Fuzzy Modeling Development for Lettuce Plants Irrigated with Magnetically Treated Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Description
2.2. Preliminary Analysis of Data
2.3. Multiple Polynomial Regression Analysis
2.4. Elaboration of a Model Based on the Fuzzy Logic
- Group 1: , wherein the codomain of is relative to the leaf number;, wherein the codomain of is related to leaf number;
- Group 2: , wherein the codomain of is related to the fresh shoot biomass; , in which the codomain of is related to fresh shoot biomass;
- Group 3: , wherein the codomain in is related to dry shoot biomass;, in which the codomain of is related to dry shoot biomass;
- Group 4: , wherein the codomain in is relative to the fresh root biomass , wherein the codomain of is related to fresh root biomass;
- Group 5: , wherein the codomain of is related to fresh root biomass;, wherein the codomain of is related to dry root biomass.
- If “premise (antecedent)” then “conclusion (consequent)”;
- If so ;
- If so ;
- If so ;
- If so ;
- If so ;
- If so ;
- If so ;
- If so ;
- If so ;
- If so ,
2.5. Inference of the Fuzzy Method
2.6. Analysis of the Fuzzy Model Association Intensity
2.6.1. Medium Square Error
2.6.2. Pearson’s Correlation (r)
2.6.3. The Willmott et al. [51] Index
2.7. Software Used
3. Results
3.1. Multiple Polynomial Regression Adjustment
3.2. Developed Model Based on the Fuzzy Logic
- If (DAT is “P1”) and (irrigation level is “L1”), then (NL is “C2”, FSB is “C3”, DSB is “C3”, FRB is “C3” and DRB is “C2”);
- If (DAT is “P1”) and (irrigation level is “L2”), then (NL is “C2”, FSB is “C3”, DSB is “C3”, FRB is “C6” and DRB is “C2”);
- If (DAT is “P1”) and (irrigation level is “L3”), then (NL is “C3”, FSB is “C3”, DSB is “C3”, FRB is “C8” and DRB is “C3”).
3.3. Analysis of the Models Association Intensity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hirata, A.C.S.; Hirata, E.K.; Guimarães, E.C.; Rós, A.B.; Monquero, P.A. Plantio direto de alface americana sobre plantas de cobertura dessecadas ou roçadas. Bragantia 2014, 73, 178–183. [Google Scholar] [CrossRef]
- Ohse, S.; Dourado-Neto, D.; Manfron, P.A.; Santos, O.S. Qualidade de cultivares de alface produzidos em hidroponia. Sci. Agric. 2001, 58, 181–185. [Google Scholar] [CrossRef]
- Figueiredo, C.C.D.; Ramos, M.L.G.; McManus, C.M.; de Menezes, A.M. Mineralização de esterco de ovinos e sua influência na produção de alface. Hortic. Bras. 2012, 30, 175–179. [Google Scholar] [CrossRef]
- Norton-Brandao, D.; Scherrenberg, S.M.; van Lier, J.B. Reclamation of used urban waters for irrigation purposes—A review of treatment technologies. J. Environ. Manag. 2013, 122, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, H.; Parry, M. Plant responses to water stress. Ann. Bot. 2002, 89, 801–802. [Google Scholar] [CrossRef]
- Tejeda, M.; Arredondo, J.; Pérez-Staples, D.; Ramos-Morales, P.; Liedo, P.; Díaz-Fleischer, F. Effects of size, sex and teneral resources on the resistance to hydric stress in the tephritid fruit fly Anastrepha ludens. J. Insect Physiol. 2014, 70, 73–80. [Google Scholar] [CrossRef]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef]
