M.; Ellis, D.; Forbes, G.A. Wide phenotypic diversity for resistance to Phytophthora infestans found in potato landraces from Peru. Plant Dis. 2014, 98, 1530–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khiutti, A.; Spooner, D.M.; Jansky, S.H.; Halterman, D.A. Testing taxonomic predictivity of foliar and tuber resistance to Phytophthora infestans in wild relatives of potato. Phytopathol. 2015, 105, 1198–1205. [Google Scholar] [CrossRef] [Green Version]
- Bachmann-Pfabe, S.; Hammann, T.; Kruse, J.; Dehmer, K.J. Screening of wild potato genetic resources for combined resistance to late blight on tubers and pale potato cyst nematodes. Euphytica 2019, 215, 48. [Google Scholar] [CrossRef]
- Duan, Y.; Duan, S.; Xu, J.; Zheng, J.; Hu, J.; Li, X.; Li, B.; Li, G.; Jin, L. Late blight resistance evaluation and genome-wide assessment of genetic diversity in wild and cultivated potato species. Front. Plant Sci. 2021, 12, 710468. [Google Scholar] [CrossRef]
- Pérez, W.; Alarcon, L.; Rojas, T.; Correa, Y.; Juarez, H.; Andrade-Piedra, J.L.; Anglin, N.L.; Ellis, D. Screening South American potato landraces and potato wild relatives for novel sources of late blight resistance. Plant Dis. 2022, 106, 1845–1856. [Google Scholar] [CrossRef]
- Sokolova, E.; Pankin, A.; Beketova, M.; Kuznetsova, M.; Spiglazova, S.; Rogozina, E.V.; Yashina, I.; Khavkin, E. SCAR markers of the R-genes and germplasm of wild Solanum species for breeding late blight-resistant potato cultivars. Plant Genet. Res. 2011, 9, 309–312. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Devi, S.; Sharma, S.; Chandel, P.; Rawat, S.; Singh, B.P. Allele mining in Solanum germplasm: Cloning and characterization of RB-homologous gene fragments from late blight resistant wild potato species. Plant Mol. Biol. Rep. 2015, 33, 1584–1598. [Google Scholar] [CrossRef]
- Ramakrishnan, A.P.; Ritland, C.E.; Sevillano, R.H.B.; Riseman, A. Review of potato molecular markers to enhance trait selection. Am. J. Potato Res. 2015, 92, 455–472. [Google Scholar] [CrossRef]
- Jupe, F.; Witek, K.; Verweij, W.; Sliwka, J.; Pritchard, L.; Etherington, G.J.; MacLean, D.; Cock, P.J.; Leggett, R.M.; Bryan, G.J.; et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 2013, 76, 530–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, M.R.; Vossen, J.; Lim, T.Y.; Hutten, R.C.B.; Xu, J.; Strachan, S.M.; Harrower, B.; Champouret, N.; Gilroy, E.M.; Hein, I. Tracking disease resistance deployment in potato breeding by enrichment sequencing. Plant Biotechnol. J. 2019, 17, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Champouret, N. Functional Genomics of Phytophthora Infestans Effectors and Solanum Resistance Genes. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2010; 154p. [Google Scholar]
- Lokossou, A.A.; Rietman, H.; Wang, M.; Krenek, P.; van der Schoot, H.; Henken, B.; Hoekstra, R.; Vleeshouwers, V.G.A.A.; van der Vossen, E.A.G.; Visser, R.G.F.; et al. Diversity, distribution, and evolution of Solanum bulbocastanum late blight resistance genes. Mol. Plant-Microbe Inter. 2010, 23, 1206–1216. [Google Scholar] [CrossRef] [Green Version]
- Lokossou, A.A. Dissection of the Major Late Blight Resistance Cluster on Potato Linkage Group IV. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2010; 142p. [Google Scholar]
- Foster, S.J.; Park, T.H.; Pel, M.; Brigneti, G.; Sliwka, J.; Jagger, L.; Van der Vossen, E.; Jones, J.D. Rpi-vnt1.1, a Tm-22 homolog from Solanum venturii, confers resistance to potato late blight. Mol. Plant-Microbe Inter. 2009, 22, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Pel, M.A.; Foster, S.J.; Park, T.H.; Rietman, H.; Van Arkel, G.; Jones, J.D.G.; Van Eck, H.J.; Jacobsen, E.; Visser, R.G.F.; Van Der Vossen, E.A.G. Mapping and cloning of late blight resistance genes from Solanum venturii using an interspecific candidate gene approach. Mol. Plant-Microbe Interact. 2009, 22, 601–615. [Google Scholar] [CrossRef] [Green Version]
