Development of a Set of Wheat-Rye Derivative Lines from Hexaploid Triticale with Complex Chromosomal Rearrangements to Improve Disease Resistance, Agronomic and Quality Traits of Wheat
Abstract
:1. Introduction
2. Results
2.1. ND-FISH of Triticale Yukuri
2.2. Unique Glutenin Subunit in Yukuri
2.3. New ND-FISH Probes for Identifying Wheat-Rye Chromosomes
2.4. Identification of Monosomic and Disomic Additions of Rye to Wheat
2.5. Characterization of Complex Translocation by ND-FISH and Oligo-FISH Painting
2.6. Identification of Rye Chromosomes and the Complex Translocations by Molecular Marker Analysis
2.7. Powdery Mildew and Stripe Rust Responses
2.8. Plant Phenotypes and Dough Quality of Wheat-Rye Derivatives
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. ND-FISH and Oligo-FISH Painting
4.3. Glutenin Separation and Molecular Marker Analysis
4.4. Evaluation of Stripe Rust and Powdery Mildew Responses
4.5. Agronomic Traits and Grain Quality Observation
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mapuranga, J.; Chang, J.; Yang, W. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. Front. Plant Sci. 2022, 13, 1102908. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.N.; Chen, X.M. Stripe Rust Resistance. In Stripe Rust; Chen, X.M., Kang, Z.S., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 353–558. [Google Scholar] [CrossRef]
- Gupta, P.; Balyan, H.S.; Sharma, P.P. Catalogue of gene symbols for wheat: 2022 Supplement. In Annual Wheat Newsletter; Raupp, W.J., Ed.; Wheat Genetic and Genomic Resources Center, Kansas State University: Manhattan, KS, USA, 2022; Volume 68, pp. 68–81. [Google Scholar]
- Li, Y.; Wei, Z.Z.; Sela, H.; Govta, L.; Klymiuk, V.; Roychowdhury, R.; Chawla, H.S.; Ens, J.; Wiebe, K.; Bocharova, V.; et al. Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69. Plant Commun. 2023, 4, 100646. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.W.; Cao, Q.; Han, D.J.; Wu, J.H.; Tong, J.Y. Molecular characterization and validation of adult-plant stripe rust resistance gene Yr86 in Chinese wheat cultivar Zhongmai 895. Theor. Appl. Genet. 2023, 136, 142. [Google Scholar] [CrossRef] [PubMed]
- Spetsov, P.; Daskalova, N. Resistance to pathogens in wheat-rye and triticale genetic stocks. J. Plant Pathol. 2022, 104, 99–114. [Google Scholar] [CrossRef]
- Lukaszewski, A.; Gustafson, J. Cytogenetics of Triticale. In Plant Breeding Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1987; Volume 5, pp. 41–93. [Google Scholar]
- Mergoum, M.; Singh, P.K.; Peña, R.J.; Lozano-del Río, A.J.; Cooper, K.V.; Salmon, D.F.; Gómez Macpherson, H. Triticale: A “new” crop with old challenges. In Cereals, Handbook of Plant Breeding; Carena, M.J., Ed.; Springer: New York, NY, USA, 2009; Volume 3, pp. 267–287. [Google Scholar] [CrossRef]
- Lukaszewski, A.J.; Gustafson, J.P. Translocations and modifications of chromosomes in triticale × wheat hybrids. Theor. Appl. Genet. 1983, 64, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, H.S.; Bona, L.; Graf, R.J. Triticale breeding-progress and prospect. In Triticale; Eudes, F., Ed.; Springer: Cham, Switzerland, 2015; pp. 15–32. [Google Scholar] [CrossRef]
- Moskal, K.; Kowalik, S.; Podyma, W.; Łapinski, B.; Boczkowska, M. The pros and cons of rye chromatin introgression into wheat genome. Agronomy 2021, 11, 456. [Google Scholar] [CrossRef]
