Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management
Abstract
:1. Introduction
2. Understanding the Mechanism of CRISPR-Cas System
3. Potentiality of Revolutionizing Pest Management Using CRISPR-Cas Genome Editing
3.1. Precision CRISPR/Cas-Mediated Genome Editing at the Insect Level
3.1.1. CRISPR/Cas-Mediated Genome Editing in Lepidopteran Insects
3.1.2. CRISPR/Cas-Mediated Genome Editing in Dipteran Insects
3.1.3. CRISPR/Cas-Mediated Genome Editing in Hemipteran Insects
3.1.4. CRISPR/Cas-Mediated Genome Editing in Coleopteran Insects
3.1.5. CRISPR/Cas-Mediated Genome Editing in Orthopteran Insects
3.1.6. CRISPR/Cas-Mediated Genome Editing in Hymenopteran Insects
3.2. Precision CRISPR/Cas-Mediated Genome Editing at the Crop Plant Level
3.3. Exploiting Crop Wild Relatives for Insect Resistance via CRISPR-Cas Technology
4. Limitations, Future Perspectives and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahanta, D.K.; Komal, J.; Samal, I.; Bhoi, T.K.; Dubey, V.K.; Pradhan, K.; Nekkanti, A.; Gouda, M.N.R.; Saini, V.; Negi, N.; et al. Nutritional Aspects and Dietary Benefits of “Silkworms”: Current Scenario and Future Outlook. Front. Nutr. 2023, 10, 1121508. [Google Scholar] [CrossRef] [PubMed]
- Mahanta, D.K.; Bhoi, T.K.; Komal, J.; Samal, I.; Nikhil, R.M.; Paschapur, A.U.; Singh, G.; Kumar, P.V.D.; Desai, H.R.; Ahmad, M.A.; et al. Insect-Pathogen Crosstalk and the Cellular-Molecular Mechanisms of Insect Immunity: Uncovering the Underlying Signaling Pathways and Immune Regulatory Function of Non-coding RNAs. Front. Immunol. 2023, 14, 1169152. [Google Scholar] [CrossRef]
- Bhoi, T.K.; Samal, I.; Majhi, P.K.; Komal, J.; Mahanta, D.K.; Pradhan, A.K.; Saini, V.; Raj, M.N.; Ahmad, M.A.; Behera, P.P.; et al. Insight into Aphid Mediated Potato Virus Y Transmission: A Molecular to Bioinformatics Prospective. Front. Microbiol. 2022, 13, 1001454. [Google Scholar] [CrossRef] [PubMed]
- Mahanta, D.K.; Jangra, S.; Priti; Ghosh, A.; Sharma, P.K.; Iquebal, M.A.; Jaiswal, S.; Baranwal, V.K.; Kalia, V.K.; Chander, S. Groundnut Bud Necrosis Virus Modulates the Expression of Innate Immune, Endocytosis, and Cuticle Development-Associated Genes to Circulate and Propagate in Its Vector, Thrips palmi. Front. Microbiol. 2022, 13, 773238. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bhoi, T.K.; Majhi, P.K.; Vyas, V.; Singh, I.; Khan, I.; Rathi, A. Emergent Tools and Techniques in Diagnosis of Soil-Borne Phytopathogens. In Detection, Diagnosis and Management of Soil-Borne Phytopathogens; Springer: Singapore, 2023; pp. 41–66. [Google Scholar]
- Karmakar, S.; Das, P.; Panda, D.; Xie, K.; Baig, M.J.; Molla, K.A. A Detailed Landscape of CRISPR-Cas-Mediated Plant Disease and Pest Management. Plant Sci. 2022, 323, 111376. [Google Scholar] [CrossRef] [PubMed]
- Samal, I.; Bhoi, T.K.; Majhi, P.K.; Murmu, S.; Pradhan, A.K.; Kumar, D.; Saini, V.; Paschapur, A.U.; Raj, M.N.; Ankur; et al. Combatting Insects Mediated Biotic Stress Through Plant Associated Endophytic Entomopathogenic Fungi in Horticultural Crops. Front. Plant Sci. 2023, 13, 1098673. [Google Scholar] [CrossRef]
- Bhoi, T.K.; Samal, I.; Mahanta, D.K.; Komal, J.; Jinger, D.; Sahoo, M.R.; Achary, G.C.; Nayak, P.; Sunani, S.K.; Saini, V.; et al. Understanding How Silicon Fertilization Impacts Chemical Ecology and Multitrophic Interactions Among Plants, Insects and Beneficial Arthropods. Silicon 2022, 15, 2529–2549. [Google Scholar] [CrossRef]
- Singh, S.; Rahangdale, S.; Pandita, S.; Saxena, G.; Upadhyay, S.K.; Mishra, G.; Verma, P.C. CRISPR/Cas9 for Insect Pests Management: A Comprehensive Review of Advances and Applications. Agriculture 2022, 12, 1896. [Google Scholar] [CrossRef]
- FAOSTAT. The State of Food Security and Nutrition in the World; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Majhi, P.K.; Raza, B.; Behera, P.P.; Singh, S.K.; Shiv, A.; Mogali, S.C.; Bhoi, T.K.; Patra, B.; Behera, B. Future-Proofing Plants Against Climate Change: A Path to Ensure Sustainable Food Systems. In Biodiversity, Functional Ecosystems and Sustainable Food Production; Springer International Publishing: Cham, Switzerland, 2022; pp. 73–116. [Google Scholar]
- Farooq, A.; Farooq, N.; Akbar, H.; Hassan, Z.U.; Gheewala, S.H. A Critical Review of Climate Change Impact at a Global Scale on Cereal Crop Production. Agronomy 2023, 13, 162. [Google Scholar] [CrossRef]
- Sun, D.; Guo, Z.; Liu, Y.; Zhang, Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Front. Physiol. 2017, 8, 608. [Google Scholar] [CrossRef]
- Ijaz, M.; Khan, F.; Zaki, H.E.M.; Khan, M.M.; Radwan, K.S.A.; Jiang, Y.; Qian, J.; Ahmed, T.; Shahid, M.S.; Luo, J.; et al. Recent Trends and Advancements in CRISPR-Based Tools for Enhancing Resistance Against Plant Pathogens. Plants 2023, 12, 1911. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M. Plant Breeding Advancements with “CRISPR-Cas” Genome Editing Technologies Will Assist Future Food Security. Front. Plant Sci. 2023, 14, 1133036. [Google Scholar] [CrossRef] [PubMed]
- Zsögön, A.; Peres, L.E.P.; Xiao, Y.; Yan, J.; Fernie, A.R. Enhancing Crop Diversity for Food Security in the Face of Climate Uncertainty. Plant J. 2021, 109, 402–414. [Google Scholar] [CrossRef]
- Gulfishan, M.; Bhat, T.A.; Mir, R.A.; Jahan, A.; Shabir, F.; Khan, S.A. Plant Mutagenesis: Terms and Applications. In Biotechnologies and Genetics in Plant Mutation Breeding: Volume 2: Revolutionizing Plant Biology; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Hemalatha, P.; Abda, E.M.; Shah, S.; Prabhu, S.V.; Jayakumar, M.; Karmegam, N.; Kim, W.; Govarthanan, M. Multi-faceted CRISPR-Cas9 Strategy to Reduce Plant Based Food Loss and Waste for Sustainable Bio-economy—A Review. J. Environ. Manag. 2023, 332, 117382. [Google Scholar] [CrossRef] [PubMed]
- i5K Consortium. The i5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment. J. Hered. 2013, 104, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Majhi, P.K.; Bhoi, T.K.; Sahoo, K.C.; Mishra, N.; Tudu, S.; Das, S.; Ray, M.; Singh, S.; Samal, I.; Behera, P.P.; et al. Understanding the Genetics and Genomics of Vegetable Grafting to Ensure Yield Stability. In Smart Plant Breeding for Vegetable Crops in Post-genomics Era; Springer: Singapore, 2023; pp. 69–98. [Google Scholar]
- Thomas, G.W.C.; Dohmen, E.; Hughes, D.S.T.; Murali, S.C.; Poelchau, M.; Glastad, K.; Anstead, C.A.; Ayoub, N.A.; Batterham, P.; Bellair, M.; et al. Gene Content Evolution in the Arthropods. Genome Biol. 2020, 21, 15. [Google Scholar] [CrossRef] [PubMed]
- Menz, J.; Modrzejewski, D.; Hartung, F.; Wilhelm, R.; Sprink, T. Genome Edited Crops Touch the Market: A View on the Global Development and Regulatory Environment. Front. Plant Sci. 2020, 11, 586027. [Google Scholar] [CrossRef]
- Maeder, M.L.; Gersbach, C.A. Genome-Editing Technologies for Gene and Cell Therapy. Mol. Ther. 2016, 24, 430–446. [Google Scholar] [CrossRef]
- Sufyan, M.; Daraz, U.; Hyder, S.; Zulfiqar, U.; Iqbal, R.; Eldin, S.M.; Rafiq, F.; Mahmood, N.; Shahzad, K.; Uzair, M.; et al. An Overview of Genome Engineering in Plants, Including Its Scope, Technologies, Progress and Grand Challenges. Funct. Integr. Genom. 2023, 23, 119. [Google Scholar] [CrossRef]
- Ali, A.; Zafar, M.M.; Farooq, Z.; Ahmed, S.R.; Ijaz, A.; Anwar, Z.; Abbas, H.; Tariq, M.S.; Tariq, H.; Mustafa, M.; et al. Breakthrough in CRISPR/Cas System: Current and Future Directions and Challenges. Biotechnol. J. 2023, 18, e2200642. [Google Scholar] [CrossRef]
- Gao, C. Genome Engineering for Crop Improvement and Future Agriculture. Cell 2021, 184, 1621–1635. [Google Scholar] [CrossRef]
- Moon, T.T.; Maliha, I.J.; Khan, A.A.M.; Chakraborty, M.; Uddin, M.S.; Amin, M.R.; Islam, T. CRISPR-Cas Genome Editing for Insect Pest Stress Management in Crop Plants. Stresses 2022, 2, 493–514. [Google Scholar] [CrossRef]
- Lengai, G.M.W.; Muthomi, J.W.; Mbega, E.R. Phytochemical Activity and Role of Botanical Pesticides in Pest Management for Sustainable Agricultural Crop Production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Gantz, V.M.; Akbari, O.S. Gene Editing Technologies and Applications for Insects. Curr. Opin. Insect Sci. 2018, 28, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, Y.; Qi, H.; Cui, W.; Zhang, L.; Fu, X.; He, X.; Liu, M.; Li, P.F.; Yu, T. CRISPR/Cas9 Therapeutics: Progress and Prospects. Signal Transduct. Target. Ther. 2023, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Pu, A.; Liu, Q.; Hou, Q.; Zhang, Y.; An, X.; Long, Y.; Jiang, Y.; Dong, Z.; Wu, S.; et al. The Bibliometric Landscape of Gene Editing Innovation and Regulation in the Worldwide. Cells 2022, 11, 2682. [Google Scholar] [CrossRef] [PubMed]
- Nobel Media AB. The Nobel Prize in Chemistry. NobelPrize.org. 2020. Available online: https://www.nobelprize.org/prizes/chemistry/2020/summary/Retrieved (accessed on 15 November 2022).