- Jo, K.R.; Visser, R.G.F.; Jacobsen, E.; Vossen, J.H. Characterisation of the late blight resistance in potato diferential MaR9 reveals a qualitative resistance gene, R9a, residing in a cluster of Tm-2 (2) homologs on chromosome IX. Theor. Appl. Genet. 2015, 128, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Vossen, J.H.; Van Arkel, G.; Bergervoet, M.; Jo, K.-R.; Jacobsen, E.; Visser, R.G.F. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. Theor. Appl. Genet. 2016, 129, 1785–1796. [Google Scholar] [CrossRef]
- Chen, X.; Lewandowska, D.; Armstrong, M.R.; Baker, K.; Lim, J.T.-Y.; Bayer, M.; Harrower, B.; McLean, K.; Jupe, F.; Witek, K.; et al. Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies. Theor. Appl. Genet. 2018, 131, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Nagel, M.; Dulloo, M.E.; Bissessur, P.; Gavrilenko, T.; Bamberg, J.; Ellis, D.; Giovannini, P. Global Strategy for the Conservation of Potato; Global Crop Diversity Trust: Bonn, Germany, 2022; pp. 1–159. [Google Scholar] [CrossRef]
- Bukasov, S.M. Systematics of the potato. Proc. Appl. Bot. Genet. Breed. 1978, 62, 3–35. (In Russian) [Google Scholar]
- Gorbatenko, L.E. Potato species of South America: Ecology, Geography, Introduction, Taxonomy, and Breeding Value; Russian Academy of Agricultural Sciences, State Scientific Centre of the Russian Federation: St. Petersburg, Russian, 2006; pp. 1–456. (In Russian) [Google Scholar]
- Hawkes, J.G. The Potato: Evolution, Biodiversity and Genetic Resources; Belhaven Press: London, UK, 1990; pp. 1–259. [Google Scholar]
- Haesaert, G.; Vossen, J.H.; Custers, R.; De Loose, M.; Haverkort, A.; Heremans, B.; Hutten, R.; Kessel, G.; Landschoot, S.; van Droogenbroeck, B.; et al. Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions. Crop. Prot. 2015, 77, 163–175. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Boonekamp, P.M.; Hutten, R.; Jacobsen, E.; Lotz, L.A.P.; Kessel, G.J.T.; Vossen, J.H.; Visser, R.G.F. Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: Scientific and societal advances in the DuRPh project. Potato Res. 2016, 59, 35–66. [Google Scholar] [CrossRef] [Green Version]
- Ghislain, M.; Byarugaba, A.A.; Magembe, E.; Njoroge, A.; Rivera, C.; Román, M.L.; Tovar, J.C.; Gamboa, S.; Forbes, G.A.; Kreuze, J.F.; et al. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotech. J. 2019, 17, 1119–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogozina, E.V.; Beketova, M.P.; Muratova, O.A.; Kuznetsova, M.A.; Khavkin, E.E. Stacking resistance genes in multiparental interspecific potato hybrids to anticipate late blight outbreaks. Agronomy 2021, 11, 115. [Google Scholar] [CrossRef]
- Fadina, O.A.; Beketova, M.P.; Kuznetsova, M.A.; Rogozina, E.V.; Khavkin, E.E. Polymorphisms and evolution of Solanum bulbocastanum genes for broad-spectrum resistance to Phytophthora infestans. Russ. J. Plant Physiol. 2019, 66, 950–957. [Google Scholar] [CrossRef]
- Muratova, O.A.; Beketova, M.P.; Kuznetsova, M.A.; Rogozina, E.V.; Khavkin, E.E. South American species Solanum alandiae Card. and S. okadae Hawkes et Hjerting as potential sources of genes for potato late blight resistance. Proc. Appl. Bot. Genet. Breed. 2020, 181, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Budin, K.Z. Genetic foci of Solanum species, Petota Dumort, resistant to Phytophthora infestans (Mont.) De Bary. Genet. Resour. Crop. Evol. 2002, 49, 229–235. [Google Scholar] [CrossRef]
