Effects of Biochar Applied in Either Rice or Wheat Seasons on the Production and Quality of Wheat and Nutrient Status in Paddy Profiles
Abstract
:1. Introduction
2. Results
2.1. Soil Properties with Profile Depth
2.1.1. pH
2.1.2. NH4+-N, NO3−-N, and Total N Contents
2.1.3. Available P and K Contents
2.1.4. SOM
2.2. Wheat Yield and the Related Agronomic Traits
2.3. Wheat NUE
2.4. Amino Acid in Wheat Grain
3. Discussions
3.1. Effects of BC Addition on pH and Nutrients in the Soil Profiles
3.2. Effects of BC Addition on Wheat Yield, N Uptake, NUE, and Amino Acids
4. Materials and Methods
4.1. Experiment Setup
4.1.1. Background Information and Soil Column Setup
4.1.2. Experimental Design and Management
4.2. Sample Collection and Measurement
4.2.1. Soil Sampling and Analysis
4.2.2. Wheat Yield and NUE
4.2.3. Amino Acid
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.D.; Li, Z.X.; Bi, X.J.; Feng, B.; Wang, Z.S.; Wang, F.H.; Si, J.S.; Shi, J.P.; Liu, K.C. Nitrogen fertilizer management on wheat yield and nitrogen utilization. J. Plant Nutr. 2022, 13, 1953–1960. [Google Scholar] [CrossRef]
- Maria, D.P.M.P.; Pablo, A.C.; Susana, U.; Nahuel, R.P.; Mauricio, N. Using site-specific nitrogen management in rainfed corn to reduce the risk of nitrate leaching. Agric. Water Manag. 2018, 199, 61–70. [Google Scholar]
- Shi, Z.L.; Jing, Q.; Cai, J.; Jiang, D.; Cao, W.X.; Dai, T.B. The fates of 15N fertilizer in relation to root distributions of winter wheat under different N splits. Eur. J. Agron. 2012, 40, 86–93. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, L.X.; Tang, L.; Shen, Y.F.; Li, S.Q. Responses of crop nitrogen partitioning, translocation and soil nitrogen residue to biochar addition in a temperate dryland agricultural soil. Plant Soil 2017, 418, 405–421. [Google Scholar] [CrossRef]
- Xin, Z.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar]
- Dong, S.X.; Zhang, J.; Zha, T.; Dai, X.L.; He, M.R. Increased plant density with reduced nitrogen input can improve nitrogen use efficiency in winter wheat while maintaining grain yield. Arch. Agron. Soil Sci. 2019, 66, 1707–1720. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.Q.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Sun, M.J.; Zhou, Z.Y.; Wang, Y.Q.; Shen, Y.; Xia, W. The effects of organic matter addition on soil respiration and carbon component in Pinus tabuliformis forest in Taiyue Mountain, Shanxi Province, China. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2023, 47, 67–75. (In Chinese) [Google Scholar]
- Chen, N.; Peng, Y.J.; Kong, Y.L.; Li, J.J.; Sun, C.X. Combined effects of biochar addition and nitrogen fertilizer reduction on the rhizosphere metabolomics of maize (Zea mays L.) seedlings. Plant Soil 2018, 433, 19–35. [Google Scholar] [CrossRef]
- Liu, B.T.; Li, H.L.; Li, H.B.; Zhang, A.P.; Rengel, Z. Long-term biochar application promotes rice productivity by regulating root dynamic development and reducing nitrogen leaching. GCB Bioenergy 2020, 13, 257–268. [Google Scholar] [CrossRef]
- Phares, C.A.; Atiah, K.; Frimpong, A.K.; Danquah, A.; Asare, A.T.; Aggor–Woananu, S. Application of biochar and inorganic phosphorus fertilizer influenced rhizosphere soil characteristics, nodule formation and phytoconstituents of cowpea grown on tropical soil. Heliyon 2020, 6, e05255. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.Q.; Hu, N.J.; Zhang, Z.W.; Xu, J.L.; Tao, B.R.; Meng, Y.L. Short–term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice–wheat cropping system. Catena 2015, 135, 283–289. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta–analysis. Sci. Total Environ. 2018, 651, 2354–2364. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.F.; Sun, H.J.; Xue, L.H.; Liu, Y.; Gao, Q.; Lu, K.P.; Yang, L.Z. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere 2017, 168, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jeyakumar, P.; Xia, C.L.; Lam, S.S.; Jiang, J.; Sun, H.J.; Shi, W.M. Being applied at rice or wheat season impacts biochar’s effect on gaseous nitrogen pollutants from the wheat growth cycle. Environ. Pollut. 2022, 306, 119409. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.P.; Zhang, X.; Zhang, Q.Q.; Wu, Z.; Xiong, Z.Q. Field–aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification. Sci. Total Environ. 2018, 642, 1303–1310. [Google Scholar] [CrossRef]