- Hillary, V.E.; Ceasar, S.A. A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering. Mol. Biotechnol. 2023, 65, 311–325. [Google Scholar] [CrossRef]
- Sichani, A.S.; Ranjbar, M.; Baneshi, M.; Zadeh, F.T.; Fallahi, J. Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing. Mol. Biotechnol. 2023, 65, 849–860. [Google Scholar] [CrossRef]
- Molla, K.A.; Karmakar, S.; Islam, M.T. Wide Horizons of CRISPR-Cas-Derived Technologies for Basic Biology, Agriculture, and Medicine. In CRISPR-Cas Methods, 1st ed.; Bhowmik, P.K., Molla, K.A., Eds.; Humana Press: Totowa, NJ, USA, 2020; pp. 1–23. [Google Scholar] [CrossRef]
- Zuo, Y.; Xue, Y.; Lu, W.; Ma, H.; Chen, M.; Wu, Y.; Yang, Y.; Hu, Z. Functional Validation of Nicotinic Acetylcholine Receptor (nAChR) α6as a Target of Spinosyns in Spodoptera exigua Utilizing the CRISPR/Cas9 System. Pest Manag. Sci. 2020, 76, 2415–2422. [Google Scholar] [CrossRef]
- Marraffini, L.A. The CRISPR-Cas System of Streptococcus pyogenes: Function and Applications. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestation, 1st ed.; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. [Google Scholar]
- Yin, K.Q.; Gao, C.X.; Qiu, J.L. Progress and Prospects in Plant Genome Editing. Nat. Plants 2017, 3, 17107. [Google Scholar] [CrossRef]
- Sustek-Sánchez, F.; Rognli, O.A.; Rostoks, N.; Sõmera, M.; Jaškūnė, K.; Kovi, M.R.; Statkevičiūtė, G.; Sarmiento, C. Improving Abiotic Stress Tolerance of Forage Grasses–Prospects of Using Genome Editing. Front. Plant Sci. 2023, 14, 1127532. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Kumar, A.; Partap, M.; Thakur, M.; Bhargava, B. CRISPR-Cas: A Robust Technology for Enhancing Consumer-Preferred Commercial Traits in Crops. Front. Plant Sci. 2023, 14, 1122940. [Google Scholar] [CrossRef] [PubMed]
- Marone, D.; Mastrangelo, A.M.; Borrelli, G.M. From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues. Int. J. Mol. Sci. 2023, 24, 7122. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, D.; Reddy, J. A Novel Genetic Approach in Management of Insect Pests. 2023, Volume 1, pp. 1–16. Available online: https://www.researchgate.net/profile/Dhanapati-Keerthana-2/publication/370497841_Chapter_-1_A_Novel_Genetic_Approach_in_Management_of_Insect_Pests_Chapter_-1_A_Novel_Genetic_Approach_in_Management_of_Insect_Pests/links/645370c35762c95ac36fa513/Chapter-1-A-Novel-Genetic-Approach-in-Management-of-Insect-Pests-Chapter-1-A-Novel-Genetic-Approach-in-Management-of-Insect-Pests.pdf (accessed on 18 November 2023).
- Ullah, F.; Gul, H.; Abbas, A.; Hafeez, M.; Desneux, N.; Li, Z. Genome Editing in Crops to Control Insect Pests. In Sustainable Agriculture in the Era of the OMICs Revolution; Springer International Publishing: Cham, Switzerland, 2023; pp. 297–313. [Google Scholar]
- Wang, G.; Dong, Y.; Liu, X.; Yao, G.; Yu, X.; Yang, M. The Current Status and Development of Insect-Resistant Genetically Engineered Poplar in China. Front. Plant Sci. 2018, 9, 1408. [Google Scholar] [CrossRef] [PubMed]
- Bisht, D.S.; Bhatia, V.; Bhattacharya, R. Improving Plant-Resistance to Insect-Pests and Pathogens: The New Opportunities Through Targeted Genome Editing. Semin. Cell Dev. Biol. 2019, 96, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, G.; Zhu, Y.-N.; Xiang, W.W.H. Advances and Perspectives in the Application of CRISPR/Cas9 in Insects. Zool. Res. 2016, 37, 136. [Google Scholar]
- Bortesi, L.; Fischer, R. The CRISPR/Cas9 System for Plant Genome Editing and Beyond. Biotechnol. Adv. 2015, 33, 41–52. [Google Scholar] [CrossRef]
- Zong, Y.; Wang, Y.; Li, C.; Zhang, R.; Chen, K.; Ran, Y.; Qiu, J.L.; Wang, D.; Gao, C. Precise Base Editing in Rice, Wheat and Maize with a Cas9-Cytidine Deaminase Fusion. Nat. Biotechnol. 2017, 35, 438–440. [Google Scholar] [CrossRef]
- Mao, Y.; Botella, J.R.; Zhu, J.K. Heritability of Targeted Gene Modifications Induced by Plant-Optimized CRISPR Systems. Cell. Mol. Life Sci. 2017, 74, 1075–1093. [Google Scholar] [CrossRef]
- Char, S.N.; Neelakandan, A.K.; Nahampun, H.; Frame, B.; Main, M.; Spalding, M.H.; Becraft, P.W.; Meyers, B.C.; Walbot, V.; Wang, K.; et al. An Agrobacterium-Delivered CRISPR/Cas9 System for High-Frequency Targeted Mutagenesis in Maize. Plant Biotechnol. J. 2017, 15, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Mir, A.; Alterman, J.F.; Hassler, M.R.; Debacker, A.J.; Hudgens, E.; Echeverria, D.; Brodsky, M.H.; Khvorova, A.; Watts, J.K.; Sontheimer, E.J. Heavily and Fully Modified RNAs Guide Efficient SpyCas9-Mediated Genome Editing. Nat. Commun. 2018, 9, 2641. [Google Scholar] [CrossRef] [PubMed]
- Schetelig, M.F.; Targovska, A.; Meza, J.S.; Bourtzis, K.; Handler, A.M. Tetracycline-Suppressible Female Lethality and Sterility in the Mexican Fruit Fly, Anastrepha ludens. Insect Mol. Biol. 2016, 5, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.A.; Hammad, M.; Ahmad, A.; Altenbuchner, J.; Ali, H. Delivery Methods, Resources and Design Tools in CRISPR/Cas. In CRISPR Crops: The Future of Food Security; Springer: Singapore, 2021; pp. 63–116. [Google Scholar]
- Rajaei, H.; Hausmann, A.; Scoble, M.; Wanke, D.; Plotkin, D.; Brehm, G.; Murillo-Ramos, L.; Sihvonen, P. An Online Taxonomic Facility of Geometridae (Lepidoptera), with an Overview of Global Species Richness and Systematics. Integr. Syst. Stuttg. Contrib. Nat. Hist. 2022, 5, 145–192. [Google Scholar] [CrossRef]
- Fortuna, T.M.; Le Gall, P.; Mezdour, S.; Calatayud, P.A. Impact of Invasive Insects on Native Insect Communities. Curr. Opin. Insect Sci. 2022, 51, 100904. [Google Scholar] [CrossRef] [PubMed]
- Gajger, I.T.; Dar, S.A. Plant Allelochemicals as Sources of Insecticides. Insects 2021, 12, 189. [Google Scholar] [CrossRef] [PubMed]
- Kolliopoulou, A.; Swevers, L. Recent Progress in RNAi Research in Lepidoptera: Intracellular Machinery, Antiviral Immune Response and Prospects for Insect Pest Control. Curr. Opin. Insect Sci. 2014, 6, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Shi, Y.; Wu, J.N.; Li, H.; Smagghe, G.; Liu, T.X. CRISPR/Cas9 in Lepidopteran Insects: Progress, Application and Prospects. J. Insect Physiol. 2021, 135, 104325. [Google Scholar] [CrossRef]
- Jing, X.; Behmer, S.T. Insect Sterol Nutrition: Physiological Mechanisms, Ecology, and Applications. Annu. Rev. Entomol. 2020, 65, 251–271. [Google Scholar] [CrossRef]
