New Insights on the Role of ß-Cyanoalanine Synthase CAS-C1 in Root Hair Elongation through Single-Cell Proteomics
Abstract
:1. Introduction
2. Results
2.1. CAS-C1 Transcription Is Cell-Type Specific
2.2. CAS-C1 Is Not Involved in QC Formation, Meristem Length or Root Elongation
2.3. CAS-C1 Is Not Involved in Root Hair Cell Fate
2.4. Proteomics of Wild-Type and Cas-C1 Root Hairs
2.5. Cas-C1 Root Hair Cells Differ from Non-Hair Cells at the Proteomic Level
2.6. Functional Classifications of Root Hair-Specific Proteins
2.7. S-Cyanylation of Root Hair Proteins
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Material and Growth Conditions
5.2. Root Meristem Visualization
5.3. Expression of pCOBL9:GFP in Roots
5.4. Root Protoplasts Isolation
5.5. Fluorescent Activated Cell Sorting (FACS)
5.6. LC-MS/MS-Based Root Hair Proteomics
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, S.; Suzaki, T.; Tominaga-Wada, R.; Yoshida, S. Regulation and functional diversification of root hairs. Semin. Cell Dev. Biol. 2018, 83, 115–122. [Google Scholar] [CrossRef]
- Datta, S.; Kim, C.M.; Pernas, M.; Pires, N.D.; Proust, H.; Tam, T.; Vijayakumar, P.; Dolan, L. Root hairs: Development, growth and evolution at the plant-soil interface. Plant Soil. 2011, 346, 1–14. [Google Scholar] [CrossRef]
- Grierson, C.; Nielsen, E.; Ketelaarc, T.; Schiefelbein, J. Root hairs. Arab. Book. Am. Soc. Plant Biol. 2014, 12, e0172. [Google Scholar] [CrossRef]
- Duan, Q.; Kita, D.; Li, C.; Cheung, A.Y.; Wu, H.M. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc. Natl. Acad. Sci. USA 2010, 107, 17821–17826. [Google Scholar] [CrossRef]
- Molendijk, A.J.; Bischoff, F.; Rajendrakumar, C.S.; Friml, J.; Braun, M.; Gilroy, S.; Palme, K. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J. 2001, 20, 2779–2788. [Google Scholar] [CrossRef]
- Monshausen, G.B.; Bibikova, T.N.; Messerli, M.A.; Shi, C.; Gilroy, S. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc. Natl. Acad. Sci. USA 2007, 104, 20996–21001. [Google Scholar] [CrossRef]
- Ketelaar, T.; Galway, M.E.; Mulder, B.M.; Emons, A.M. Rates of exocytosis and endocytosis in Arabidopsis root hairs and pollen tubes. J. Microsc. 2008, 231, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, E.; Cheung, A.Y.; Ueda, T. The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol. 2008, 147, 1516–1526. [Google Scholar] [CrossRef]
- Thole, J.M.; Vermeer, J.E.; Zhang, Y.; Gadella, T.W., Jr.; Nielsen, E. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell 2008, 20, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.M.; Quan, L.; Cannon, A.E.; Wen, J.; Blancaflor, E.B. AGD1, a class 1 ARF-GAP, acts in common signaling pathways with phosphoinositide metabolism and the actin cytoskeleton in controlling Arabidopsis root hair polarity. Plant J. 2012, 69, 1064–1076. [Google Scholar] [CrossRef] [PubMed]
- Foreman, J.; Demidchik, V.; Bothwell, J.H.; Mylona, P.; Miedema, H.; Torres, M.A.; Linstead, P.; Costa, S.; Brownlee, C.; Jones, J.D.; et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 2003, 422, 442–446. [Google Scholar] [CrossRef]
- Jones, M.A.; Raymond, M.J.; Yang, Z.; Smirnoff, N. NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J. Exp. Bot. 2007, 58, 1261–1270. [Google Scholar] [CrossRef]