- Friebe, B.; Larter, E.N. Identification of a complete set of isogenic wheat/rye D-genome substitution lines by means of Giemsa C-banding. Theor. Appl. Genet. 1988, 76, 473–479. [Google Scholar] [CrossRef]
- Asiedu, R.; Fisher, J.M.; Driscoll, C.J. Resistance to Heterodera avenae in the rye genome of triticale. Theor. Appl. Genet. 1990, 79, 331–336. [Google Scholar] [CrossRef]
- Crespo-Herrera, L.A.; Garkava-Gustavsson, L.; Åhman, I. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas 2017, 154, 14. [Google Scholar] [CrossRef]
- Li, J.B.; Dundas, I.; Dong, C.M.; Li, G.R.; Trethowan, R.; Yang, Z.J. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor. Appl. Genet. 2020, 133, 1095–1107. [Google Scholar] [CrossRef]
- Li, G.R.; Li, J.B.; Zhang, Y.; Ma, Q.; Yang, E.; Zhang, P.; Dundas, I.; Yang, Z. Molecular and cytogenetic dissection of stripe rust resistance gene Yr83 from rye 6R and generation of resistant germplasm in wheat breeding. Front. Plant Sci. 2022, 13, 1035784. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Song, Q.H.; Zhang, H.J.; Yang, Z.J.; Hu, Y.G. Molecular cytogenetic characterization and phenotypic evaluation of new wheat-rye lines derived from hexaploid triticale ‘Certa’ × common wheat hybrids. Plant Breed. 2017, 136, 809–819. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.H.; Cao, L.R.; Liu, P.Y.; Xie, C.J. Simultaneous transfer of leaf rust and powdery mildew resistance genes from hexaploid triticale cultivar Sorento into bread wheat. Front. Plant Sci. 2018, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Sestili, F.; Margiotta, B.; Vaccino, P.; Moscaritolo, S.; Giorgi, D.; Lucretti, S.; Palombieri, S.; Masci, S.; Lafiandra, D. A cross between bread wheat and a 2D(2R) disomic substitution triticale line leads to the formation of a novel disomic addition line and provides information of the role of rye secalins on breadmaking characteristics. Int. J. Mol. Sci. 2020, 21, 8450. [Google Scholar] [CrossRef] [PubMed]
- Han, G.H.; Li, H.W.; Cao, L.J.; An, D.G. A novel wheat-rye 2R (2D) disomic substitution line pyramids two types of resistance to powdery mildew. Plant Dis. 2022, 106, 2433–2440. [Google Scholar] [CrossRef]
- Pattison, A.L.; Trethowan, R.M. Characteristics of modern triticale quality: Commercially significant flour traits and cookie quality. Crop Pasture Sci. 2013, 64, 874–880. [Google Scholar] [CrossRef]
- Dennett, A.L.; Cooper, K.V.; Trethowan, R.M. The genotypic and phenotypic interaction of wheat and rye storage proteins in primary triticale. Euphytica 2013, 194, 235–242. [Google Scholar] [CrossRef]
- Fu, S.L.; Chen, L.; Wang, Y.Y.; Li, M.; Yang, Z.J.; Qiu, L. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci. Rep. 2015, 5, 10552. [Google Scholar] [CrossRef]
- Wang, H.J.; Yu, Z.H.; Li, G.R.; Yang, Z.J. Diversified chromosome rearrangements detected in a wheat-Dasypyrum breviaristatum substitution line induced by gamma-ray irradiation. Plants 2019, 8, 175. [Google Scholar] [CrossRef]
- Tang, Z.X.; Li, M.; Chen, L.; Fu, S.L. New types of wheat chromosomal structural variations in derivatives of wheat-rye hybrids. PLoS ONE 2014, 9, e110282. [Google Scholar] [CrossRef]