- Li, S.; Jing, X. Fates of Dietary Sterols in the Insect Alimentary Canal. Curr. Opin. Insect Sci. 2020, 41, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yue, X.; Kuang, W.; Li, S.; Tang, R.; Zhang, Z.; Kurban, A.; Rehman, S.U.; Zhao, C.; Liu, T.; et al. NPC1b as a Novel Target in Controlling the Cotton Bollworm, Helicoverpa armigera. Pest Manag. Sci. 2020, 76, 2233–2242. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Wang, H.; Zhao, S.; Zuo, Y.; Yang, Y.; Wu, Y. Functional Validation of Cadherin as a Receptor of Bt Toxin Cry1Ac in Helicoverpa armigera Utilizing the CRISPR/Cas9 System. Insect Biochem. Mol. Biol. 2016, 76, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Liu, Y.; Ai, D.; Jiang, X.; Dong, S.; Wang, G. A Pheromone Antagonist Regulates Optimal Mating Time in the Moth Helicoverpa armigera. Curr. Biol. 2017, 27, 1610–1615.e3. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, H.; Liu, S.; Liu, L.; Tay, W.T.; Walsh, T.K.; Yang, Y.; Wu, Y. CRISPR/Cas9 Mediated Genome Editing of Helicoverpa armigera with Mutations of an ABC Transporter Gene HaABCA2 Confers Resistance to Bacillus thuringiensis Cry2A Toxins. Insect Biochem. Mol. Biol. 2017, 87, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Reichelt, M.; Heckel, D.G. Functional Analysis of the ABCs of Eye Color in Helicoverpa armigera with CRISPR/Cas9-Induced Mutations. Sci. Rep. 2017, 7, 40025. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shi, Y.; Wang, L.; Liu, S.; Wu, S.; Yang, Y.; Feyereisen, R.; Wu, Y. CYP6AE Gene Cluster Knockout in Helicoverpa armigera Reveals Role in Detoxification of Phytochemicals and Insecticides. Nat. Commun. 2018, 9, 4820. [Google Scholar] [CrossRef]
- Bi, H.-L.; Xu, J.; Tan, A.-J.; Huang, Y.-P. CRISPR/Cas9-Mediated Targeted Gene Mutagenesis in Spodoptera litura. Insect Sci. 2016, 23, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.-H.; Peng, Y.-C.; Zheng, M.-Y.; Zhang, X.-Q.; Sun, J.-B.; Huang, Y.; Dong, S.-L. CRISPR/Cas9 Mediated BLOS2 Knockout Resulting in Disappearance of Yellow Strips and White Spots on the Larval Integument in Spodoptera litura. J. Insect Physiol. 2017, 103, 29–35. [Google Scholar] [CrossRef]
- Singh, S.; Mishra, V.K.; Bhoi, T.K. Insect Molecular Markers and Its Utility-A Review. Int. J. Agric. Environ. Biotechnol. 2017, 10, 469–479. [Google Scholar] [CrossRef]
- Zhu, G.-H.; Xu, J.; Cui, Z.; Dong, X.-T.; Ye, Z.-F.; Niu, D.-J.; Huang, Y.-P.; Dong, S.-L. Functional Characterization of SlitPBP3 in Spodoptera litura by CRISPR/Cas9 Mediated Genome Editing. Insect Biochem. Mol. Biol. 2016, 75, 1–9. [Google Scholar] [CrossRef]
- Koutroumpa, F.A.; Monsempes, C.; François, M.-C.; de Cian, A.; Royer, C.; Concordet, J.-P.; Jacquin-Joly, E. Heritable Genome Editing with CRISPR/Cas9 Induces Anosmia in a Crop Pest Moth. Sci. Rep. 2016, 6, 29620. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Demaeght, P.; Osborne, E.J.; Dermauw, W.; Gohlke, S.; Nauen, R.; Grbić, M.; Tirry, L.; Merzendorfer, H.; Clark, R.M. Population Bulk Segregant Mapping Uncovers Resistance Mutations and the Mode of Action of a Chitin Synthesis Inhibitor in Arthropods. Proc. Natl. Acad. Sci. USA 2012, 109, 4407–4412. [Google Scholar] [CrossRef]
- Douris, V.; Steinbach, D.; Panteleri, R.; Livadaras, I.; Pickett, J.A.; Van Leeuwen, T.; Nauen, R.; Vontas, J. Resistance Mutation Conserved Between Insects and Mites Unravels the Benzoylurea Insecticide Mode of Action on Chitin Biosynthesis. Proc. Natl. Acad. Sci. USA 2016, 113, 14692–14697. [Google Scholar] [CrossRef]
- Garczynski, S.F.; Martin, J.A.; Griset, M.; Willett, L.S.; Cooper, W.R.; Swisher, K.D.; Unruh, T.R. CRISPR/Cas9 Editing of the Codling Moth (Lepidoptera: Tortricidae) CpomOR1 Gene Affects Egg Production and Viability. J. Econ. Entomol. 2017, 110, 1847–1855. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Bi, H.; Wang, Y.; Li, X.; Chen, X.; Li, Z. CRISPR/Cas9-Based Mutation Reveals Argonaute 1 Is Essential for Pigmentation in Ostrinia furnacalis. Insect Sci. 2019, 26, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Gratz, S.J.; Cummings, A.M.; Nguyen, J.N.; Hamm, D.C.; Donohue, L.K.; Harrison, M.M.; Wildonger, J.; O’connor-Giles, K.M. Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease. Genetics 2013, 194, 1029–1035. [Google Scholar] [CrossRef]
- Gantz, V.M.; Bier, E. Genome Editing. The Mutagenic Chain Reaction: A Method for Converting Heterozygous to Homozygous Mutations. Science 2015, 348, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Scott, M.J. CRISPR/Cas9-Mediated Mutagenesis of the White and Sex Lethal Loci in the Invasive Pest, Drosophila suzukii. Biochem. Biophys. Res. Commun. 2016, 469, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.; Sato-Miyata, Y.; Tsuda, M.; Muramatsu, K.; Asano, T.; Takeo, S.; Aigaki, T. Deficiency of Succinyl-CoA Synthetase Alpha Subunit Delays Development, Impairs Locomotor Activity and Reduces Survival Under Starvation in Drosophila. Biochem. Biophys. Res. Commun. 2017, 483, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-García, P.; Hugosson, F.; Fallah, M.; Higgins, M.L.; Iwasaki, Y.; Pfeifer, K.; Wolfstetter, G.; Varshney, G.; Popichenko, D.; Gergen, J.P.; et al. The Zic Family homologue Odd-Paired Regulates Alk Expression in Drosophila. PLoS Genet. 2017, 13, e1006617. [Google Scholar] [CrossRef]
- Choo, A.; Crisp, P.; Saint, R.; O’Keefe, L.V.; Baxter, S.W. CRISPR/Cas9-Mediated Mutagenesis of the White Gene in the Tephritid Pest Bactrocera tryoni. J. Appl. Entomol. 2018, 142, 52–58. [Google Scholar] [CrossRef]
- Zhao, S.; Xing, Z.; Liu, Z.; Liu, Y.; Liu, X.; Chen, Z.; Li, J.; Yan, R. Efficient Somatic and Germline Genome Engineering of Bactrocera dorsalis by the CRISPR/Cas9 System. Pest Manag. Sci. 2019, 75, 1921–1932. [Google Scholar] [CrossRef]
- Aumann, R.A.; Schetelig, M.F.; Häcker, I. Highly Efficient Genome Editing by Homology-Directed Repair Using Cas9 Protein in Ceratitis capitata. Insect Biochem. Mol. Biol. 2018, 101, 85–93. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Xu, J.; Zeng, B.; Ling, L.; You, L.; Chen, Y.; Huang, Y.; Tan, A. The CRISPR/Cas System Mediates Efficient Genome Engineering in Bombyx mori. Cell Res. 2013, 23, 1414–1416. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, S.; Wang, X.; Chang, J.; Gao, J.; Shi, R.; Zhang, J.; Lu, W.; Liu, Y.; Zhao, P.; et al. Highly Efficient Multiplex Targeted Mutagenesis and Genomic Structure Variation in Bombyx mori Cells Using CRISPR/Cas9. Insect Biochem. Mol. Biol. 2014, 49, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Chang, J.; Wang, X.; Liu, Y.; Zhang, J.; Lu, W.; Gao, J.; Shi, R.; Zhao, P.; Xia, Q. CRISPR/Cas9 Mediated Multiplex Genome Editing and Heritable Mutagenesis of BmKu70 in Bombyx mori. Sci. Rep. 2014, 4, 4489. [Google Scholar] [CrossRef]
- Wei, W.; Xin, H.; Roy, B.; Dai, J.; Miao, Y.; Gao, G. Heritable Genome Editing with CRISPR/Cas9 in the Silkworm, Bombyx mori. PLoS ONE 2014, 9, e101210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Aslam, A.F.; Liu, X.; Li, M.; Huang, Y.; Tan, A. Functional Analysis of Bombyx Wnt1 during Embryogenesis Using the CRISPR/Cas9 System. J. Insect Physiol. 2015, 79, 73–79. [Google Scholar] [CrossRef]