- Snyder, R.; Pedras, C.; Montazar, A.; Henry, J.; Ackley, D. Advances in ET-based landscape irrigation management. Agric. Water Manag. 2015, 147, 187–197. [Google Scholar] [CrossRef]
- Blanco-Fernandez, A.; Casals, M.R.; Colubi, A.; Corral, N.; Garcia-Barzana, M.; Gil, M.; González-Rodríguez, G.; López, M.; Lubiano, M.; Montenegro, M. A distance-based statistical analysis of fuzzy number-valued data. Int. J. Approx. Reason. 2014, 55, 1487–1501. [Google Scholar] [CrossRef]
- Mostafazadeh-Fard, B.; Khoshravesh, M.; Mousavi, S.-F.; Kiani, A.-R. Effects of magnetized water and irrigation water salinity on soil moisture distribution in trickle irrigation. J. Irrig. Drain. Eng. 2011, 137, 398–402. [Google Scholar] [CrossRef]
- Khoshravesh, M.; Mostafazadeh-Fard, B.; Mousavi, S.; Kiani, A. Effects of magnetized water on the distribution pattern of soil water with respect to time in trickle irrigation. Soil Use Manag. 2011, 27, 515–522. [Google Scholar] [CrossRef]
- Daccache, A.; Knox, J.W.; Weatherhead, E.; Daneshkhah, A.; Hess, T. Implementing precision irrigation in a humid climate–Recent experiences and on-going challenges. Agric. Water Manag. 2015, 147, 135–143. [Google Scholar] [CrossRef]
- Zhang, Q.-T.; Qing, X.; Liu, C.C.; Geng, S. Technologies for efficient use of irrigation water and energy in China. J. Integr. Agric. 2013, 12, 1363–1370. [Google Scholar] [CrossRef]
- Lattin, J.; Carroll, J.D.; Green, P.E. Análise de Dados Multivariados; Cengage Learning: São Paulo, Brazil, 2011; Volume 475. [Google Scholar]
- Hoshmand, R. Statistical Methods for Environmental and Agricultural Sciences, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Nelsen, T.C. The state of statistics in agricultural science. J. Agric. Biol. Environ. Stat. 2002, 7, 313–319. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H. Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system. Measurement 2014, 47, 521–530. [Google Scholar] [CrossRef]
- Putti, F.F. Produção da Cultura de Alface Irrigada Com Água Tratada Magneticamente; Unesp: São Paulo, Brazil, 2014; Volume 123. [Google Scholar]
- Hosseinzadeh Soreshjani, M.; Kargar, A.; Nabavi Niaki, S.A.; Arab Markadeh, G. Classical and fuzzy controllers for a hybrid flow controller. Int. Trans. Electr. Energy Syst. 2014, 24, 1034–1046. [Google Scholar] [CrossRef]
- Kramer, J.; Kandel, A. On accurate localization and uncertain sensors. Int. J. Intell. Syst. 2012, 27, 429–456. [Google Scholar] [CrossRef]
- Ren, J. Nozzle fuzzy controller of agricultural spraying robot aiming toward crop rows. In Proceedings of the Computer and Computing Technologies in Agriculture III: Third IFIP TC 12 International Conference, CCTA 2009, Beijing, China, 14–17 October 2009; Revised Selected Papers 3. Springer: Berlin/Heidelberg, Germany, 2010; pp. 198–206. [Google Scholar]
- Prema, K.; Kumar, N.S.; Dash, S.; Chowdary, S. Online control of remote operated agricultural robot using fuzzy controller and virtual instrumentation. In Proceedings of the IEEE—International Conference on Advances in Engineering, Science and Management (ICAESM-2012), Nagapattinam, India, 30–31 March 2012; pp. 196–201. [Google Scholar]