- Xiong, Z.; Luo, J.; Zou, Y.; Tang, Q.; Fu, S.; Tang, Z. The different subtelomeric structure among 1RS arms in wheat-rye 1BL.1RS translocations affecting their meiotic recombination and inducing their structural variation. BMC Genom. 2023, 24, 455. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.L.; Yang, M.Y.; Ren, Z.L.; Yan, B.J.; Tang, Z.X. Abnormal mitosis induced by wheat–rye 1R monosomic addition lines. Genome 2014, 57, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Qiu, L.; Xiao, Z.; Fu, S.; Tang, Z. New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes 2016, 7, 118. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liao, R.Y.; Duan, Y.L.; Fu, S.L.; Tang, Z.X. Variations of subtelomeric tandem repeats and rDNA on chromosome 1RS arms in the genus Secale and 1BL.1RS translocations. BMC Plant Biol. 2022, 22, 212. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.L.; Lv, Z.L.; Guo, X.; Zhang, X.Q.; Han, F.P. Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids. J. Genet. Genom. 2013, 40, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, J.; Fu, S.L.; Wang, L.; Li, H.W.; Wang, M.; Han, F.P. Establishment of a set of wheat-rye addition lines with resistance to stem rust. Theor. Appl. Genet. 2022, 135, 2469–2480. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Tang, Z.X.; Li, M.; Fu, S.L. Development of new PCR-based markers specific for chromosome arms of rye (Secale cereale L.). Genome 2016, 59, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.D.; Wei, X.; Xiao, J.; Yuan, C.X.; Wang, H.Y. Whole genome development of intron targeting (IT) markers specific for Dasypyrum villosum chromosomes based on next-generation sequencing technology. Mol. Breed. 2017, 37, 115. [Google Scholar] [CrossRef]
- Rabanus-Wallace, M.T.; Hackauf, B.; Mascher, M.; Lux, T.; Wicker, T.; Gundlach, H. Chromosome-scale genome assembly provides insights into rye biology, evolution, and agronomic potential. Nat. Genet. 2021, 53, 564–573. [Google Scholar] [CrossRef]
- Lukaszewski, A.J. Introgressions Between Wheat and Rye. In Alien Introgression in Wheat; Molnár-Láng, M., Ceoloni, C., Eds.; Springer: Cham, Switzerland, 2015; pp. 163–189. [Google Scholar] [CrossRef]
- Hao, M.; Liu, M.; Luo, J.T.; Fan, C.L.; Yi, Y.J.; Zhang, L.Q. Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front. Plant Sci. 2018, 9, 1040. [Google Scholar] [CrossRef]
- Ren, T.H.; Sun, Z.X.; Ren, Z.L.; Li, Z. Molecular and cytogenetic characterization of a wheat-rye 7BS.7RL translocation line with resistance to stripe rust, powdery mildew, and Fusarium head blight. Phytopathology 2020, 110, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Badaeva, E.D.; Dedkova, O.S.; Gay, G. Chromosomal rearrangements in wheat: Their types and distribution. Genome 2007, 50, 907–926. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J. Fluorescence in situ hybridization in plants: Recent developments and future applications. Chromosome Res. 2019, 27, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Li, G.R.; Zhang, T.; Yu, Z.H.; Wang, H.J.; Yang, E.N.; Yang, Z.J. An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J. 2020, 105, 978–993. [Google Scholar] [CrossRef] [PubMed]
- Lang, T.; La, S.X.; Li, B.; Yu, Z.H.; Chen, Q.H.; Li, J.B.; Yang, E.N.; Li, G.R.; Yang, Z.J. Precise identification of wheat-Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome 2018, 61, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Pattison, A.L. Genetic Improvement of Grain Quality for Bread Making in Triticale. Ph.D. Thesis, University of Sydney, Sydney, Australia, 2014. [Google Scholar]