- Mendrinna, A.; Persson, S. Root hair growth: It’s a one way street. F1000prime Rep. 2015, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Pei, W.; Du, F.; Zhang, Y.; He, T.; Ren, H. Control of the actin cytoskeleton in root hair development. Plant Sci. 2012, 187, 10–18. [Google Scholar] [CrossRef]
- Ketelaar, T. The actin cytoskeleton in root hairs: All is fine at the tip. Curr. Opin. Plant Biol. 2013, 16, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.R.; Kramer, E.M.; Knox, K.; Swarup, R.; Bennett, M.J.; Lazarus, C.M.; Leyser, H.M.; Grierson, C.S. Auxin transport through non-hair cells sustains root-hair development. Nat. Cell Biol. 2009, 11, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Peiser, G.D.; Wang, T.T.; Hoffman, N.E.; Yang, S.F.; Liu, H.W.; Walsh, C.T. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene. Proc. Natl. Acad. Sci. USA 1984, 81, 3059–3063. [Google Scholar] [CrossRef] [PubMed]
- Rijavec, T.; Lapanje, A. Hydrogen Cyanide in the Rhizosphere: Not Suppressing Plant Pathogens, but Rather Regulating Availability of Phosphate. Front. Microbiol. 2016, 7, 1785. [Google Scholar] [CrossRef]
- Gotor, C.; Garcia, I.; Aroca, A.; Laureano-Marin, A.M.; Arenas-Alfonseca, L.; Jurado-Flores, A.; Moreno, I.; Romero, L.C. Signaling by hydrogen sulfide and cyanide through post-translational modification. J. Exp. Bot. 2019, 70, 4251–4265. [Google Scholar] [CrossRef]
- Diaz-Rueda, P.; Morales de Los Rios, L.; Romero, L.C.; Garcia, I. Old poisons, new signaling molecules: The case of hydrogen cyanide. J. Exp. Bot. 2023, 74, 6040–6051. [Google Scholar] [CrossRef]
- Pacher, P. Cyanide emerges as an endogenous mammalian gasotransmitter. Proc. Natl. Acad. Sci. USA 2021, 118, e2108040118. [Google Scholar] [CrossRef] [PubMed]
- Zuhra, K.; Szabo, C. The two faces of cyanide: An environmental toxin and a potential novel mammalian gasotransmitter. FEBS J. 2022, 289, 2481–2515. [Google Scholar] [CrossRef]
- Garcia, I.; Castellano, J.M.; Vioque, B.; Solano, R.; Gotor, C.; Romero, L.C. Mitochondrial beta-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana. Plant Cell 2010, 22, 3268–3279. [Google Scholar] [CrossRef]
- Arenas-Alfonseca, L.; Gotor, C.; Romero, L.C.; Garcia, I. ss-Cyanoalanine Synthase Action in Root Hair Elongation is Exerted at Early Steps of the Root Hair Elongation Pathway and is Independent of Direct Cyanide Inactivation of NADPH Oxidase. Plant Cell Physiol. 2018, 59, 1072–1083. [Google Scholar] [CrossRef]
- Garcia, I.; Arenas-Alfonseca, L.; Moreno, I.; Gotor, C.; Romero, L.C. HCN Regulates Cellular Processes through Posttranslational Modification of Proteins by S-cyanylation. Plant Physiol. 2019, 179, 107–123. [Google Scholar] [CrossRef]
- Li, S.; Yamada, M.; Han, X.; Ohler, U.; Benfey, P.N. High-Resolution Expression Map of the Arabidopsis Root Reveals Alternative Splicing and lincRNA Regulation. Dev. Cell 2016, 39, 508–522. [Google Scholar] [CrossRef]
- Romero, L.C.; Aroca, M.A.; Laureano-Marin, A.M.; Moreno, I.; Garcia, I.; Gotor, C. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol. Plant. 2014, 7, 264–276. [Google Scholar] [CrossRef]