- Li, X.; Fan, D.; Zhang, W.; Liu, G.; Zhang, L.; Zhao, L.; Fang, X.; Chen, L.; Dong, Y.; Chen, Y.; et al. Outbred Genome Sequencing and CRISPR/Cas9 Gene Editing in Butterflies. Nat. Commun. 2015, 6, 8212. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Mon, H.; Xu, J.; Lee, J.M.; Kusakabe, T. CRISPR/Cas9- Mediated Knockout of Factors in Non-homologous End Joining Pathway Enhances Gene Targeting in Silkworm Cells. Sci. Rep. 2015, 5, 18103. [Google Scholar] [CrossRef] [PubMed]
- Markert, M.J.; Zhang, Y.; Enuameh, M.S.; Reppert, S.M.; Wolfe, S.A.; Merlin, C. Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis. G3 2016, 6, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.Q.; Chen, T.T.; Zhang, J.; Hu, N.; Cao, M.Y.; Dong, F.F.; Jiang, Y.M.; Chen, P.; Lu, C.; Pan, M.H. Establishment of a Highly Efficient Virus-Inducible CRISPR/Cas9 System in Insect Cells. Antiviral Res. 2016, 130, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Zhan, S.; Wang, Y.; Huang, Y.; Xu, J.; Liu, Q.; Li, Z.; Huang, Y.; Tan, A. Expansion of CRISPR Targeting Sites in Bombyx mori. Insect Biochem. Mol. Biol. 2016, 72, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, W.; Zeng, B.; Wang, G.; Hao, D.; Huang, Y. Deletion of the Bombyx mori Odorant Receptor co-Receptor (BmOrco) Impairs Olfactory Sensitivity in Silkworms. Insect Biochem. Mol. Biol. 2017, 86, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Perera, O.P.; Little, N.S.; Pierce, C.A., III. CRISPR/Cas9 Mediated High Efficiency Knockout of the Eye Color Gene Vermillion in Helicoverpa zea (Boddie). PLoS ONE 2018, 13, e0197567. [Google Scholar] [CrossRef] [PubMed]
- Fabrick, J.A.; LeRoy, D.M.; Mathew, L.G.; Wu, Y.; Unnithan, G.C.; Yelich, A.J.; Carrière, Y.; Li, X.; Tabashnik, B.E. CRISPR-Mediated Mutations in the ABC Transporter Gene ABCA2 Confer Pink Bollworm Resistance to Bt Toxin Cry2Ab. Sci. Rep. 2021, 11, 10377. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.X.; Bi, S.Y.; Wang, X.D.; Wu, Q.; Tang, Y.H.; Zhang, G.F.; Wan, F.H.; Lü, Z.C.; Liu, W.X. First Report on CRISPR/Cas9-Based Genome Editing in the Destructive Invasive Pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Front. Genet. 2022, 13, 865622. [Google Scholar] [CrossRef]
- Ashok, K.; Bhargava, C.N.; Prasad Babu, K.P.; Rohan, W.; Manamohan, M.; Rai, A.; Sanjay, K.P.; Parvathy, M.S.; Kennedy, J.S.; Asokan, R. First Report on CRISPR/Cas9 Mediated Editing of the Eye Colour Gene, Tryptophan 2, 3-Dioxygenase in Egg Plant Shoot and Fruit Borer Leucinodes orbonalis Guenée (Lepidoptera: Crambidae). J. Asia Pac. Entomol. 2023, 26, 102031. [Google Scholar] [CrossRef]
- Zeng, B.; Chen, F.R.; Sun, H.; Liu, Y.; Wu, S.F.; Bass, C.; Gao, C.F. Molecular and Functional Analysis of Chitin Synthase Genes in Chilo suppressalis (Lepidoptera: Crambidae). Insect Sci. 2023, 30, 661–676. [Google Scholar] [CrossRef]
- Ashok, K.; Bhargava, C.N.; Asokan, R.; Pradeep, C.; Pradhan, S.K.; Kennedy, J.S.; Balasubramani, V.; Murugan, M.; Jayakanthan, M.; Geethalakshmi, V.; et al. CRISPR/Cas9 Mediated Editing of Pheromone Biosynthesis Activating Neuropeptide (PBAN) Gene Disrupts Mating in the Fall Armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). 3 Biotech 2023, 13, 370. [Google Scholar] [CrossRef]
- Ashok, K.; Bhargava, C.N.; Asokan, R.; Pradeep, C.; Kennedy, J.S.; Manamohan, M.; Rai, A. CRISPR/Cas9 Mediated Mutagenesis of the Major Sex Pheromone Gene, Acyl-CoA Delta-9 Desaturase (DES9) in Fall Armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Int. J. Biol. Macromol. 2023, 253, 126557. [Google Scholar] [CrossRef] [PubMed]
- Kondo, S.; Ueda, R. Highly Improved Gene Targeting by Germline-Specific Cas9 Expression in Drosophila. Genetics 2013, 195, 715–721. [Google Scholar] [CrossRef]
- Xue, Z.; Ren, M.D.; Wu, M.H.; Dai, J.B.; Rong, Y.S.; Gao, G.J. Efficient Gene Knock-out and Knock-In with Transgenic Cas9 in Drosophila. G3 2014, 4, 925–929. [Google Scholar] [CrossRef]
- Ren, X.; Yang, Z.; Mao, D.; Chang, Z.; Qiao, H.H.; Wang, X.; Sun, J.; Hu, Q.; Cui, Y.; Liu, L.P.; et al. Performance of the Cas9 Nickase System in Drosophila melanogaster. G3 2014, 4, 1955–1962. [Google Scholar] [CrossRef] [PubMed]
- Mabashi-Asazuma, H.; Kuo, C.W.; Khoo, K.H.; Jarvis, D.L. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology. ACS Chem. Biol. 2015, 10, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.L.; Fan, Y.J.; Wang, X.Y.; Zhang, Y.; Pu, J.; Li, L.; Shao, W.; Zhan, S.; Hao, J.; Xu, Y.Z. A Conserved Intronic U1 snRNP-Binding Sequence Promotes Trans-splicing in Drosophila. Genes Dev. 2015, 29, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Lamb, A.M.; Walker, E.A.; Wittkopp, P.J. Tools and Strategies for Scarless Allele Replacement in Drosophila Using CRISPR/Cas9. Fly 2017, 11, 53–64. [Google Scholar] [CrossRef]
- Itokawa, K.; Komagata, O.; Kasai, S.; Ogawa, K.; Tomita, T. Testing the Causality Between CYP9M10 and Pyrethroid Resistance Using the TALEN and CRISPR/Cas9 Technologies. Sci. Rep. 2016, 6, 24652. [Google Scholar] [CrossRef]
- Chen, H.; Sun, H.; Xie, J.; Yao, Z.; Zheng, W.; Li, Z.; Deng, Z.; Li, X.; Zhang, H. CRISPR/Cas9-Induced Mutation of Sex Peptide Receptor Gene Bdspr Affects Ovary, Egg Laying, and Female Fecundity in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). J. Insect Sci. 2023, 23, 2. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Karuppannasamy, A.; Sujatha, P.M.; Nagaraja, B.C.; Narayanappa, A.C.; Chalapathi, P.; Dhawane, Y.; Bynakal, S.; Riegler, M.; Maligeppagol, M.; et al. Embryonic Microinjection of Ribonucleoprotein Complex (Cas9+ sgRNA) of White Gene in Melon Fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae) Produced White Eye Phenotype. Arch. Insect Biochem. Physiol. 2023, 114, e22059. [Google Scholar] [CrossRef]
- Shirai, Y.; Takahashi, M.; Ote, M.; Kanuka, H.; Daimon, T. DIPA-CRISPR Gene Editing in the Yellow Fever Mosquito Aedes aegypti (Diptera: Culicidae). Appl. Entomol. Zool. 2023, 58, 273–278. [Google Scholar] [CrossRef]
- Wishard, R.; Karuppannasamy, A.; Asokan, R.; Chikmagalur Nagaraja, B.C.; Chalapathi, P.; Dhawane, Y.; Kumar, S.S.; Maligeppagol, M.; Rai, A. CRISPR/Cas9 Editing of transformer2 Gene of the Oriental Fruit Fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) Leads to Intersex Phenotype. J. Asia Pac. Entomol. 2023, 26, 102105. [Google Scholar] [CrossRef]