- Dennett, A.L.; Wilkes, M.A.; Trethowan, R.M. Characteristics of modern Triticale quality: The relationship between carbohydrate properties, α-Amylase activity, and falling number. Cereal. Chem. 2013, 90, 594–600. [Google Scholar] [CrossRef]
- Han, F.P.; Lamb, J.C.; Birchler, A. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc. Natl. Acad. Sci. USA 2006, 103, 3238–3243. [Google Scholar] [CrossRef]
- Lang, T.; Li, G.R.; Wang, H.J.; Yu, Z.H.; Chen, Q.H.; Yang, E.N.; Fu, S.; Tang, Z.; Yang, Z. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta 2019, 249, 663–675. [Google Scholar] [CrossRef]
- Li, G.R.; Yang, Z.J. Oligo-FISH paints in Triticeae. Curr. Protoc. 2022, 2, e364. [Google Scholar] [CrossRef]
- Li, M.; Tang, Z.; Qiu, L.; Wang, Y.; Tang, S.; Fu, S. Identification and physical mapping of new PCR-based markers specific for the long arm of rye (Secale cereale L.) chromosome 6. J. Genet. Genom. 2016, 43, 199–206. [Google Scholar] [CrossRef]
- International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef]
Lines | PH (cm) | TPP | SL | TKW (g) | GPC | Test Weight | WGC (%) | GH | ZEL (mL) | ST |
---|---|---|---|---|---|---|---|---|---|---|
Yukuri | 124.7 | 23.6 | 21.8 | 47.1 | 15.0 | 759 | 34.4 | 52 | 33.9 | 1.3 |
MY11 | 76.7 | 9.1 | 9.7 | 30.2 | 14.4 | 728 | 34.6 | 51 | 45.3 | 1.6 |
1R | 116.0 * | 35.8 * | 14.5 | 39.5 | 19.9 * | 730 | 45.4 * | 50 | 78.8 * | 3.6 |
2R | 122.9 * | 19.6 * | 11.4 | 35.6 | 16.1 | 740 | 38.1 | 61 * | 55.4 | 5.1 * |
3R | 74.83 | 11.3 | 10.7 | 28.7 | 17.7 | 712 | 40.8 | 51 | 69.1 * | 1.2 |
5R | 88.2 | 16.2 | 14.6 | 54.0 * | 17.0 | 768 * | 39.4 | 55 | 42.7 * | 3.9 |
6R | 107.6 | 18.9 * | 16.4 | 39.4 | 18.3 * | 762 * | 41.8 | 54 | 57.6 | 5.0 * |
7R | 78.33 | 11.9 | 13.7 | 34.9 | 18.0 * | 685 | 42.0 | 42 * | 67.5 | 0.5 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Li, G.; Jiang, C.; Zhou, Y.; Yang, E.; Li, J.; Zhang, P.; Dundas, I.; Yang, Z. Development of a Set of Wheat-Rye Derivative Lines from Hexaploid Triticale with Complex Chromosomal Rearrangements to Improve Disease Resistance, Agronomic and Quality Traits of Wheat. Plants 2023, 12, 3885. https://doi.org/10.3390/plants12223885
Wang T, Li G, Jiang C, Zhou Y, Yang E, Li J, Zhang P, Dundas I, Yang Z. Development of a Set of Wheat-Rye Derivative Lines from Hexaploid Triticale with Complex Chromosomal Rearrangements to Improve Disease Resistance, Agronomic and Quality Traits of Wheat. Plants. 2023; 12(22):3885. https://doi.org/10.3390/plants12223885
Chicago/Turabian StyleWang, Tingting, Guangrong Li, Chengzhi Jiang, Yuwei Zhou, Ennian Yang, Jianbo Li, Peng Zhang, Ian Dundas, and Zujun Yang. 2023. "Development of a Set of Wheat-Rye Derivative Lines from Hexaploid Triticale with Complex Chromosomal Rearrangements to Improve Disease Resistance, Agronomic and Quality Traits of Wheat" Plants 12, no. 22: 3885. https://doi.org/10.3390/plants12223885
APA StyleWang, T., Li, G., Jiang, C., Zhou, Y., Yang, E., Li, J., Zhang, P., Dundas, I., & Yang, Z. (2023). Development of a Set of Wheat-Rye Derivative Lines from Hexaploid Triticale with Complex Chromosomal Rearrangements to Improve Disease Resistance, Agronomic and Quality Traits of Wheat. Plants, 12(22), 3885. https://doi.org/10.3390/plants12223885