- Islam, S.; Kundu, S.; Shoran, J.; Sabir, N.; Sharma, K.; Farooqi, S.; Singh, R.; Om Agarwal, H.; Chaturvedi, K.; Sharma, R. Selection of wheat (Triticum aestivum) variety through expert system. Indian J. Agric. Sci. 2012, 82, 39. [Google Scholar]
- Lemmon, H. Comax: An expert system for cotton crop management. Comput. Sci. Econ. Manag. 1990, 3, 177–185. [Google Scholar] [CrossRef]
- Herrera, J.; Ibeas, A.; de la Sen, M. Identification and control of integrative MIMO systems using pattern search algorithms: An application to irrigation channels. Eng. Appl. Artif. Intell. 2013, 26, 334–346. [Google Scholar] [CrossRef]
- Srinivasa Raju, K.; Nagesh Kumar, D. Fuzzy data envelopment analysis for performance evaluation of an irrigation system. Irrig. Drain. 2013, 62, 170–180. [Google Scholar] [CrossRef]
- Touati, F.; Al-Hitmi, M.; Benhmed, K.; Tabish, R. A fuzzy logic based irrigation system enhanced with wireless data logging applied to the state of Qatar. Comput. Electron. Agric. 2013, 98, 233–241. [Google Scholar] [CrossRef]
- Chung, E.-S.; Kim, Y. Development of fuzzy multi-criteria approach to prioritize locations of treated wastewater use considering climate change scenarios. J. Environ. Manag. 2014, 146, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Giusti, E.; Marsili-Libelli, S. A fuzzy decision support system for irrigation and water conservation in agriculture. Environ. Model. Softw. 2015, 63, 73–86. [Google Scholar] [CrossRef]
- Santos, H.D.; Jacomine, P.; Anjos, L.; Oliveira, V.; Lumbreras, J.; Coelho, M.; Almeida, J.; Araujo Filho, J.D.; Oliveira, J.D.; Cunha, T. Sistema Brasileiro de Classificação de Solos, 5th ed.; Revista e Ampliada; Embrapa: Brasília, Brazil, 2018; pp. 1–590. [Google Scholar]
- Pagano, M.; Gauvreau, K. Princípios de Bioestatística; Cengage Learning: São Paulo, Brazil, 2012. [Google Scholar]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B Stat. Methodol. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Análise Multivariada de Dados, Tradução de AS Sant’anna e A. Cloves Neto, 5th ed.; Bookman: Porto Alegre, Brazil, 2005. [Google Scholar]
- Zavala, A.A.; Bolfarine, H.; de Castro, M. Consistent estimation and testing in heteroscedastic polynomial errors-in-variables models. Ann. Inst. Stat. Math. 2007, 59, 515–530. [Google Scholar] [CrossRef]
- da Silva, V.E.C.; Tadayozzi, Y.S.; Putti, F.F.; Santos, F.A.; Forti, J.C. Degradation of Commercial Glyphosate-Based Herbicide via Advanced Oxidative Processes in Aqueous Media and Phytotoxicity Evaluation Using Maize Seeds. Sci. Total Environ. 2022, 840, 156656. [Google Scholar] [CrossRef]
- Yeh, C.-T. Weighted trapezoidal and triangular approximations of fuzzy numbers. Fuzzy Sets Syst. 2009, 160, 3059–3079. [Google Scholar] [CrossRef]
- Cremasco, C.P.; Gabriel Filho, L.R.A.; Cataneo, A. Metodologia de determinação de funções de pertinência de controla-dores fuzzy para a avaliação energética de empresas de avicultura de postura. Energ. Na Agric. 2010, 25, 21–39. [Google Scholar] [CrossRef]
- Gabriel Filho, L.R.; Cremasco, C.P.; Putti, F.F.; Chacur, M.G. Application of fuzzy logic for the evaluation of livestock slaughtering. Eng. Agrícola 2011, 31, 813–825. [Google Scholar] [CrossRef]
- Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 1975, 7, 1–13. [Google Scholar] [CrossRef]
- Ross, T. Fuzzy Logic with Engineering Applications; John Wiley & Sons: Singapore, 2010. [Google Scholar]
- Yen, J. Fuzzy Logic: Intelligence, Control, and Information; Pearson Education India: Noida, India, 1999. [Google Scholar]
- Patel, A.V.; Mohan, B. Some numerical aspects of center of area defuzzification method. Fuzzy Sets Syst. 2002, 132, 401–409. [Google Scholar] [CrossRef]
- Lababidi, H.M.; Baker, C.G. Fuzzy modeling. In Handbook of Food and Bioprocess Modeling Techniques; CRC Press: Boca Raton, FL, USA, 2006; pp. 451–498. [Google Scholar]
- Keshwani, D.R.; Jones, D.D.; Meyer, G.E.; Brand, R.M. Rule-based Mamdani-type fuzzy modeling of skin permeability. Appl. Soft Comput. 2008, 8, 285–294. [Google Scholar] [CrossRef]
- Peruzzi, N.; Scala, N.; Macari, M.; Furlan, R.L.; Meyer, A.; Fernandez-Alarcon, M.; Neto, F.K.; Souza, F. Fuzzy modeling to predict chicken egg hatchability in commercial hatchery. Poult. Sci. 2012, 91, 2710–2717. [Google Scholar] [CrossRef]
- Jong, C.H.; Tay, K.M.; Lim, C.P. Application of the fuzzy failure mode and effect analysis methodology to edible bird nest processing. Comput. Electron. Agric. 2013, 96, 90–108. [Google Scholar] [CrossRef]
- Chachi, J.; Taheri, S.M.; Arghami, N.R. A hybrid fuzzy regression model and its application in hydrology engineering. Appl. Soft Comput. 2014, 25, 149–158. [Google Scholar] [CrossRef]
- Castanho, M.; Mateus, R.; Hein, K. Fuzzy model of Drosophila mediopunctata population dynamics. Ecol. Model. 2014, 287, 9–15. [Google Scholar] [CrossRef]
- Kisi, O. Applicability of Mamdani and Sugeno fuzzy genetic approaches for modeling reference evapotranspiration. J. Hydrol. 2013, 504, 160–170. [Google Scholar] [CrossRef]
- Senaviratne, G.A.; Udawatta, R.P.; Anderson, S.H.; Baffaut, C.; Thompson, A. Use of fuzzy rainfall–runoff predictions for claypan watersheds with conservation buffers in Northeast Missouri. J. Hydrol. 2014, 517, 1008–1018. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Ozeki, S.; Miyamoto, J.; Ono, S.; Wakai, C.; Watanabe, T. Water−Solid interactions under steady magnetic Fields: Magnetic-field-induced adsorption and desorption of water. J. Phys. Chem. 1996, 100, 4205–4212. [Google Scholar] [CrossRef]
- Hasson, D.; Bramson, D. Effectiveness of magnetic water treatment in suppressing calcium carbonate scale deposition. Ind. Eng. Chem. Process Des. Dev. 1985, 24, 588–592. [Google Scholar] [CrossRef]
- Herzog, R.E.; Shi, Q.; Patil, J.N.; Katz, J.L. Magnetic water treatment: The effect of iron on calcium carbonate nucleation and growth. Langmuir 1989, 5, 861–867. [Google Scholar] [CrossRef]
- Gehr, R.; Zhai, Z.A.; Finch, J.A.; Rao, S.R. Reduction of soluble mineral concentrations in CaSO4 saturated water using a magnetic field. Water Res. 1995, 29, 933–940. [Google Scholar] [CrossRef]
- Bogatin, J.; Bondarenko, N.P.; Gak, E.Z.; Rokhinson, E.E.; Ananyev, I.P. Magnetic treatment of irrigation water: Experimental results and application conditions. Environ. Sci. Technol. 1999, 33, 1280–1285. [Google Scholar] [CrossRef]