- Ogaugwu, C.E.; Schetelig, M.F.; Wimmer, E.A. Transgenic Sexing System for Ceratitis capitata (Diptera: Tephritidae) Based on Female-Specific Embryonic Lethality. Insect Biochem. Mol. Biol. 2013, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bassett, A.R.; Liu, J.L. CRISPR/Cas9 and Genome Editing in Drosophila. J. Genet. Genomics 2014, 41, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Port, F.; Chen, H.M.; Lee, T.; Bullock, S.L. Optimized CRISPR/Cas Tools for Efficient Germline and Somatic Genome Engineering in Drosophila. Proc. Natl. Acad. Sci. USA 2014, 111, E2967–E2976. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Chen, H.; Liu, J.; Zhang, H.; Yan, Y.; Zhu, N.; Guo, Y.; Yang, B.; Chang, Y.; Dai, F.; et al. Various Applications of TALEN- and CRISPR/Cas9-Mediated Homologous Recombination to Modify the Drosophila Genome. Biol. Open 2014, 3, 271–280. [Google Scholar] [CrossRef]
- Xue, Z.; Wu, M.; Wen, K.; Ren, M.; Long, L.; Zhang, X.; Gao, G. CRISPR/Cas9 Mediates Efficient Conditional Mutagenesis in Drosophila. G3 2014, 4, 2167–2173. [Google Scholar] [CrossRef]
- Zhang, X.; Koolhaas, W.H.; Schnorrer, F. A Versatile Two-Step CRISPR- and RMCE-Based Strategy for Efficient Genome Engineering in Drosophila. G3 2014, 4, 2409–2418. [Google Scholar] [CrossRef]
- Gokcezade, J.; Sienski, G.; Duchek, P. Efficient CRISPR/Cas9 Plasmids for Rapid and Versatile Genome Editing in Drosophila. G3 2014, 4, 2279–2282. [Google Scholar] [CrossRef]
- Port, F.; Muschalik, N.; Bullock, S.L. Systematic Evaluation of Drosophila CRISPR Tools Reveals Safe and Robust Alternatives to Autonomous Gene Drives in Basic Research. G3 2015, 5, 1493–1502. [Google Scholar] [CrossRef]
- Zimmer, C.T.; Garrood, W.T.; Puinean, A.M.; Eckel-Zimmer, M.; Williamson, M.S.; Davies, T.E.; Bass, C. A CRISPR/Cas9 Mediated Point Mutation in the Alpha 6 Subunit of the Nicotinic Acetylcholine Receptor Confers Resistance to Spinosad in Drosophila melanogaster. Insect Biochem. Mol. Biol. 2016, 73, 62–69. [Google Scholar] [CrossRef]
- Douris, V.; Denecke, S.; Van Leeuwen, T.; Bass, C.; Nauen, R.; Vontas, J. Using CRISPR/Cas9 Genome Modification to Understand the Genetic Basis of Insecticide Resistance: Drosophila and Beyond. Pestic. Biochem. Physiol. 2020, 167, 104595. [Google Scholar] [CrossRef] [PubMed]
- Bassett, A.R.; Tibbit, C.; Ponting, C.P.; Liu, J.L. Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System. Cell Rep. 2013, 4, 220–228. [Google Scholar] [CrossRef]
- Yu, Z.; Ren, M.; Wang, Z.; Zhang, B.; Rong, Y.S.; Jiao, R.; Gao, G. Highly Efficient Genome Modifications Mediated by CRISPR/Cas9 in Drosophila. Genetics 2013, 195, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Asaoka, T.; Almagro, J.; Ehrhardt, C.; Tsai, I.; Schleiffer, A.; Deszcz, L.; Junttila, S.; Ringrose, L.; Mechtler, K.; Kavirayani, A.; et al. Linear Ubiquitination by LUBEL Has a Role in Drosophila Heat Stress Response. EMBO Rep. 2016, 17, 1624–1640. [Google Scholar] [CrossRef] [PubMed]
- Kalajdzic, P.; Schetelig, M.F. CRISPR/Cas-Mediated Gene Editing Using Purified Protein in Drosophila suzukii. Entomol. Exp. Appl. 2017, 164, 350–362. [Google Scholar] [CrossRef]
- Sim, S.B.; Kauwe, A.N.; Ruano, R.E.Y.; Rendon, P.; Geib, S.M. The ABCs of CRISPR in Tephritidae: Developing Methods for Inducing Heritable Mutations in the Genera Anastrepha, Bactrocera and Ceratitis. Insect Mol. Biol. 2019, 28, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.M.M.; Hildebrand, L.; Wimmer, E.A. Improvement and Use of CRISPR/Cas9 to Engineer a Sperm-Marking Strain for the Invasive Fruit Pest Drosophila suzukii. BMC Biotechnol. 2019, 19, 85. [Google Scholar] [CrossRef]
- Meccariello, A.; Monti, S.M.; Romanelli, A.; Colonna, R.; Primo, P.; Inghilterra, M.G.; Del Corsano, G.; Ramaglia, A.; Iazzetti, G.; Chiarore, A.; et al. Highly Efficient DNA-Free Gene Disruption in the Agricultural Pest Ceratitis capitata by CRISPR-Cas9 Ribonucleoprotein Complexes. Sci. Rep. 2017, 7, 10061. [Google Scholar] [CrossRef]
- Nelson, A.S.; Mooney, K.A. The Evolution and Ecology of Interactions Between Ants and Honeydew-Producing Hemipteran Insects. Annu. Rev. Ecol. Evol. Syst. 2022, 53, 379–402. [Google Scholar] [CrossRef]
- Wani, S.H.; Choudhary, M.; Barmukh, R.; Bagaria, P.K.; Samantara, K.; Razzaq, A.; Jaba, J.; Ba, M.N.; Varshney, R.K. Molecular Mechanisms, Genetic Mapping, and Genome Editing for Insect Pest Resistance in Field Crops. TAG Theor. Appl. Genet. Theor. Angew. Genet. 2022, 135, 3875–3895. [Google Scholar] [CrossRef]
- Mishra, A.; Barik, S.R.; Pandit, E.; Yadav, S.S.; Das, S.R.; Pradhan, S.K. Genetics, Mechanisms and Deployment of Brown Planthopper Resistance Genes in Rice. Crit. Rev. Plant Sci. 2022, 41, 91–127. [Google Scholar] [CrossRef]
- Xue, W.-H.; Xu, N.; Yuan, X.-B.; Chen, H.-H.; Zhang, J.-L.; Fu, S.-J.; Zhang, C.-X.; Xu, H.-J. CRISPR/Cas9-Mediated Knockout of Two Eye Pigmentation Genes in the Brown Planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Biochem. Mol. Biol. 2018, 93, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, S.; Heck, M. Variations on a Theme: Factors Regulating Interaction Between Diaphorina citri and “Candidatus Liberibacter asiaticus” Vector and Pathogen of Citrus Huanglongbing. Curr. Opin. Insect Sci. 2023, 56, 101025. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.; Miranda, M.P.; Fereres, A. Psyllids as Major Vectors of Plant Pathogens. Entomol. Gen. 2021, 41, 419–438. [Google Scholar] [CrossRef]
- Hunter, W.B.; Gonzalez, M.T.; Tomich, J. BAPC-Assisted CRISPR/Cas9 System: Targeted Delivery into Adult Ovaries for Heritable Germline Gene Editing (Arthropoda: Hemiptera). BioRxiv 2018. [Google Scholar] [CrossRef]
- Hunter, W.B.; Gonzalez, M.T.; Tomich, J. BAPC-Assisted-CRISPR-Cas9 Delivery into Nymphs and Adults for Heritable Gene Editing (Hemiptera). FASEB J. 2019, 33 (Suppl. S1), 626.2. [Google Scholar] [CrossRef]
- Heu, C.C.; McCullough, F.M.; Luan, J.; Rasgon, J.L. CRISPR-Cas9-Based Genome Editing in the Silverleaf Whitefly (Bemisia tabaci). CRISPR J. 2020, 3, 89–96. [Google Scholar] [CrossRef]
- Cagliari, D.; Smagghe, G.; Zotti, M.; Taning, C.N.T. RNAi and CRISPR/Cas9 as Functional Genomics Tools in the Neotropical Stink Bug, Euschistus heros. Insects 2020, 11, 838. [Google Scholar] [CrossRef]
- Li, M.; Au, L.Y.C.; Douglah, D.; Chong, A.; White, B.J.; Ferree, P.M.; Akbari, O.S. Generation of Heritable Germline Mutations in the Jewel Wasp Nasonia vitripennis Using CRISPR/Cas9. Sci. Rep. 2017, 7, 901. [Google Scholar] [CrossRef]
- Reding, K.; Pick, L. High-Efficiency CRISPR/Cas9 Mutagenesis of the White Gene in the Milkweed Bug Oncopeltus fasciatus. Genetics 2020, 215, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.F.; Zhang, M.Q.; Gong, L.L.; Liu, X.Z.; Long, G.J.; Guo, H.; Hull, J.J.; Dewer, Y.; He, M.; He, P. Efficient Nanoparticle-Based CRISPR-Cas13d Induced mRNA Disruption of an Eye Pigmentation Gene in the White-Backed Planthopper, Sogatella furcifera. Insect Sci. 2023. [Google Scholar] [CrossRef] [PubMed]