- Moore, R.C.; Purugganan, M.D. The evolutionary dynamics of plant duplicate genes. Curr. Opin. Plant Biol. 2005, 8, 122–128. [Google Scholar] [CrossRef]
- Hardigan, M.A.; Crisovan, E.; Hamilton, J.P.; Kim, J.; Laimbeer, P.; Leisner, C.P.; Manrique-Carpintero, N.C.; Newton, L.; Pham, G.M.; Vaillancourt, B.; et al. Genome reduction uncovers a large dispensable genome and adaptive role for copy number variation in asexually propagated Solanum tuberosum. Plant Cell 2016, 28, 388–405. [Google Scholar] [CrossRef] [Green Version]
- Hardigan, M.A.; Laimbeer, F.P.E.; Newton, L.; Crisovan, E.; Hamilton, J.P.; Vaillancourt, B.; Wiegert-Rininger, K.; Wood, J.C.; Douches, D.S.; Farré, E.M.; et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc. Natl. Acad. Sci. USA 2017, 114, E9999–E10008. [Google Scholar] [CrossRef] [Green Version]
- Qian, L.H.; Zhou, G.C.; Sun, X.Q.; Lei, Z.; Zhang, Y.M.; Xue, J.Y.; Hang, Y.Y. Distinct patterns of gene gain and loss: Diverse evolutionary modes of NBS-encoding genes in three Solanaceae crop species. G3 Genes|Genomes|Genet. 2017, 7, 1577–1585. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Wu, J.; Cai, X.; Liang, J.; Freeling, M.; Wang, X. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 2018, 4, 258–268. [Google Scholar] [CrossRef]
- Barragan, A.C.; Weigel, D. Plant NLR diversity: The known unknowns of pan-NLRomes. Plant Cell 2021, 33, 814–831. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Jia, Y.; Zhang, J.; Li, H.; Cheng, L.; Wang, P.; Bao, Z.; Liu, Z.; Feng, S.; Zhu, X.; et al. Genome evolution and diversity of wild and cultivated potatoes. Nature 2022, 606, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Hoopes, G.; Meng, X.; Hamilton, J.P.; Achakkagari, S.R.; de Alves, F.G.F.; Bolger, M.E.; Coombs, J.J.; Esselink, D.; Kaiser, N.R.; Kodde, L.; et al. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Mol. Plant 2022, 15, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Janzen, G.M.; Wang, L.; Hufford, M.B. The extent of adaptive wild introgression in crops. New Phytol. 2019, 221, 1279–1288. [Google Scholar] [CrossRef] [Green Version]
- Morrell, P.L.; Buckler, E.S.; Ross-Ibarra, J. Crop genomics: Advances and applications. Nature Rev. Genet. 2012, 13, 85–96. [Google Scholar] [CrossRef]
- Spanoghe, M.; Marique, T.; Nirsha, A.; Esnault, F.; Lanterbecq, D. Genetic Diversity Trends in the Cultivated Potato: A Spatiotemporal Overview. Biology 2022, 11, 604. [Google Scholar] [CrossRef]
- Correll, D.S. The potato and its wild relatives. Contr. Texas Res. Found. Bot. Stud. 1962, 4, 606. [Google Scholar]
- Spooner, D.M.; Ghislain, M.; Simon, R.; Jansky, S.H.; Gavrilenko, T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot. Rev. 2014, 80, 283–383. [Google Scholar] [CrossRef]
- Ellis, D.; Salas, A.; Chavez, O.; Gomez, R.; Anglin, N. Ex situ conservation of potato [Solanum section Petota (Solanaceae)] Genetic Resources in Genebanks. In The Potato Crop; Campos, H., Ortiz, O., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature 2011, 475, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aversano, R.; Contaldi, F.; Ercolano, M.R.; Grosso, V.; Iorizzo, M.; Tatino, F.; Xumerle, L.; Molin, A.D.; Avanzato, C.; Ferrarini, A.; et al. The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 2015, 27, 954–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gálvez, J.H.; Tai, H.H.; Barkley, N.A.; Gardner, K.; Ellis, D.; Strömvik, M.V. Understanding potato with the help of genomics. AIMS Agricult. Food 2017, 2, 16–39. [Google Scholar] [CrossRef]
- Leisner, C.P.; Hamilton, J.P.; Crisovan, E.; Manrique-Carpintero, N.C.; Marand, A.P.; Newton, L.; Pham, G.M.; Jiang, J.; Douches, D.S.; Jansky, S.H.; et al. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J. 2018, 94, 562–570. [Google Scholar] [CrossRef] [Green Version]