- Joshi, K.; Kamat, P. Effect of magnetic field on the physical properties of water. J. Indian Chem. Soc. 1966, 43, 620–622. [Google Scholar]
- Kronenberg, K. Experimental evidence for effects of magnetic fields on moving water. IEEE Trans. Magn. 1985, 21, 2059–2061. [Google Scholar] [CrossRef]
- Katsuki, A.; Tokunaga, R.; Watanabe, S.-I.; Tanimoto, Y. The effect of high magnetic field on the crystal growth of benzophenone. Chem. Lett. 1996, 25, 607–608. [Google Scholar] [CrossRef]
- Maheshwari, B.L.; Grewal, H.S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agric. Water Manag. 2009, 96, 1229–1236. [Google Scholar] [CrossRef]
- Hozayn, M.; Qados, A.A. Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.). Agric. Biol. J. N. Am. 2010, 1, 671–676. [Google Scholar]
- Lopes, G.N.; Kroetz, V.J.; Alves, J.M.A.; Smiderle, O.J. Irrigação magnética. Rev. Agro@ Mbiente-Line 2007, 1, 1–8. [Google Scholar]
- Aoda, M.I.; Fattah, M.A. The interactive effects of water magnetic treatment and deficit irrigation on plant productivity and water use efficiency of corn (Zea mays L.). Iraqi J. Agric. Sci. 2011, 42, 164–179. [Google Scholar]
- Aladjadjiyan, A.; Ylieva, T. Influence of stationary magnetic field on the early stages of the development of tobacco seeds (Nicotiana tabacum L.). J. Cent. Eur. Agric. 2003, 4, 131–138. [Google Scholar]
- El Sayed, H.E.S.A. Impact of magnetic water irrigation for improve the growth, chemical composition and yield production of broad bean (Vicia faba L.) plant. Am. J. Exp. Agric. 2014, 4, 476–496. [Google Scholar]
- Selim, A.-F.H.; El-Nady, M.F. Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astronaut. 2011, 69, 387–396. [Google Scholar] [CrossRef]
- Souza, A.; García, D.; Sueiro, L.; Licea, L.; Porras, E. Pre-sowing magnetic treatment of tomato seeds: Effects on the growth and yield of plants cultivated late in the season. Span. J. Agric. Res. 2005, 3, 113–122. [Google Scholar] [CrossRef]
- Kordas, L. The effect of magnetic field on growth, development and the yield of spring wheat. Pol. J. Environ. Stud. 2002, 11, 527–530. [Google Scholar]
- Rawabdeh, H.; Shiyab, S.; Shibli, R. The Effect of Irrigation by Magnetically Water on Chlorophyll and Macroelements uptake of Pepper (Capsicum annuum L.). Jordan J. Agric. Sci. 2014, 10, 205–214. [Google Scholar]
- Putti, F.F.; Vicente, E.F.; Chaves, P.P.N.; Mantoan, L.P.B.; Cremasco, C.P.; Arruda, B.; Forti, J.C.; Junior, J.F.S.; Campos, M.; Reis, A.R.D. Effect of Magnetic Water Treatment on the Growth, Nutritional Status, and Yield of Lettuce Plants with Irrigation Rate. Horticulturae 2023, 9, 504. [Google Scholar] [CrossRef]
- Carozzi, M.; Bregaglio, S.; Scaglia, B.; Bernardoni, E.; Acutis, M.; Confalonieri, R. The development of a methodology using fuzzy logic to assess the performance of cropping systems based on a case study of maize in the Po Valley. Soil Use Manag. 2013, 29, 576–585. [Google Scholar] [CrossRef]
- Bahri, O.; Mourhir, A.; Papageorgiou, E.I. Integrating fuzzy cognitive maps and multi-agent systems for sustainable agriculture. Euro-Mediterr. J. Environ. Integr. 2020, 5, 7. [Google Scholar] [CrossRef]