- Piotrowski, M. Primary or secondary? Versatile nitrilases in plant metabolism. Phytochemistry 2008, 69, 2655–2667. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Zhang, D. The Plasticity of Root Systems in Response to External Phosphate. Int. J. Mol. Sci. 2020, 21, 5955. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.M.; Song, S.; Dhugga, K.S.; Rafalski, J.A.; Benfey, P.N. Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol. 2007, 143, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Petricka, J.J.; Schauer, M.A.; Megraw, M.; Breakfield, N.W.; Thompson, J.W.; Georgiev, S.; Soderblom, E.J.; Ohler, U.; Moseley, M.A.; Grossniklaus, U.; et al. The protein expression landscape of the Arabidopsis root. Proc. Natl. Acad. Sci. USA 2012, 109, 6811–6818. [Google Scholar] [CrossRef]
- Lan, P.; Li, W.; Lin, W.D.; Santi, S.; Schmidt, W. Mapping gene activity of Arabidopsis root hairs. Genome Biol. 2013, 14, R67. [Google Scholar] [CrossRef] [PubMed]
- Bairoch, A.; Apweiler, R.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; et al. The Universal Protein Resource (UniProt). Nucleic Acids Res. 2005, 33, D154–D159. [Google Scholar] [CrossRef] [PubMed]
- Pundir, S.; Martin, M.J.; O’Donovan, C.; UniProt, C. UniProt Tools. Curr. Protoc. Bioinform 2016, 53, 1.29.21–21.29.15. [Google Scholar] [CrossRef] [PubMed]
- Klie, S.; Nikoloski, Z. The Choice between MapMan and Gene Ontology for Automated Gene Function Prediction in Plant Science. Front. Genet. 2012, 3, 115. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef]
- Huang, J.; Willems, P.; Wei, B.; Tian, C.; Ferreira, R.B.; Bodra, N.; Martinez Gache, S.A.; Wahni, K.; Liu, K.; Vertommen, D.; et al. Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc. Natl. Acad. Sci. USA 2019, 116, 21256–21261. [Google Scholar] [CrossRef]
- Jurado-Flores, A.; Gotor, C.; Romero, L.C. Proteome Dynamics of Persulfidation in Leaf Tissue under Light/Dark Conditions and Carbon Deprivation. Antioxidants 2023, 12, 789. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Xu, H.; Shi, X.; Zhen, W.; Hu, Z.; Huang, J.; Zheng, Y.; Huang, P.; Zhang, K.X.; et al. HY5 Contributes to Light-Regulated Root System Architecture Under a Root-Covered Culture System. Front. Plant Sci. 2019, 10, 1490. [Google Scholar] [CrossRef]
- Tan, L.; Salih, H.; Htet, N.N.W.; Azeem, F.; Zhan, R. Genomic analysis of WD40 protein family in the mango reveals a TTG1 protein enhances root growth and abiotic tolerance in Arabidopsis. Sci. Rep. 2021, 11, 2266. [Google Scholar] [CrossRef]
- Christians, M.J.; Robles, L.M.; Zeller, S.M.; Larsen, P.B. The eer5 mutation, which affects a novel proteasome-related subunit, indicates a prominent role for the COP9 signalosome in resetting the ethylene-signaling pathway in Arabidopsis. Plant J. 2008, 55, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Han, H.L.; Liu, J.; Feng, X.J.; Zhang, M.; Lin, Q.F.; Wang, T.; Qi, S.L.; Xu, T.; Hua, X.J. SSR1 is involved in maintaining the function of mitochondria electron transport chain and iron homeostasis upon proline treatment in Arabidopsis. J. Plant Physiol. 2021, 256, 153325. [Google Scholar] [CrossRef]