- Sorrenti, G.; Masiello, C.A.; Dugan, B.; Toselli, M. Biochar physico–chemical properties as affected by environmental exposure. Sci. Total Environ. 2016, 563–564, 237–246. [Google Scholar] [CrossRef]
- Xu, N.; Tan, G.C.; Wang, H.Y.; Gai, X.P. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Moklyachuk, L.; Furdychko, O.; Pinchuk, V.; Mokliachuk, O.; Draga, M. Nitrogen balance of crop production in Ukraine. J. Environ. Manag. 2019, 246, 860–867. [Google Scholar] [CrossRef]
- Esfandbod, M.; Phillips, I.R.; Miller, B.; Rezaei Rashti, M.; Lan, Z.M.; Srivastava, P.; Singh, B.; Chen, C.R. Aged acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand. Ecol. Eng. 2017, 98, 157–165. [Google Scholar] [CrossRef]
- Shen, H.J.; Zhang, Q.Q.; Zhang, X.; Jiang, X.Y.; Zhu, S.G.; Chen, A.F.; Wu, Z.; Xiong, Z.Q. In situ effects of biochar field–aged for six years on net N mineralization in paddy soil. Soil Tillage Res. 2021, 205, 104766. [Google Scholar] [CrossRef]
- Jing, F.; Chen, C.; Chen, X.M.; Liu, W.; Wen, X.; Hu, S.M.; Yang, Z.J.; Guo, B.L.; Xu, Y.L.; Yu, Q.X. Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice. Environ. Pollut. 2020, 257, 113592. [Google Scholar] [CrossRef] [PubMed]
- Han, F.P.; Ren, L.L.; Zhang, X.C. Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau. Catena 2016, 137, 554–562. [Google Scholar] [CrossRef]
- Burud, I.; Moni, C.; Flo, A.; Futsaether, C.; Steffens, M.; Rasse, D.P. Qualitative and quantitative mapping of biochar in a soil profile using hyperspectral imaging. Soil Tillage Res. 2016, 155, 523–531. [Google Scholar] [CrossRef]
- Ding, X.Y.; Li, G.T.; Zhao, X.R.; Lin, Q.M.; Wang, X. Biochar application significantly increases soil organic carbon under conservation tillage: An 11–year field experiment. Biochar 2023, 5, 28. [Google Scholar] [CrossRef]
- Wang, J.Y.; Xiong, Z.Q.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effect. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Bian, R.J.; Joseph, S.; Cui, L.Q.; Pan, G.X.; Li, L.Q.; Liu, X.Y.; Zhang, A.F.; Rutlidge, H.; Wong, S.W.; Chia, C.; et al. A three–year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J. Hazard. Mater. 2014, 272, 121–128. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2014, 3, 393–404. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, X.C. Effect of biochar on pH of alkaline soils in the Loess Plateau: Results from incubation experiments. Natl. Acad. Sci. 2012, 14, 745–750. [Google Scholar]
- Clough, T.J.; Condron, L.M. Biochar and the Nitrogen Cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Abujabhah, I.S.; Doyle, R.; Bound, S.A.; Bowman, J.P. The effect of biochar loading rates on soil fertility, soil biomass, potential nitrification, and soil community metabolic profiles in three different soil. J. Soils Sediments 2016, 16, 2211–2222. [Google Scholar] [CrossRef]
- Dempster, D.N.; Jones, D.L.; Murphy, D.V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 2012, 50, 216–221. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, C.M.; Thies, J.; Masiello, A.C.; Hockaday, C.W.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Lehmann, J.; Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Chen, M.; Wang, D.J.; Yang, F.; Xu, X.Y.; Xu, N.; Cao, X.D. Transport and retention of biochar nanoparticles in a paddy soil under environmentally–relevant solution chemistry condition. Environ. Pollut. 2017, 230, 540–549. [Google Scholar] [CrossRef]
- Dong, X.L.; Li, G.T.; Lin, Q.M.; Zhao, X.R. Quantity and quality changes of biochar aged for 5 years in soil under field conditions. Catena-Giess. Then Amst. 2017, 159, 136–143. [Google Scholar] [CrossRef]
- Obia, A.; Brresen, T.; Martinsen, V.; Cornelissen, G.; Mulder, J. Vertical and lateral transport of biochar in light–textured tropical soils. Soil Tillage Res. 2017, 165, 34–40. [Google Scholar] [CrossRef]