- Júnior, M.P.; da Silva, M.T.; Guimarães, F.G.; Euzébio, T.A. Energy savings in a rotary dryer due to a fuzzy multivariable control application. Dry. Technol. 2022, 40, 1196–1209. [Google Scholar] [CrossRef]
- Benyezza, H.; Bouhedda, M.; Rebouh, S. Zoning irrigation smart system based on fuzzy control technology and IoT for water and energy saving. J. Clean. Prod. 2021, 302, 127001. [Google Scholar] [CrossRef]
- Zhang, T.; Page, T.; Heathwaite, L.; Beven, K.; Oliver, D.M.; Haygarth, P.M. Estimating phosphorus delivery with its mitigation measures from soil to stream using fuzzy rules. Soil Use Manag. 2013, 29, 187–198. [Google Scholar] [CrossRef]
- Polat, S.; Aksoy, A.; Unlu, K. A fuzzy rule based remedial priority ranking system for contaminated sites. Groundwater 2015, 53, 317–327. [Google Scholar] [CrossRef]
- Weber, C.; Dai Pra, A.L.; Passoni, L.I.; Rabal, H.J.; Trivi, M.; Poggio Aguerre, G.J. Determination of maize hardness by biospeckle and fuzzy granularity. Food Sci. Nutr. 2014, 2, 557–564. [Google Scholar] [CrossRef]
Irrigation Level (IL) | Days after Transplanting (DAT) | ||
---|---|---|---|
Fuzzy Sets | Point with 1 Degree of Membership Associated | Fuzzy Sets | Point with 1 Degree of Membership Associated |
DAT 1 | 14 | IL 1 | 25% |
DAT 1 | 14 | IL 2 | 50% |
DAT 1 | 14 | IL 3 | 75% |
DAT 1 | 14 | IL 4 | 100% |
DAT 1 | 14 | IL 5 | 125% |
DAT 2 | 21 | IL 1 | 25% |
DAT 2 | 21 | IL 2 | 50% |
DAT 2 | 21 | IL 3 | 75% |
DAT 2 | 21 | IL 4 | 100% |
DAT 2 | 21 | IL 5 | 125% |
DAT 3 | 28 | IL 1 | 25% |
DAT 3 | 28 | IL 2 | 50% |
DAT 3 | 28 | IL 3 | 75% |
DAT 3 | 28 | IL 4 | 100% |
DAT 3 | 28 | IL 5 | 125% |
DAT 4 | 35 | IL 1 | 25% |
DAT 4 | 35 | IL 2 | 50% |
DAT 4 | 35 | IL 3 | 75% |
DAT 4 | 35 | IL 4 | 100% |
DAT 4 | 35 | IL 5 | 125% |
Variable | Cycle | R2 | |||||||
---|---|---|---|---|---|---|---|---|---|
LN-MW | 1st | 30.33 * | −0.184 * | 0.002 * | −0.000006 | −0.184 * | 0.1 * | 0.00068 | 0.98 * |
2nd | −23.71 * | 0.47 * | 0.0074 * | −0.000033 * | 4.92 * | −0.19 * | 0.0027 * | 0.89 * | |
LN-CW | 1st | 30.4 * | −0.224 * | 0.0027 * | −0.00000092 | −2.75 * | 0.1 * | −0.00059 | 0.94 * |
2nd | −43.23 * | 6.86 * | 0.12 | −0.31 | −0.002 * | 0.005 * | 0.000001 * | 0.94 * | |
FSB-MW | 1st | −133.8 * | −4.58 * | 0.082 * | −0.00039 * | 35.59 * | −2.17 * | 0.0443 * | 096 * |
2nd | −122.75 * | 0.523 | −0.0151 * | 0.000098 | 22.36 * | −1.41 * | 0.03 * | 0.84 * | |
FSB-CW | 1st | 56.59 * | 12.7 * | 0.2 | −0.00089 | 22 * | −1.171 * | 0.024 | 0.95 * |
2nd | −159.35 * | 1.77 * | −0.031 * | 0.00016 * | 21.89 * | −1.25 | 0.026 | 0.91 * | |
DSB-MW | 1st | 9.16 * | −0.19 | 0.0032 * | 0.00014 | −0.75 * | 0.019 * | −0.000015 | 0.92 * |
2nd | 10.08 * | −0.47 * | 0.0073 * | −0.000032 | −0.35 * | 0.0083 * | 0.0002 * | 0.89 * | |
DSB-CW | 1st | 2.11 * | 0.019 * | −0.00065 | 0.00000460891 | −0.21 * | −0.001 * | 0.00035 | 0.94 * |
2nd | 9.84 * | 0.094 | −0.0016 | 0.0000084 * | −1.68 * | 0.0718 | −0.00074 * | 0.88 * | |
GRB-MW | 1st | −23.66 * | −0.13 * | 0.0023 * | 0.0033 * | 4 * | −0.2 * | −0.000011 * | 0.94 * |
2nd | −13.69 * | −0.24 * | 0.0043 * | −0.00002 * | 2.71 * | −0.13 * | 0.0023 * | 0.92 * | |
GRB-CW | 1st | −9.74 * | 0.093 | −0.0015 | 0.0000082 * | 1.19 * | −0.061 | 0.0011 * | 0.85 * |