- Kyriakidou, M.; Achakkagari, S.R.; López, J.H.G.; Zhu, X.; Tang, C.Y.; Tai, H.H.; Anglin, N.L.; Ellis, D.; Strömvik, M.V. Structural genome analysis in cultivated potato taxa. Theor. Appl. Genet. 2020, 133, 951–966. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, J.K.; Rawat, S.; Luthra, S.K.; Zinta, R.; Sahu, S.; Varshney, S.; Kumar, V.; Dalamu, D.; Mandadi, N.; Manoj Kumar, M.; et al. Genome sequence analysis provides insights on genomic variation and late blight resistance genes in potato somatic hybrid (parents and progeny). Mol. Biol. Rep. 2021, 48, 623–635. [Google Scholar] [CrossRef]
- Wang, F.; Xia, Z.; Zou, M.; Zhao, L.; Jiang, S.; Zhou, Y.; Zhang, C.; Ma, Y.; Bao, Y.; Sun, H.; et al. The autotetraploid potato genome provides insights into highly heterozygous species. Plant Biotech. J. 2022, 20, 1996–2005. [Google Scholar] [CrossRef]
- Kiru, S.D. 80 years of the VIR potato collection. Proc. Appl. Bot. Genet. Breed. 2007, 183, 5–21. (In Russian) [Google Scholar]
- Zoteyeva, N.; Mezaka, I.; Vilcâne, D.; Carlson-Nilsson, U.; Skrabule, I.; Rostoks, N. Assessment of genes R1 and R3 conferring resistance to late blight and of gene Rysto conferring resistance to potato virus Y in two wild species accessions and their hybrid progenies. Proc. Latv. Acad. Sci. Sect. B 2014, 68, 133–141. [Google Scholar] [CrossRef]
- Enciso-Maldonado, G.A.; Lozoya-Saldaña, H.; Colinas-Leon, M.T.; Cuevas-Sanchez, J.A.; Sanabria-Velázquez, A.D.; Bamberg, J.; Raman, K.V. Assessment of wild Solanum species for resistance to Phytophthora infestans (Mont.) de Bary in the Toluca valley, Mexico. Am. J. Potato Res. 2022, 99, 25–39. [Google Scholar] [CrossRef]
- Jupe, F.; Pritchard, L.; Etherington, G.J.; Mackenzie, K.; Cock, P.J.; Wright, F.; Kumar, S.S.; Bolser, D.; Bryan, G.J.; Jones, J.D. Identifcation and localisation of the NB–LRR gene family within the potato genome. BMC Genom. 2012, 13, 75. [Google Scholar] [CrossRef] [Green Version]
- Quirin, E.A.; Mann, H.; Meyer, R.S.; Traini, A.; Chiusano, M.L.; Litt, A.; Bradeen, J.M. Evolutionary meta-analysis of Solanaceous resistance gene and Solanum resistance gene analog sequences and a practical framework for cross-species comparisons Mol. Plat-Microbe Inter. 2012, 25, 603–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stam, R.; Silva Arias, G.A.; Tellier, A. Subsets of NLR genes show differential signatures of adaptation during colonization of new habitats. New Phytol. 2019, 224, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Prakash, C.; Trognitz, F.C.; Venhuizen, P.; von Haeseler, A.; Trognitz, B. A compendium of genome-wide sequence reads from NBS (nucleotide binding site) domains of resistance genes in the common potato. Sci. Rep. 2020, 10, 11392. [Google Scholar] [CrossRef]
- Kloosterman, B.; Abelenda, J.A.; Gomez, M.D.M.C.; Oortwijn, M.; de Boer, J.M.; Kowitwanich, K.; Horvath, B.M.; van Eck, H.J.; Smaczniak, C.; Prat, S.; et al. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 2013, 495, 246–250. [Google Scholar] [CrossRef]
- Duan, Y.; Duan, S.; Armstrong, M.R.; Xu, J.; Zheng, J.; Hu, J.; Chen, X.; Hein, I.; Li, G.; Jin, L. Comparative transcriptome profiling reveals compatible and incompatible patterns of potato toward Phytophthora infestans. G3 Genes|Genomes|Genet. 2020, 10, 623–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petek, M.; Zagorščak, M.; Ramšak, Ž.; Sanders, S.; Tomaž, Š.; Tseng, E.; Zouine, M.; Coll, A.; Gruden, K. Cultivar-specific transcriptome and pan-transcriptome reconstruction of tetraploid potato. Sci. Data 2020, 7, 249. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.M.; Smulders, M.J.; van den Berg, R.G.; Vosman, B. What’s in a name; genetic structure in Solanum section Petota studied using population-genetic tools. BMC Evol. Biol. 2011, 11, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebhardt, C. Bridging the gap between genome analysis and precision breeding in potato. Trends Genet. 2013, 29, 248–256. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Siddappa, S.; Singh, B.P.; Kaushik, S.K.; Chakrabarti, S.K.; Bhardwaj, V.; Chandel, P. Molecular markers for late blight resistance breeding of potato: An update. Plant Breed. 2013, 132, 237–245. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bryan, G.J. Genome sequence-based marker development and genotyping in potato. In The Potato Genome; Springer: Cham, Switzerland, 2017; pp. 307–326. [Google Scholar] [CrossRef]
- Monte, M.N.; Rey Burusco, M.F.; Carboni, M.F.; Castellote, M.A.; Sucar, S.; Norero, N.S.; Colman, S.L.; Massa, G.A.; Colavita, M.L.; Feingold, S.E. Genetic diversity in Argentine Andean potatoes by means of functional markers. Am. J. Potato Res. 2018, 95, 286–300. [Google Scholar] [CrossRef]
- Kuang, H.; Wei, F.; Marano, M.R.; Wirtz, U.; Wang, X.; Liu, J.; Shum, W.P.; Zaborsky, J.; Tallon, L.J.; Rensink, W.; et al. The R1 resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. Plant J. 2005, 44, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Pankin, A.A.; Sokolova, E.A.; Rogozina, E.V.; Kuznetsova, M.A.; Deahl, K.L.; Jones, R.W.; Khavkin, E.E. Searching Among Wild Solanum Species for Homologues of RB/Rpiblb1/Rpi-bt1 Gene Conferring Durable Late Blight Resistance; PAGV-Special Report; Schepers, H.T.A.M., Ed.; DLO Foundation: Wageningen, The Netherlands, 2010; Volume 14, pp. 277–284. [Google Scholar]
- Pankin, A.; Sokolova, E.; Rogozina, E.; Kuznetsova, M.; Deahl, K.; Jones, R.; Khavkin, E. Allele mining in the gene pool of wild Solanum species for homologues of late blight resistance gene RB/Rpi-blb1. Plant Genet. Res. 2011, 9, 305–308. [Google Scholar] [CrossRef]
- Fadina, O.A.; Belyantseva, T.V.; Khavkin, E.E.; Pankin, A.A.; Rogozina, E.V.; Kuznetsova, M.A.; Jones, R.W.; Deahl, K.L. SCAR Markers for the RB/Rpi-blb1 Gene of Potato Late Blight Resistance; PAGV-Special Report; Schepers, H.T.A.M., Ed.; DLO Foundation: Wageningen, The Netherlands, 2014; Volume 16, pp. 215–220. [Google Scholar]
- Liu, Z.; Halterman, D. Identification and characterization of RB-orthologous genes from the late blight resistant wild potato species Solanum verrucosum, Physiol. Mol. Plant Pathol. 2006, 69, 230–239. [Google Scholar] [CrossRef]
- Sokolova, E.A.; Fadina, O.A.; Khavkin, E.E.; Rogozina, E.V.; Kuznetsova, M.A.; Jones, R.W.; Deahl, K.L. Structural Homologues of CC-NBS-LRR Genes for Potato Late Blight Resistance in Wild Solanum Species; PAGV-Special Report; Schepers, H.T.A.M., Ed.; DLO Foundation: Wageningen, The Netherlands, 2014; Volume 16, pp. 247–253. [Google Scholar]
- Beketova, M.P.; Sokolova, E.A.; Rogozina, E.V.; Kuznetsova, M.A.; Khavkin, E.E. Two orthologs of late blight resistance gene R1 in wild and cultivated potato. Russ. J. Plant Physiol. 2017, 64, 718–727. [Google Scholar] [CrossRef]
- Pel, M.A. Mapping, Isolation and Characterization of Genes Responsible for Late Blight Resistance in Potato. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2010; pp. 1–200. Available online: https://library.wur.nl/WebQuery/wurpubs/392076 (accessed on 4 January 2023).
- Gurina, A.A.; Alpatieva, N.V.; Chalaya, N.V.; Mironenko, N.V.; Khiutti, A.V.; Rogozina, E.V. Homologs of late blight resistance genes in representatives of tuber-bearing species of the genus Solanum L. Russ. J. Genet. 2022, 58, 1473–1484. [Google Scholar] [CrossRef]