- Chaverra-Rodriguez, D.; Bui, M.; Gilleland, C.L.; Rasgon, J.L.; Akbari, O. CRISPR/Cas9-Mediated Mutagenesis of the Asian Citrus Psyllid, Diaphorina citri. bioRxiv 2023. [Google Scholar] [CrossRef]
- Lima, L.; Berni, M.; Mota, J.; Bressan, D.; Julio, A.; Cavalcante, R.; Macias, V.; Li, Z.; Rasgon, J.L.; Bier, E.; et al. Gene Editing in the Chagas Disease Vector Rhodnius prolixus by Cas9-Mediated ReMOT Control. bioRxiv 2023. [Google Scholar] [CrossRef]
- Zhang, M.Q.; Gong, L.L.; Zhao, Y.Q.; Ma, Y.F.; Long, G.J.; Guo, H.; Liu, X.Z.; Hull, J.J.; Dewer, Y.; Yang, C.; et al. Efficient DIPA-CRISPR-Mediated Knockout of an Eye Pigment Gene in the White-Backed Planthopper, Sogatella furcifera. Insect Sci. 2023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Hu, Y.; Liu, J.; Guan, Z.; Zhang, W. CRISPR/Cas9-Mediated Genome Editing of Gustatory Receptor NlugGr23a Causes Male Sterility in the Brown Planthopper Nilaparvata lugens. Int. J. Biol. Macromol. 2023, 241, 124612. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Gao, Y.; Ye, W.N.; Peng, Y.X.; Zhu, K.Y.; Gao, C.F. CRISPR/Cas9-Mediated Knockout of NlCYP6CS1 Gene Reveals Its Role in Detoxification of Insecticides in Nilaparvata lugens (Hemiptera: Delphacidae). Pest Manag. Sci. 2023, 79, 2239–2246. [Google Scholar] [CrossRef]
- Hu, X.F.; Zhang, B.; Liao, C.H.; Zeng, Z.J. High-Efficiency CRISPR/Cas9-Mediated Gene Editing in Honeybee (Apis mellifera) Embryos. G3 2019, 9, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Dalla Benetta, E.; Chaverra-Rodriguez, D.; Rasgon, J.L.; Akbari, O.S. Pupal and Adult Injections for RNAi and CRISPR Gene Editing in Nasonia vitripennis. J. Vis. Exp. JoVE 2020, 166, e61892. [Google Scholar] [CrossRef]
- Lester, P.J.; Bulgarella, M.; Baty, J.W.; Dearden, P.K.; Guhlin, J.; Kean, J.M. The Potential for a CRISPR Gene Drive to Eradicate or Suppress Globally Invasive Social Wasps. Sci. Rep. 2020, 10, 12398. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Y.; Liang, L.; Geng, H.; Zhang, M.; Nie, H.; Su, S. Transcriptional Profiles of Diploid Mutant Apis mellifera Embryos After Knockout of Csd by CRISPR/Cas9. Insects 2021, 12, 704. [Google Scholar] [CrossRef]
- Nie, H.Y.; Liang, L.Q.; Li, Q.F.; Li, Z.H.; Zhu, Y.N.; Guo, Y.K.; Zheng, Q.L.; Lin, Y.; Yang, D.L.; Li, Z.G.; et al. CRISPR/Cas9 Mediated Knockout of Amyellow-y Gene Results in Melanization Defect of the Cuticle in Adult Apis mellifera. J. Insect Physiol. 2021, 132, 104264. [Google Scholar] [CrossRef]
- Bai, X.; Yu, K.; Xiong, S.; Chen, J.; Yang, Y.; Ye, X.; Yao, H.; Wang, F.; Fang, Q.; Song, Q.; et al. CRISPR/Cas9-Mediated Mutagenesis of the White Gene in an Ectoparasitic Wasp, Habrobracon hebetor. Pest Manag. Sci. 2023. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.P.; Hu, X.F.; Pan, L.X.; Gong, Z.X.; Qin, K.X.; Li, Z.; Wang, Z.L. Transcriptome Changes of Apis mellifera Female Embryos with Fem Gene Knockout by CRISPR/Cas9. Int. J. Biol. Macromol. 2023, 229, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Jeong, J.Y.; Surh, Y.J.; Kim, K.W. Expression of Stress-Response ATF3 Is Mediated by Nrf2 in Astrocytes. Nucleic Acids Res. 2010, 38, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Pavlopoulos, A.; Berghammer, A.J.; Averof, M.; Klingler, M. Efficient Transformation of the Beetle Tribolium castaneum Using the Minos Transposable Element: Quantitative and Qualitative Analysis of Genomic Integration Events. Genetics 2004, 167, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Gilles, A.F.; Schinko, J.B.; Averof, M. Efficient CRISPR-Mediated Gene Targeting and Transgene Replacement in the Beetle Tribolium castaneum. Development 2015, 142, 2832–2839. [Google Scholar] [CrossRef]
- Berghammer, A.J.; Weber, M.; Trauner, J.; Klingler, M. Red Flour Beetle (Tribolium) Germline Transformation and Insertional Mutagenesis. Cold Spring Harb. Protoc. 2009, 2009, pdb.prot5259. [Google Scholar] [CrossRef] [PubMed]
- Gui, S.; Taning, C.N.T.; Wei, D.; Smagghe, G. First Report on CRISPR/Cas9-Targeted Mutagenesis in the Colorado Potato Beetle, Leptinotarsa decemlineata. J. Insect Physiol. 2020, 121, 104013. [Google Scholar] [CrossRef] [PubMed]
- Adrianos, S.; Lorenzen, M.; Oppert, B. Metabolic Pathway Interruption: CRISPR/Cas9-Mediated Knockout of Tryptophan 2, 3-Dioxygenase in Tribolium castaneum. J. Insect Physiol. 2018, 107, 104–109. [Google Scholar] [CrossRef]
- Scrascia, M.; D’Addabbo, P.; Roberto, R.; Porcelli, F.; Oliva, M.; Calia, C.; Dionisi, A.M.; Pazzani, C. Characterization of CRISPR-Cas Systems in Serratia marcescens Isolated from Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). Microorganisms 2019, 7, 368. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.M.; Chen, X.; Xu, Q.X.; Zang, L.S.; Wang, S.; Li, M.; Xiao, D. Melanin Synthesis Pathway Interruption: CRISPR/Cas9-Mediated Knockout of Dopa Decarboxylase (DDC) in Harmonia axyridis (Coleoptera: Coccinellidae). J. Insect Sci. 2022, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.; Extavour, C.G. The Cricket Gryllus bimaculatus: Techniques for Quantitative and Functional Genetic Analyses of Cricket Biology. In Evol-Devo: Non-Model Species in Cell and Developmental Biology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 183–216. [Google Scholar] [CrossRef]
- Ramesh, N.; Khan, S. Can CRISPR Help Control Locust Populations to Reduce the Impact of Plague Outbreaks? J. Stud. Res. 2021, 10. [Google Scholar] [CrossRef]
- Nakamura, T.; Ylla, G.; Extavour, C.G. Genomics and Genome Editing Techniques of Crickets, an Emerging Model Insect for Biology and Food Science. Curr. Opin. Insect Sci. 2022, 50, 100881. [Google Scholar] [CrossRef]
- Yan, Q.; He, Y.; Yue, Y.; Jie, L.; Wen, T.; Zhao, Y.; Zhang, M.; Zhang, T. Construction of Homozygous Mutants of Migratory Locust Using CRISPR/Cas9 Technology. J. Vis. Exp. JoVE 2022, 181, e63629. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Li, H.; Yu, Y.; Zhai, J. Rapid Detection of Insect Pest with CRISPR-Cas13a-Based Lateral Flow Strip: Using Locusta migratoria manilensis. J. Appl. Entomol. 2023, 147, 416–422. [Google Scholar] [CrossRef]
- He, J.; Chen, Q.; Wei, Y.; Jiang, F.; Yang, M.; Hao, S.; Guo, X.; Chen, D.; Kang, L. MicroRNA-276 Promotes Egg-Hatching Synchrony by Up-Regulating Brm in Locusts. Proc. Natl. Acad. Sci. USA 2016, 113, 584–589. [Google Scholar] [CrossRef]
- Leal, W.S. Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes. Annu. Rev. Entomol. 2013, 58, 373–391. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Chen, D.; Yang, P.; Jiang, F.; Wang, X.; Kang, L. CRISPR/Cas9 in Locusts: Successful Establishment of an Olfactory Deficiency Line by Targeting the Mutagenesis of an Odorant Receptor Co-Receptor (Orco). Insect Biochem. Mol. Biol. 2016, 79, 27–35. [Google Scholar] [CrossRef]