2nd | −6.37 * | 0.065 * | −0.0011 | 0.0011 | 0.94 * | −0.054 * | 0.0000059 | 0.85 * | |
DRB-MW | 1st | −3.43 * | −0.022 | 0.00035 * | −0.0000016 * | 0.62 * | −0.032 * | 0.00054 * | 0.86 * |
2nd | 2.27 * | −0.029 * | 0.00046 | −0.0000021 | −0.15 * | 0.0032 * | 0.000013 | 0.84 * | |
DRB-CW | 1st | −1.43 * | 0.0019 | −0.00000274 * | 0.00000017 | 0.22 * | −0.012 | 0.00023 * | 0.93 * |
2nd | −0.44 * | 0.017 * | −0.00023 | 0.000001 | 0.10 * | −0.009 | 0.0002 * | 0.73 * |
Growing Lettuce Parameters | Variable | Model | Cycle | |||||
---|---|---|---|---|---|---|---|---|
Water Type | 1st | 2nd | ||||||
MSE | r | d | MSE | r | d | |||
LN | MW | fuzzy | 1.20 | 0.99 * | 0.986 | 1.86 | 0.96 * | 0.999 |
MPR | 1.46 | 0.98 * | 0.773 | 2.15 | 0.94 * | 0.998 | ||
CW | fuzzy | 4.44 | 0.98 * | 0.947 | 7.53 | 0.95 * | 0.998 | |
MPR | 5.61 | 0.83 * | 0.932 | 50.67 | 0.73 * | 0.978 | ||
FSB | MW | fuzzy | 385.68 | 0.98 * | 0.967 | 912.11 | 0.96 * | 0.955 |
MPR | 423.46 | 0.96 * | 0.523 | 944.75 | 0.93 * | 0.090 | ||
CW | fuzzy | 248.56 | 0.98 * | 0.999 | 993 | 0.95 * | 0.998 | |
MPR | 426.06 | 0.96 * | 0.212 | 1053.7 | 0.93 * | 0.753 | ||
DSB | MW | fuzzy | 1.03 | 0.97 * | 0.771 | 0.97 | 0.98 * | 0.975 |
MPR | 1.09 | 0.96 * | 0.764 | 1.02 | 0.96 * | 0.9 | ||
CW | fuzzy | 0.24 | 0.97 * | 0.89 | 0.49 | 0.98 * | 0.97 | |
MPR | 0.25 | 0.94 * | 0.03 | 0.80 | 0.96 * | 0.13 | ||
FRB | MW | fuzzy | 1.26 | 0.98 * | 0.87 | 0.74 | 0.98 * | 0.74 |
MPR | 1.77 | 0.94 * | 0.09 | 1.62 | 0.96 * | 0.23 | ||
CW | fuzzy | 1.01 | 0.96 * | 0.94 | 0.56 | 0.97 * | 0.92 | |
MPR | 1.06 | 0.84 * | 0.50 | 0.58 | 0.95 * | 0.08 | ||
DRB | MW | fuzzy | 0.10 | 0.96 * | 0.99 | 0.01 | 0.94 * | 0.99 |
MPR | 0.14 | 0.92 * | 0.51 | 0.02 | 0.92 * | 0.41 | ||
CW | fuzzy | 0.02 | 0.96 * | 0.97 | 0.04 | 0.95 * | 0.92 | |
MPR | 0.03 | 0.93 * | 0.94 | 0.05 | 0.90 * | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari Putti, F.; Cremasco, C.P.; Neto, A.B.; Barbosa, A.C.K.; Júnior, J.F.d.S.; Reis, A.R.d.; Góes, B.C.; Arruda, B.; Filho, L.R.A.G. Fuzzy Modeling Development for Lettuce Plants Irrigated with Magnetically Treated Water. Plants 2023, 12, 3811. https://doi.org/10.3390/plants12223811
Ferrari Putti F, Cremasco CP, Neto AB, Barbosa ACK, Júnior JFdS, Reis ARd, Góes BC, Arruda B, Filho LRAG. Fuzzy Modeling Development for Lettuce Plants Irrigated with Magnetically Treated Water. Plants. 2023; 12(22):3811. https://doi.org/10.3390/plants12223811
Chicago/Turabian StyleFerrari Putti, Fernando, Camila Pires Cremasco, Alfredo Bonini Neto, Ana Carolina Kummer Barbosa, Josué Ferreira da Silva Júnior, André Rodrigues dos Reis, Bruno César Góes, Bruna Arruda, and Luís Roberto Almeida Gabriel Filho. 2023. "Fuzzy Modeling Development for Lettuce Plants Irrigated with Magnetically Treated Water" Plants 12, no. 22: 3811. https://doi.org/10.3390/plants12223811
APA StyleFerrari Putti, F., Cremasco, C. P., Neto, A. B., Barbosa, A. C. K., Júnior, J. F. d. S., Reis, A. R. d., Góes, B. C., Arruda, B., & Filho, L. R. A. G. (2023). Fuzzy Modeling Development for Lettuce Plants Irrigated with Magnetically Treated Water. Plants, 12(22), 3811. https://doi.org/10.3390/plants12223811