- Huang, B.; Ruess, H.; Liang, Q.; Colleoni, C.; Spooner, D.M. Analyses of 202 plastid genomes elucidate the phylogeny of Solanum section Petota. Sci. Rep. 2019, 9, 4454. [Google Scholar] [CrossRef] [Green Version]
- Hosaka, A.J.; Sanetomo, R.; Hosaka, K. A de novo genome assembly of Solanum verrucosum Schlechtendal, a Mexican diploid species geographically isolated from other diploid A-genome species of potato relatives. G3 Genes|Genomes|Genet. 2022, 12, jkac166. [Google Scholar] [CrossRef]
- Liu, Z.; Halterman, D. Different genetic mechanisms control foliar and tuber resistance to Phytophthora infestans in wild potato Solanum verrucosum. Am. J. Potato Res. 2009, 86, 476–480. [Google Scholar] [CrossRef]
- van Lieshout, N.; van der Burgt, A.; de Vries, M.E.; ter Maat, M.; Eickholt, D.; Esselink, D.; van Kaauwen, M.P.W.; Kodde, L.P.; Visser, R.G.F.; Lindhout, P.; et al. Solyntus, the new highly contiguous reference genome for potato (Solanum tuberosum). G3 Genes|Genomes|Genet. 2020, 10, 3489–3495. [Google Scholar] [CrossRef]
- Zoteyeva, N.; Chrzanowska, M.; Flis, B.; Zimnoch-Guzowska, E. Resistance to pathogens of the potato accessions from the collection of NI Vavilov Institute of Plant Industry (VIR). Am. J. Potato Res. 2012, 89, 277–293. [Google Scholar] [CrossRef]
- Chizhik, V.K.; Martynov, V.V.; Sokolova, E.A.; Kuznetsova, M.A.; Rogozina, E.V.; Khavkin, E.E. The Repertoire of Avr Genes in Two East European Populations of Phytophthora Infestans; PAGV-Special Report; Schepers, H.T.A.M., Ed.; DLO Foundation: Wageningen, The Netherlands, 2019; Volume 19, pp. 231–240. [Google Scholar]
- Jo, K.R.; Kim, C.J.; Kim, S.J.; Kim, T.Y.; Bergervoet, M.; Jongsma, M.A.; Visser, R.G.; Jacobsen, E.; Vossen, J.H. Development of late blight resistant potatoes by cisgene stacking. BMC Biotechnol. 2014, 14, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Vossen, E.A.G.V.D.; Gros, J.; Sikkema, A.; Muskens, M.; Wouters, D.; Wolters, P.; Pereira, A.; Allefs, S. The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J. 2005, 44, 208–222. [Google Scholar] [CrossRef]
- Lenman, M.; Ali, A.; Mühlenbock, P.; Carlson-Nilsson, U.; Liljeroth, E.; Champouret, N.; Vleeshouwers, V.; Andreasson, E. Effector-driven marker development and cloning of resistance genes against Phytophthora infestans in potato breeding clone SW93-1015. Theor. Appl. Genet. 2015, 129, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Lokossou, A.A.; Park, T.-H.; van Arkel, G.; Arens, M.; Ruyter-Spira, C.; Morales, J.; Whisson, S.C.; Birch, P.R.J.; Visser, R.G.F.; Jacobsen, E.; et al. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Mol. Plant Microbe Interact. 2009, 22, 630–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-J.; Lee, H.-R.; Jo, K.-R.; Mortazavian, S.M.M.; Huigen, D.J.; Evenhuis, B.; Kessel, G.; Visser, R.G.F.; Jacobsen, E.; Vossen, J.H. Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theor. Appl. Genet. 2012, 124, 923–935. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
Series | Species | Frequency of Resistant Accessions * (the Total Number) | The Average Score |
---|---|---|---|
Bulbocastana | S. bulbocastanum | 0.71 (14) | 6.7 |
Pinnatisecta | S. pinnatisectum | 0.50 (6) | 6.0 |
S. cardiophyllum | 0.60 (5) | 6.4 | |
S. cardiophyllum ssp. ehrenbergii | 0.17 (12) | 4.7 | |
S. jamesii | 0.11 (9) | 5.1 | |
S. stenophyllidium | 0 (2) | 3.0 | |
Yungasensa | S. chacoense | 0.33 (6) | 4.8 |
Maglia | S. maglia | n.d.** | |
Tuberosa (wild) | S. alandiae | 0 (2) | 4.5 |
S. avilesii | 0.5 (2) | 5.5 | |
S. berthaultii | 0.50 (8) | 6.5 | |
S. microdontum | 0.20 (5) | 5.8 | |
S. microdontum ssp. gigantophyllum, syn. simplicifolium | 0.20 (5) | 5.8 | |
S. sucrense | n.d. | ||
S. venturii | 0.29 (17) | 6.6 | |