- Xiong, Y.; Sheen, J. The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 2014, 164, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Rodriguez-Furlan, C.; Wang, J.; van de Ven, W.; Gao, T.; Raikhel, N.V.; Hicks, G.R. Different Endomembrane Trafficking Pathways Establish Apical and Basal Polarities. Plant Cell 2017, 29, 90–108. [Google Scholar] [CrossRef]
- Pietra, S.; Lang, P.; Grebe, M. SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana. Physiol. Plant. 2015, 153, 440–453. [Google Scholar] [CrossRef] [PubMed]
- Zografidis, A.; Kapolas, G.; Podia, V.; Beri, D.; Papadopoulou, K.; Milioni, D.; Haralampidis, K. Transcriptional regulation and functional involvement of the Arabidopsis pescadillo ortholog AtPES in root development. Plant Sci. 2014, 229, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Degani, Y.; Patchornik, A. Cyanylation of sulfhydryl groups by 2-nitro-5-thiocyanobenzoic acid. High-yield modification and cleavage of peptides at cysteine residues. Biochemistry 1974, 13, 1–11. [Google Scholar] [CrossRef]
- Fasco, M.J.; Hauer, C.R., III; Stack, R.F.; O’Hehir, C.; Barr, J.R.; Eadon, G.A. Cyanide adducts with human plasma proteins: Albumin as a potential exposure surrogate. Chem. Res. Toxicol. 2007, 20, 677–684. [Google Scholar] [CrossRef]
- Dudley, E.; Bond, A.E. Phosphoproteomic techniques and applications. Adv. Protein Chem. Struct. Biol. 2014, 95, 25–69. [Google Scholar] [CrossRef]
- Qu, Z.; Greenlief, C.M.; Gu, Z. Quantitative Proteomic Approaches for Analysis of Protein S-Nitrosylation. J. Proteome Res. 2016, 15, 1–14. [Google Scholar] [CrossRef]
- Wu, X.; Li, F.; Kolenovsky, A.; Caplan, A.; Cui, Y.; Cutler, A.; Tsang, E.W.T. A mutant deficient inS-adenosylhomocysteine hydrolase inArabidopsisshows defects in root-hair developmentThis paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada—Plant Biotechnology Institute. Botany 2009, 87, 571–584. [Google Scholar] [CrossRef]
- Wang, L.; Yang, T.; Wang, B.; Lin, Q.; Zhu, S.; Li, C.; Ma, Y.; Tang, J.; Xing, J.; Li, X.; et al. RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Sci. Adv. 2020, 6, eaaz1622. [Google Scholar] [CrossRef]
- Yamada, M.; Han, X.; Benfey, P.N. RGF1 controls root meristem size through ROS signalling. Nature 2020, 577, 85–88. [Google Scholar] [CrossRef]
- Zhou, X.; Xiang, Y.; Li, C.; Yu, G. Modulatory Role of Reactive Oxygen Species in Root Development in Model Plant of Arabidopsis thaliana. Front. Plant Sci. 2020, 11, 485932. [Google Scholar] [CrossRef] [PubMed]
- Garcia, I.; Rosas, T.; Bejarano, E.R.; Gotor, C.; Romero, L.C. Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response. Plant Physiol. 2013, 162, 2015–2027. [Google Scholar] [CrossRef] [PubMed]
- Carol, R.J.; Dolan, L. The role of reactive oxygen species in cell growth: Lessons from root hairs. J. Exp. Bot. 2006, 57, 1829–1834. [Google Scholar] [CrossRef] [PubMed]
- Lorkovic, Z.J.; Wieczorek Kirk, D.A.; Lambermon, M.H.; Filipowicz, W. Pre-mRNA splicing in higher plants. Trends Plant Sci. 2000, 5, 160–167. [Google Scholar] [CrossRef]
- Lopato, S.; Gattoni, R.; Fabini, G.; Stevenin, J.; Barta, A. A novel family of plant splicing factors with a Zn knuckle motif: Examination of RNA binding and splicing activities. Plant Mol. Biol. 1999, 39, 761–773. [Google Scholar] [CrossRef]
- Ru, Y.; Wang, B.B.; Brendel, V. Spliceosomal proteins in plants. Curr. Top. Microbiol. Immunol. 2008, 326, 1–15. [Google Scholar] [CrossRef]