- Strausfeld, N.J. Arthropod Brains: Evolution, Functional Elegance, and Historical Significance. Brain Behav. Evol. 2012, 79, 290–292. [Google Scholar] [CrossRef]
- Vergoz, V.; Roussel, E.; Sandoz, J.C.; Giurfa, M. Aversive Learning in Honeybees Revealed by the Olfactory Conditioning of the Sting Extension Reflex. PLoS ONE 2007, 2, e288. [Google Scholar] [CrossRef] [PubMed]
- Krashes, M.J.; Dasgupta, S.; Vreede, A.; White, B.; Armstrong, J.D.; Waddell, S. A Neural Circuit Mechanism Integrating Motivational State with Memory Expression in Drosophila. Cell 2009, 139, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Plaçais, P.-Y.; Yamagata, N.; Pfeiffer, B.D.; Aso, Y.; Friedrich, A.B.; Siwanowicz, I.; Rubin, G.M.; Preat, T.; Tanimoto, H. A Subset of Dopamine Neurons Signals Reward for Odour Memory in Drosophila. Nature 2012, 488, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Awata, H.; Watanabe, T.; Hamanaka, Y.; Mito, T.; Noji, S.; Mizunami, M. Knockout Crickets for the Study of Learning and Memory: Dopamine Receptor Dop1 Mediates Aversive but Not Appetitive Reinforcement in Crickets. Sci. Rep. 2015, 5, 15885. [Google Scholar] [CrossRef]
- Davis, R.B.; Baldauf, S.L.; Mayhew, P.J. The Origins of Species Richness in the Hymenoptera: Insights from a Family-Level Supertree. BMC Evol. Biol. 2010, 10, 109. [Google Scholar] [CrossRef]
- Wang, J.; Ma, H.; Zuo, Y.; Yang, Y.; Wu, Y. CRISPR-Mediated Gene Knockout Reveals Nicotinic Acetylcholine Receptor (nAChR) Subunit a6 as a Target of Spinosyns in Helicoverpa armigera. Pest Manag. Sci. 2020, 76, 2925–2931. [Google Scholar] [CrossRef]
- Books, A. New Biotechnological Approaches to Insect Pest Management and Crop Protection; Gene Editing Approach (CRISPR [1] Cas System). Master’s Thesis, University of Nebraska, Lincoln, NE, USA, 2019; p. 44. [Google Scholar]
- Kolmer, J.A.; Bernardo, A.; Bai, G.; Hayden, M.J.; Chao, S. Adult Plant Leaf Rust Resistance Derived from Toropi Wheat Is Conditioned by Lr78 and Three Minor QTL. Phytopathology 2018, 108, 246–253. [Google Scholar] [CrossRef]
- Beale, M.H.; Birkett, M.A.; Bruce, T.J.A.; Chamberlain, K.; Field, L.M.; Huttly, A.K.; Martin, J.L.; Parker, R.; Phillips, A.L.; Pickett, J.A.; et al. Aphid Alarm Pheromone Produced by Transgenic Plants Affects Aphid and Parasitoid Behavior. Proc. Natl. Acad. Sci. USA 2006, 103, 10509–10513. [Google Scholar] [CrossRef]
- Rathinam, M.; Mishra, P.; Mahato, A.K.; Singh, N.K.; Rao, U.; Sreevathsa, R. Comparative Transcriptome Analyses Provide Novel Insights into the Differential Response of Pigeon Pea (Cajanus cajan L.) and Its Wild Relative (Cajanus platycarpus (Benth.) Maesen) to Herbivory by Helicoverpa armigera (Hübner). Plant Mol. Biol. 2019, 101, 163–182. [Google Scholar] [CrossRef]
- Lu, H.-P.; Luo, T.; Fu, H.-W.; Wang, L.; Tan, Y.-Y.; Huang, J.-Z.; Wang, Q.; Ye, G.-Y.; Gatehouse, A.M.R.; Lou, Y.-G.; et al. Resistance of Rice to Insect Pests Mediated by Suppression of Serotonin Biosynthesis. Nat. Plants 2018, 4, 338–344. [Google Scholar] [CrossRef]
- Fan, D.; Liu, T.; Li, C.; Jiao, B.; Li, S.; Hou, Y.; Luo, K. Efficient CRISPR/Cas9-Mediated Targeted Mutagenesis in Populus in the First Generation. Sci. Rep. 2015, 5, 12217. [Google Scholar] [CrossRef]
- Malone, L.A.; Barraclough, E.I.; Lin-Wang, K.; Stevenson, D.E.; Allan, A.C. Effects of Red-Leaved Transgenic Tobacco Expressing a MYB Transcription Factor on Two Herbivorous Insects, Spodoptera litura and Helicoverpa armigera. Entomol. Exp. Appl. 2009, 133, 117–127. [Google Scholar] [CrossRef]
- Li, X.; Hu, D.; Cai, L.; Wang, H.; Liu, X.; Du, H.; Yang, Z.; Zhang, H.; Hu, Z.; Huang, F.; et al. CALCIUM DEPENDENT PROTEIN KINASE38 Regulates Flowering Time and Common Cutworm Resistance in Soybean. Plant Physiol. 2022, 190, 480–499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, W.; Chen, L.; Shen, X.; Yang, H.; Fang, Y.; Ouyang, W.; Mai, S.; Chen, H.; Chen, S.; et al. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmUGT Enhanced Soybean Resistance Against Leaf-Chewing Insects Through Flavonoids Biosynthesis. Front. Plant Sci. 2022, 13, 802716. [Google Scholar] [CrossRef] [PubMed]
- Rakha, M.; Bouba, N.; Ramasamy, S.; Regnard, J.L.; Hanson, P. Evaluation of Wild Tomato Accessions (Solanum spp.) for Resistance to Two-Spotted Spider Mite (Tetranychus urticae Koch) Based on Trichome Type and Acylsugar Content. Genet. Resour. Crop Evol. 2017, 64, 1011–1022. [Google Scholar] [CrossRef]
- Zsoögoön, A.; Cćermak, T.; Naves, E.R. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 2018, 36, 1211–1216. [Google Scholar] [CrossRef]
- Li, J.; Zhu, L.; Hull, J.J.; Liang, S.; Daniell, H.; Jin, S.; Zhang, X. Transcriptome Analysis Reveals a Comprehensive Insect Resistance Response Mechanism in Cotton to Infestation by the Phloem Feeding Insect Bemisia tabaci (Whitefly). Plant Biotechnol. J. 2016, 14, 1956–1975. [Google Scholar] [CrossRef] [PubMed]
- Unckless, R.L.; Clark, A.G.; Messer, P.W. Evolution of Resistance Against CRISPR/Cas9 Gene Drive. Genetics 2017, 205, 827–841. [Google Scholar] [CrossRef]
- Hammond, A.M.; Kyrou, K.; Bruttini, M.; North, A.; Galizi, R.; Karlsson, X.; Kranjc, N.; Carpi, F.M.; D’aurizio, R.; Crisanti, A.; et al. The Creation and Selection of Mutations Resistant to a Gene Drive over Multiple Generations in the Malaria Mosquito. PLoS Genet. 2017, 13, e1007039. [Google Scholar] [CrossRef]
- Marshall, J.M.; Buchman, A.; Sánchez C, H.M.; Akbari, O.S. Overcoming Evolved Resistance to Population-Suppressing Homing Based Gene Drives. Sci. Rep. 2017, 7, 3776. [Google Scholar] [CrossRef]
- Young, S.L. Unintended Consequences of 21st Century Technology for Agricultural Pest Management. EMBO Rep. 2017, 18, 1478. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.K.; Mahmud, N.U.; Islam, T. Impacts of Bt Brinjal on Economic Benefit of Farmers and Environmental Sustainability in Bangladesh. In Bacilli in Climate Resilient Agriculture and Bioprospecting: Bacilli in Agrobiotechnology; Islam, M.T., Rahman, M., Pandey, P., Eds.; Springer: Cham, Switzerland, 2022; pp. 539–560. [Google Scholar]
- Yan, Y.; Ziemek, J.; Schetelig, M.F. CRISPR/Cas9 Mediated Disruption of the White Gene Leads to Pigmentation Deficiency and Copulation Failure in Drosophila suzukii. J. Insect Physiol. 2020, 126, 104091. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, S.; Mahanta, D.K.; Vyas, V.; Samal, I.; Komal, J.; Bhoi, T.K. Storage Pest Management with Nanopesticides Incorporating Silicon Nanoparticles: A Novel Approach for Sustainable Crop Preservation and Food Security. Silicon 2023, 1–13. [Google Scholar] [CrossRef]