S. vernei | 0 (5) | 5.0 | |
S. verrucosum | 0.37 (8) | 5.4 | |
Tuberosa (cultivated) | S. phureja | 0 (3) | 4.3 |
S. stenotomum | 0 (2) | 6.4 | |
Demissa | S. demissum | 0.58 (12) | 6.7 |
Longipedicellata | S. stoloniferum | 0.25 (20) | 5.4 |
S. polytrichon | 0 (13) | 4.4 |
Series | Species | Rpi-R1 | Rpi-R2/Rpi-blb3 | Rpi-R3a | Rpi-R3b | Rpi-R8 | Rpi-blb1/Rpi-sto1 | Rpi-blb2 | Rpi-vnt1 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Markers (the Numbers of Scored Accession Are Shown in Parenthesis) | |||||||||||
Rpi-R1-1205 | Rpi-R2-1137 | Rpi-blb3-305 | Rpi-R3a-1380 | Rpi-R3b-378 | Rpi-R8-1258 | Rpi-blb1-821 | Rpi-sto1-890 | Rpi-blb2- 976 | Rpi-vnt1-612 | ||
Bulbocastana | S. bulbocastanum | 0 (34) | 0.37 (16) | 0.75 (16) | 0.29 (34) | 0.42(24) | 0 (13) | 0.48 (25) | 0.53 (15) | 0.80 (15) | 1.0 (15) |
Pinnatisecta | S. pinnatisectum | 0 (9) | 0.5 (6) | 0.28 (7) | 0 (9) | 0.33 (6) | 0 (6) | 0 (6) | 0 (6) | 0 (6) | 1.0 (6) |
S. cardiophyllum | 0 (7) | 0.14 (7) | 0.28 (7) | 0.28 (7) | 0.17 or 1.0 (6) | 0 (6) | 0.17 (6) | 0.17 (6) | 0.33 (6) | 0.66 (6) | |
S. cardiophyllum ssp. ehrenbergii | 0 (15) | 0.75 (8) | 0.12 (8) | 0.26 (15) | 0.78 (14) | 0 (4) | 0 (12) | 0 (8) | 0.14 (7) | 1 (4) | |
S. jamesii | 0 (12) | 0 (1) | 0 (1) | 0 (12) | 0.37 (8) | n.d. | 0 (2) | 0 (1) | 0 (1) | n.d. | |
S. stenophyllidium | 0 (3) | 1.0 (2) | 0 (2) | 0 (3) | 0.33 (3) | n.d. | 0 (2) | 0 (2) | 0 (2) | n.d. | |
Yungasensa | S. chacoense | 0 (11) | 0 (11) | 0 (11) | 0 (11) | 0.36 (11) | 0 (11) | 0 (11) | 0 (11) | 0 (11) | 0 (11) |
Maglia | S. maglia | 0 (3) | 0 (3) | 0 (3) | 0 (3) | 0 (3) | 1 (3) | 0 (3) | 0 (3) | 0 (3) | 0 (3) |
Tuberosa (wild) | S. alandiae | 0 (5) | 0 (4) | 0 (4) | 0 (5) | 0 (3) | 0.6 (5) | 0 (4) | 0 (4) | 0.8 (5) | 0.2 (5) |
S. avilesii | 0 (2) | 0.5 (2) | 0 (2) | 0 (2) | 0 (2) | 1 (2) | 0 (2) | 0 (2) | 1.0 (2) | 1.0 (2) | |
S. berthaultii | 0.09 (11) | 0 (5) | 0 (5) | 0 (11) | 0 (6) | 1 (4) | 0 (5) | 0 (5) | 0.4 (5) | 0.6 (5) | |
S. microdontum | 0 (9) | 0 (8) | 0 (8) | 0 (8) | 0 (8) | 0.43 (7) | 0 (8) | 0 (7) | 0 (7) | 0.37 (7) | |
S. microdontum ssp. gigantophyllum, syn. simplicifolium | 0 (4) | 0 (3) | 0 (3) | 0.25(4) | 0 (3) | 0.33 (3) | 0 (3) | 0 (2) | 0.33 (1) | 0.66 (3) | |
S. sucrense | 0 (2) | 0 (2) | 0 (2) | 0 (2) | 0 (2) | 0.5 (2) | 0 (2) | 0 (1) | 0 (2) | 0.5 (2) | |
S. venturii | 0 (6) | 0.17 (6) | 0.17 (6) | 0 (6) | 0.17 (6) | 0.83 (6) | 0 (6) | 0 (6) | 0.33 (6) | 1.0 (6) | |
S. vernei | 0 (5) | 0.2 (5) | 0 (5) | 0 (5) | 0 (5) | 0.6 (5) | 0 (5) | 0 (5) | 0 (4) | 0.4 (5) | |
S. verrucosum | 0 (15) | 0.08 (12) | 0 (12) | 0 (15) | 0.07 (14) | 0 (12) | 0 (14) | 0 (12) | 0 (12) | 0 (12) | |
Tuberosa (cultivated) | S. phureja | 0 (6) | 0 (6) | 0 (6) | 0 (6) | 0.33 (6) | 0.66 (6) | 0 (6) | 0 (6) | 0 (6) | 0.66 (6) |
S. stenotomum | 0 (2) | 0 (2) | 0 (2) | 0 (2) | 0 (2) | 0.5 (2) | 0 (2) | 0 (2) | 0 (2) | 0.5 (2) | |
Demissa | S. demissum | 0.46 (37) | 0.5 (6) | 0.33 (6) | 0.18 (38) | 0.9 (10) | 0.17(6) | 0 (8) | 0 (6) | 0 (6) | 0.17 (6) |
Longipedicellata | S. stoloniferum | 0.26 (46) | 0.67 (18) | 0.5 (18) | 0.2 (46) | 0.79 (24) | 0.5 (12) | 0.33 (24) | 0.22 (18) | 0.28 (18) | 1.0 (12) |
S. polytrichon | 0.17 (12) | 1.0 (5) | 0.2 (5) | 0.08 (12) | 0.33 (9) | 0.33 (3) | 0.28 (7) | 0 (5) | 0.4 (5) | 0.67 (3) |
Series | Rpi-R1 | Rpi-R2/Rpi-blb3 | Rpi-R3a | Rpi-R3b | Rpi-R8 | Rpi-blb1/Rpi-sto1 | Rpi-blb2 | Rpi-vnt1 | ||
---|---|---|---|---|---|---|---|---|---|---|
Markers (the Numbers of Scored Accession Are Shown in Parenthesis) | ||||||||||
Rpi-R1-1205 | Rpi-R2-1137 | Rpi-Rpi-blb3-305 | Rpi-R3a-1380 | Rpi-R3b-378 | Rpi-R8-1258 | Rpi-blb-1-821 | Rpi-sto1-890 | Rpi-blb2-976 | Rpi-vnt1-612 | |