- Shibata, M.; Sugimoto, K. A gene regulatory network for root hair development. J. Plant Res. 2019, 132, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Grierson, C.; Schiefelbein, J. Genetics of Root Hair Formation. In Root Hairs; Emons, A.M.C., Ketelaar, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–25. [Google Scholar]
- Zhu, S.; Martinez Pacheco, J.; Estevez, J.M.; Yu, F. Autocrine regulation of root hair size by the RALF-FERONIA-RSL4 signaling pathway. New Phytol. 2020, 227, 45–49. [Google Scholar] [CrossRef]
- Zhang, N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. Anim. Nutr. 2018, 4, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, B.; Vera, P. Folate Metabolism Interferes with Plant Immunity through 1C Methionine Synthase-Directed Genome-wide DNA Methylation Enhancement. Mol. Plant. 2019, 12, 1227–1242. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Alfonseca, L.; Gotor, C.; Romero, L.C.; Garcia, I. Mutation in Arabidopsis beta-cyanoalanine synthase overcomes NADPH oxidase action in response to pathogens. J. Exp. Bot. 2021, 72, 4535–4547. [Google Scholar] [CrossRef] [PubMed]
- Randi, E.B.; Zuhra, K.; Pecze, L.; Panagaki, T.; Szabo, C. Physiological concentrations of cyanide stimulate mitochondrial Complex IV and enhance cellular bioenergetics. Proc. Natl. Acad. Sci. USA 2021, 118, e2026245118. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Vizcaino, J.A.; Deutsch, E.W.; Wang, R.; Csordas, A.; Reisinger, F.; Rios, D.; Dianes, J.A.; Sun, Z.; Farrah, T.; Bandeira, N.; et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223–226. [Google Scholar] [CrossRef]
AGI | Gene Alias | Annotation |
---|---|---|
AT1G11910 | APA1 | APA1 aspartic proteinase A1 |
AT1G26630 | ATELF5A-2FBR12 | ATELF5A Eukaryotic translation initiation factor 5A-1 (eIF-5A 1) protein |
AT3G52930 | AtFBA8 | AtFBA8 Aldolase superfamily protein |
AT2G44100 | ATGDI1 | ATGDI1__guanosine nucleotide diphosphate dissociation inhibitor 1 |
AT2G21660 | ATGRP7 | ATGRP7 cold, circadian rhythm, and rna binding 2 |
AT4G39260 | ATGRP8 | ATGRP8 cold, circadian rhythm, and RNA binding 1 |
AT5G17920 | ATCIMS1 | ATMS1__Cobalamin-independent synthase family protein |
AT3G03780 | ATMS2 | ATMS2 methionine synthase 2 |
AT5G08690 | ATP synthase alpha/beta family protein | |
AT5G08670 | ATP synthase alpha/beta family protein | |
AT3G26420 | ATRZ-1ARBGB2 | ATRZ-1A RNA-binding (RRM/RBD/RNP motifs) |
AT2G30110 | ATUBA1-MOS5 | ATUBA1 ubiquitin-activating enzyme 1 |
AT5G06460 | ATUBA2 | ATUBA2 ubiquitin-activating enzyme 2 |
AT3G48340 | CEP2 | CEP2__Cysteine proteinases superfamily protein |
AT4G24800 | ECIP1-MRF3 | ECIP1 MA3 domain-containing protein |
AT4G34200 | EDA9P-GDH1 | EDA9 D-3-phosphoglycerate dehydrogenase |
AT1G29880 | Glycyl-tRNA synthetase/glycine--tRNA ligase | |
AT1G18500 | IPMS1-MAML-4 | IPMS1 methylthioalkylmalate synthase-like 4 |
AT1G53240 | mMDH1 | mMDH1 Lactate/malate dehydrogenase family protein |
AT3G04600 | Nucleotidylyl transferase superfamily protein | |
AT2G22780 | PMDH1 | PMDH1__peroxisomal NAD-malate dehydrogenase 1 |
AT2G29400 | ATTOPP1 | TOPP1__type one protein phosphatase 1 |
AT5G39320 | UDG4 | UDG4 UDP-glucose 6-dehydrogenase family protein |