- Li, J.; Handler, A.M. CRISPR/Cas9-Mediated Gene Editing in an Exogenous Transgene and an Endogenous Sex Determination Gene in the Caribbean Fruit Fly, Anastrepha suspensa. Gene 2019, 691, 160–166. [Google Scholar] [CrossRef]
- Samal, I.; Bhoi, T.K.; Vyas, V.; Majhi, P.K.; Mahanta, D.K.; Komal, J.; Singh, S.; Kumar, P.V.D.; Acharya, L.K. Resistance to fungicides in entomopathogenic fungi: Underlying mechanisms, consequences, and opportunities for progress. Trop. Plant Pathol. 2023, 1–13. [Google Scholar] [CrossRef]
- Chen, E.H.; Hou, Q.L. Identification and Expression Analysis of Cuticular Protein Genes in the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). Pestic. Biochem. Physiol. 2021, 178, 104943. [Google Scholar] [CrossRef] [PubMed]
- Sujatha, G.S.; Singh, M.K.; Mahanta, D.K.; Bala, A. Pest management through ecological manipulation. Vigyan Varta 2022, 3, 40–43. [Google Scholar]
- Zhu, G.H.; Chereddy, S.C.R.R.; Howell, J.L.; Palli, S.R. Genome Editing in the Fall Armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 Method for Identification of Knockouts in One Generation. Insect Biochem. Mol. Biol. 2020, 122, 103373. [Google Scholar] [CrossRef]
- Mahanta, D.K.; Samal, I.; Komal, J.; Bhoi, T.K.; Majhi, P.K.; Ahmad, M.A. Understanding Anthropogenic Climate Change, Its Consequences on Insect Pests, and Techniques in Forecasting and Monitoring Pest Dynamics: A Contemporary Scenario. In Climate Change and Insect Biodiversity; CRC Press: Boca Raton, FL, USA, 2023; pp. 44–67. [Google Scholar]
- Li, X.; Liu, Q.; Liu, H.; Bi, H.; Wang, Y.; Chen, X.; Wu, N.; Xu, J.; Zhang, Z.; Huang, Y.; et al. Mutation of Doublesex in Hyphantria cunea Results in Sex-Specific Sterility. Pest Manag. Sci. 2020, 76, 1673–1682. [Google Scholar] [CrossRef]
- Majhi, P.K.; Samal, I.; Bhoi, T.K.; Pattnaik, P.; Pradhan, C.; Gupta, A.; Mahanta, D.K.; Senapati, S.K. Climate-Smart Agriculture: An Integrated Approach to Address Climate Change and Food Security. In Climate Change and Insect Biodiversity; CRC Press: Boca Raton, FL, USA, 2023; pp. 221–245. [Google Scholar]
- Yang, Y.; Wang, Y.H.; Chen, X.E.; Tian, D.; Xu, X.; Li, K.; He, L. CRISPR/Cas9-Mediated Tyrosine Hydroxylase Knockout Resulting in Larval Lethality in Agrotis ipsilon. Insect Sci. 2018, 25, 1017–1024. [Google Scholar] [CrossRef]
SL. No. | Name of the Insect | Targeted Gene | Resultant Effect | Delivery Method | References |
---|---|---|---|---|---|
1 | Drosophila suzukii | white (w) gene | Disruption of the white gene leads to pigmentation deficiency and copulation failure. | Micro-injection | [195,196] |
2 | Anastrepha ludens | As-transformer-2 (Astra-2) | Knocking out of this gene led to sterility in some males and intersexual phenotypes in XX-chromosome females. Thus, exploring this sex-determining gene (Astra-2) can be useful in pest control management. | Micro-injection | [197,198] |
3 | Helicoverpa armigera | NPC1b-dietary cholesterol uptake | Limitation in the dietary uptake of cholesterol inhibits the weight gain and food ingestion of the insect. | RNP complex | [61] |
4 | Drosophila melanogaster | Alk | Revealed that transcription factors can affect Alk gene expression by establishing mutations in Alk enhancer regions. | Plasmid | [80] |
5 | Bactrocera dorsalis | White and transformer | CRISPR/Cas9 mediated mutation of white and transformer genes caused various phenotypic effects. | RNP complex | [82] |
6 | Plutella xylostella | LW | The results showed weaker phototaxis and reduced locomotion, thus making it a helpful method for pest control. | RNP complex | [199,200] |
7 | Spodoptera frugiperda | BLOS2, E93,TO | The developed mutants were helpful in understanding the crucial pathways of S. frugiperda, and the strategy can also applied to other invasive pests. | Cas9 protein and multiple sgRNAs | [201,202] |
8 | Spodoptera litura | SlitBLOS | The study demonstrated that SlitBLOS2 has a role in the coloration of the integuments, and thus, it provided a marker gene for functional studies and pest control strategies. | Cas9 mRNA and sgRNA | [68] |
9 | Bemisia tabaci | White | he method has significantly expanded the capability of CRISPR techniques for whitefly research. | SgRNA + Cas9 protein fused with ovary targeting peptide ligand (BtKV) | [138] |
10 | Euschistus heros | abnormal wing disc (awd), tyrosine hydroxylase (th), and yellow (yel) | Use of RNAi and CRISPR/Cas9 techniques for managing insect pests. | dsRNA, RNP complex | [139] |
11 | Locusta migratoria | Orco | Functional genetic studies of locusts by generation of loss-of-function mutation for managing insect pests. | mRNA | [78] |
12 | Diaphorina citri | ACP-TRX-2 | The method incorporated BAPC-assisted delivery of CRISPR/Cas9 into nymphs and adults, thus resulting in an innovative breakthrough in gene editing and has shown a significant improvement over efforts using injection of eggs. | BAPC-assisted delivery of CRISPR components | [136] |
13 | Nilaparvata Lugens | Nl-cn and Nl-w | Two genes for eye pigmentation were targeted using CRISPR/Cas9, and the results paved the path for gene-function interrogation. | Cas9 mRNA and sgRNA | [133] |
14 | Hyphantria cunea | Hcdsx | Knocked-out Hcdsx gene using CRISPR/Cas9 caused sex-specific sterility, thus making it a pest control method. | sgRNA and Cas9 mRNA | [203,204] |
15 | Agrotis ipsilon | AiTH | The AiTH gene knockout using CRISPR/Cas9 caused narrowing in the egg shell. | sgRNA and Cas9 mRNA | [205] |
16 | Ostrinia furnacalis | OfAgo1 | Mutation in the OfAgo1 gene through CRISPR/Cas9 technology caused cuticle disruption | sgRNA and Cas9 mRNA | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komal, J.; Desai, H.R.; Samal, I.; Mastinu, A.; Patel, R.D.; Kumar, P.V.D.; Majhi, P.K.; Mahanta, D.K.; Bhoi, T.K. Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. Plants 2023, 12, 3961. https://doi.org/10.3390/plants12233961
Komal J, Desai HR, Samal I, Mastinu A, Patel RD, Kumar PVD, Majhi PK, Mahanta DK, Bhoi TK. Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. Plants. 2023; 12(23):3961. https://doi.org/10.3390/plants12233961
Chicago/Turabian StyleKomal, J., H. R. Desai, Ipsita Samal, Andrea Mastinu, R. D. Patel, P. V. Dinesh Kumar, Prasanta Kumar Majhi, Deepak Kumar Mahanta, and Tanmaya Kumar Bhoi. 2023. "Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management" Plants 12, no. 23: 3961. https://doi.org/10.3390/plants12233961
APA StyleKomal, J., Desai, H. R., Samal, I., Mastinu, A., Patel, R. D., Kumar, P. V. D., Majhi, P. K., Mahanta, D. K., & Bhoi, T. K. (2023). Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. Plants, 12(23), 3961. https://doi.org/10.3390/plants12233961