Bulbocastana | 0 (34) | 0.37 (16) | 0.75 (16) | 0.29 (34) | 0.42(24) | 0 (13) | 0.48 (25) | 0.53 (15) | 0.80 (15) | 1.0 (15) |
Pinnatisecta | 0 (46) | 0.50 (24) | 0.20 (25) | 0.13 (46) | 0.55 (31) * | 0.06 (16) | 0.03 (28) | 0.04 (23) | 0.14 (22) | 0.87 (16) |
Yungasensa | 0 (11) | 0 (11) | 0 (11) | 0 (11) | 0.36 (11) | 0 (11) | 0 (11) | 0 (11) | 0 (11) | 0 (11) |
Maglia | 0 (3) | 0 (3) | 0 (3) | 0 (3) | 0 (3) | 1.0 (3) | 0 (3) | 0 (3) | 0 (3) | 0 (3) |
Tuberosa (wild) | 0.02 (62) | 0.08 (50) | 0.02 (50) | 0.02 (61) | 0.04 (50) | 0.51 (49) | 0 (52) | 0 (48) | 0.22 (49) | 0.40 (50) |
Tuberosa (cultivated) | 0 (8) | 0 (8) | 0 (8) | 0 (8) | 0.25 (8) | 0.62 (8) | 0 (8) | 0 (8) | 0 (8) | 0.62 (8) |
Demissa | 0.46 (37) | 0.50 (6) | 0.33 (6) | 0.18 (38) | 0.9 (10) | 0.17 (6) | 0 (8) | 0 (6) | 0 (6) | 0.17 (6) |
Longipedicellata | 0.24 (58) | 0.74 (23) | 0.43 (23) | 0.17 (58) | 0.66 (33) | 0.47 (15) | 0.32 (31) | 0.17 (23) | 0.30 (23) | 0.93 (15) |
Gene | Solanum Species, Gene Accession Numbers in the NCBI GenBank | Marker, Length, bp | Marker Position on the Gene, bp | Anneal. Temp., °C | Primer Sequences | References |
---|---|---|---|---|---|---|
RB/Rpi-blb1 | S. bulbocastanum, AY426259 | Rpi-blb1-821 | 4989–5809 | 62 | F-aacctgtatggcagtggcatg R-gtcagaaaagggcactcgtg | [3] |
Rpi-sto1 | S. stoloniferum, EU884421 | Rpi-sto1-890 | 241–1130 | 65 | F-accaaggccacaagattctc R-cctgcggttcggttaataca | [49,107] |
Rpi-blb2 | S. bulbocastanum, DQ122125 | Rpi-blb2-976 | 4004–4979 | 58 | F-ggactgggtaacgacaatcc R-atttatggctgcagaggacc | [108] |
Rpi-R1 | S. demissum, AF447489 | Rpi-R1-1206 | 5126–6331 | 61 | F-cactcgtgacatatcctcacta R-gtagtacctatcttatttctgcaagaat | [32] |
Rpi-R2 | S. demissum, FJ536325 | Rpi-R2-1137 | 1277–2413 | 60 | F-aagatcaagtggtaaaggctgatg R-atctttctagctaaagatcacg | [109] |
Rpi-blb3 | S. bulbocastanum, FJ536346 | Rpi-blb3-305 | 5551–5855 | 63.5 | F-agctttttgagtgtgtaattgg R-gtaactacggactcgaggg | [110] |
Rpi-R3a | S. demissum, AY849382 | Rpi-R3a-1380 | 1677–3056 | 64 | F-tccgacatgtattgatctccctg R-agccacttcagcttcttacagtagg | [32] |
Rpi-R3b | S. demissum, JF900492 | Rpi-R3b-378 | 94,818–95,195 | 64 | F-gtcgatgaatgctatgtttctcgaga R-accagtttcttgcaattccagattg | [111] |
Rpi-R8 | S. demissum, KU530153 | Rpi-R8-1258 | 73,693–74,950 | 62.5 | F-aacaagagatgaattaagtcggtagc R-gctgtaggtgcaatgttgaagga | [43] modif. |
Rpi-vnt1 | S. venturii, FJ423044–FJ423046 | Rpi-vnt1-612 | 89–700 | 58 | F-ccttcctcatcctcacatttag R-gcatgccaactattgaaacaac | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogozina, E.V.; Gurina, A.A.; Chalaya, N.A.; Zoteyeva, N.M.; Kuznetsova, M.A.; Beketova, M.P.; Muratova, O.A.; Sokolova, E.A.; Drobyazina, P.E.; Khavkin, E.E. Diversity of Late Blight Resistance Genes in the VIR Potato Collection. Plants 2023, 12, 273. https://doi.org/10.3390/plants12020273
Rogozina EV, Gurina AA, Chalaya NA, Zoteyeva NM, Kuznetsova MA, Beketova MP, Muratova OA, Sokolova EA, Drobyazina PE, Khavkin EE. Diversity of Late Blight Resistance Genes in the VIR Potato Collection. Plants. 2023; 12(2):273. https://doi.org/10.3390/plants12020273
Chicago/Turabian StyleRogozina, Elena V., Alyona A. Gurina, Nadezhda A. Chalaya, Nadezhda M. Zoteyeva, Mariya A. Kuznetsova, Mariya P. Beketova, Oksana A. Muratova, Ekaterina A. Sokolova, Polina E. Drobyazina, and Emil E. Khavkin. 2023. "Diversity of Late Blight Resistance Genes in the VIR Potato Collection" Plants 12, no. 2: 273. https://doi.org/10.3390/plants12020273
APA StyleRogozina, E. V., Gurina, A. A., Chalaya, N. A., Zoteyeva, N. M., Kuznetsova, M. A., Beketova, M. P., Muratova, O. A., Sokolova, E. A., Drobyazina, P. E., & Khavkin, E. E. (2023). Diversity of Late Blight Resistance Genes in the VIR Potato Collection. Plants, 12(2), 273. https://doi.org/10.3390/plants12020273