AT3G29360 | UGD2 | UGD2__UDP-glucose 6-dehydrogenase family protein |
AT4G11150 | VHA-E1 | VHA-E1 vacuolar ATP synthase subunit E1 |
AGI | Gene Alias | Annotation |
---|---|---|
AT1G18080 | ATARCA | ATARCA Transducin/WD40 repeat-like superfamily protein |
AT2G21660 | ATGRP7 | ATGRP7__cold, circadian rhythm, and RNA binding 2 |
AT4G39260 | ATGRP8 | ATGRP8_cold, circadian rhythm, and RNA binding 1 |
AT1G27130 | ATGSTU1 | ATGSTU13__glutathione S-transferase tau 13 |
AT5G17920 | ATMS1 | ATMS1__Cobalamin-independent synthase family protein |
AT3G03780 | ATMS2 | ATMS2__methionine synthase 2 |
AT2G20420 | ATP citrate lyase (ACL) family protein | |
AT3G28715 | ATPase, V0/A0 complex, subunit C/D | |
AT3G28710 | ATPase, V0/A0 complex, subunit C/D | |
AT4G13940 | ATSAHH1-HOG1 | ATSAHH1__S-adenosyl-L-homocysteine hydrolase |
AT3G23810 | ATSAHH2 | ATSAHH2__S-adenosyl-l-homocysteine (SAH) hydrolase 2 |
AT3G48340 | CEP2 | CEP2__Cysteine proteinases superfamily protein |
AT2G42490 | CuAOζ-zeta | CuAOζ-zeta__Copper amine oxidase family protein |
AT3G53580 | diaminopimelate epimerase family protein | |
AT1G13950 | ATELF5A | ELF5A-1__eukaryotic elongation factor 5A-1 |
AT1G69410 | ATELF5A-3 | ELF5A-3__eukaryotic elongation factor 5A-3 |
AT1G31070 | GLCNA.UT1 | GLCNA.UT1__N-acetylglucosamine-1-phosphate uridylyltransferase 1 |
AT5G16760 | AtITPK1 | ITPK1__Inositol 1,3,4-trisphosphate 5/6-kinase family protein |
AT5G50850 | MAB1 | MAB1__Transketolase family protein |
AT2G33340 | MAC3B | MOS4-associated complex 3B |
AT4G24800 | ECIP1-MRF3 | MRF3__MA3 domain-containing protein |
AT4G35460 | ATNTRB | NTRB__NADPH-dependent thioredoxin reductase B |
AT3G54960 | ATPDI1 | PDIL1-3__PDI-like 1-3 |
AT3G15000 | MORF8-RIP1 | RIP1__cobalt ion binding |
AT4G13930 | SHM4 | SHM4__serine hydroxymethyltransferase 4 |
AT3G18060 | transducin family protein/WD-40 repeat family protein | |
AT2G16950 | ATTRN1 | TRN1__transportin 1 |
AT5G42980 | ATH3 | TRXH3__thioredoxin 3 |
AT5G39320 | UDG4 | UDG4__UDP-glucose 6-dehydrogenase family protein |
AT2G21270 | UFD1 | UFD1__ubiquitin fusion degradation 1 |
AT3G29360 | UGD2 | UGD2__UDP-glucose 6-dehydrogenase family protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenas-Alfonseca, L.; Yamada, M.; Romero, L.C.; García, I. New Insights on the Role of ß-Cyanoalanine Synthase CAS-C1 in Root Hair Elongation through Single-Cell Proteomics. Plants 2023, 12, 4055. https://doi.org/10.3390/plants12234055
Arenas-Alfonseca L, Yamada M, Romero LC, García I. New Insights on the Role of ß-Cyanoalanine Synthase CAS-C1 in Root Hair Elongation through Single-Cell Proteomics. Plants. 2023; 12(23):4055. https://doi.org/10.3390/plants12234055
Chicago/Turabian StyleArenas-Alfonseca, Lucía, Masashi Yamada, Luis C. Romero, and Irene García. 2023. "New Insights on the Role of ß-Cyanoalanine Synthase CAS-C1 in Root Hair Elongation through Single-Cell Proteomics" Plants 12, no. 23: 4055. https://doi.org/10.3390/plants12234055
APA StyleArenas-Alfonseca, L., Yamada, M., Romero, L. C., & García, I. (2023). New Insights on the Role of ß-Cyanoalanine Synthase CAS-C1 in Root Hair Elongation through Single-Cell Proteomics. Plants, 12(23), 4055. https://doi.org/10.3390/plants12234055