- Zhao, X.; Xie, Y.X.; Xiong, Z.Q.; Yan, X.Y.; Xing, G.X.; Zhu, Z.L. Nitrogen fate and environmental consequence in paddy soil under rice–wheat rotation in the Taihu lake region, China. Plant Soil 2009, 319, 225–234. [Google Scholar] [CrossRef]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef]
- Zwieten, L.V.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Liu, S.Y.; Cao, D.Y.; Hang, Y.W.; Ge, S.H.; He, W.Y.; Zhan, Z.Y.; He, T.Y.; Chen, W.F.; Lan, Y. Biochar affects the distribution of phosphorus in the soil profile by changing the capacity of soil to adsorb phosphorus and its distribution within soil macroaggregates. Land Degrad. Dev. 2023, 34, 2189–2200. [Google Scholar] [CrossRef]
- Li, Z.Q.; Li, D.D.; Ma, L.; Yu, Y.Y.; Zhao, B.Z.; Zhang, J.B. Effects of straw management and nitrogen application rate on soil organic matter fractions and microbial properties in North China Plain. Nat. Rev. Cancer 2019, 19, 618–628. [Google Scholar] [CrossRef]
- Wang, D.Y.; Felice, L.M.; Scow, M.K. Impacts and interactions of biochar and biosolids on agricultural soil microbial communities during dry and wet–dry cycles. Appl. Soil Ecol. 2020, 152, 103570. [Google Scholar] [CrossRef]
- Rawat, J.; Saxena, J.; Sanwal, P. Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties. In Biochar–An Imperative Amendment for Soil and the Environment; IntechOpen: London, UK, 2019; pp. 1–17. [Google Scholar]
- Zhang, G.X.; Liu, S.J.; Dong, Y.J.; Liao, Y.C.; Han, J. A nitrogen fertilizer strategy for simultaneously increasing wheat grain yield and protein content: Mixed application of controlled–release urea and normal urea. Field Crops Res. 2022, 277, 108405. [Google Scholar] [CrossRef]
- Khan, M.A.; Kim, K.; Wang, Z.M.; Lim, B.; Lee, W.; Lee, J. Nutrient–impregnated charcoal: An environmentally friendly slow–release fertilizer. Environment 2008, 28, 231–235. [Google Scholar] [CrossRef]
- Qiao, J.; Yang, L.Z.; Yan, T.M.; Xue, F.; Zhao, D. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agric. Ecosyst. Environ. 2011, 146, 103–122. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.D.; Hu, T.S.; Mahmoud, A.; Li, J.; Zhu, R.; Jiao, X.Y.; Jing, P.R. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: A meta–analysis. Sci. Total Environ. 2022, 830, 154792. [Google Scholar] [CrossRef]
- Li, C.J.; Zhao, C.Y.; Zhao, X.M.; Wang, Y.B.; Lv, X.J.; Zhu, X.W.; Song, X.L. Beneficial Effects of Biochar Application with Nitrogen Fertilizer on Soil Nitrogen Retention, Absorption and Utilization in Maize Production. Agronomy 2022, 13, 113. [Google Scholar] [CrossRef]
- Uhlen, A.K.; Hafskjold, R.; Kalhovd, A.H.; Sahlström, S.; Longva, A.; Magnus, E.M. Effects of Cultivar and Temperature During Grain Filling on Wheat Protein Content, Composition, and Dough Mixing Properties. Cereal Chem. 2007, 75, 460–465. [Google Scholar] [CrossRef]
- Sun, H.J.; Zhang, H.L.; Wu, J.S.; Jiang, P.K.; Shi, W.M. Laboratory lysimeter analysis of NH3 and N2O emissions and leaching losses of Nitrogen in a rice–wheat rotation system irrigated with nitrogen–rich wastewater. Soil Sci. 2013, 6, 316–323. [Google Scholar] [CrossRef]
- GB/T18246-2000; Determination of Amino Acids in Feeds. The State Bureau of Quality and Technical Supervision: Beijing, China, 2000.
Treatment | Straw Biomass (g pot−1) | Grain Yield (g pot−1) | Spike Number | Kernels Per Spike | Thousand-Kernel Weight (g) | Theoretical Wheat Yield (g pot−1) | Harvest Index (%) |
---|---|---|---|---|---|---|---|
Control | 19.7 ± 2.6 b | 10.2 ± 1.0 b | 33.3 ± 2.5 a | 10.3 ± 1.0 b | 41.1 ± 4.5 b | 14.3 ± 3.7 b | 34.3 ± 1.2 b |
N420 | 58.5 ± 8.5 a | 44.5 ± 5.4 a | 36.3 ± 2.5 a | 28.7 ± 1.5 a | 50.4 ± 4.1 a | 52.4 ± 2.2 a | 43.3 ± 1.7 a |
N420 + BC(R) | 60.1 ± 2.7 a | 43.3 ± 3.2 a | 35.3 ± 0.6 a | 31.2 ± 4.6 a | 50.4 ± 1.7 a | 55.7 ± 9.2 a | 41.9 ± 0.9 a |
N420 + BC(W) | 56.2 ± 1.0 a | 40.4 ± 2.3 a | 37.0 ± 2.7 a | 28.7 ± 1.0 a | 52.5 ± 0.5 a | 55.7 ± 2.8 a | 41.8 ± 1.5 a |
Treatment | N Content (g kg−1) | N Uptake (g pot−1) | NUE (%) | |||
---|---|---|---|---|---|---|
Straw | Grain | Straw | Grain | Total | ||
Control | 2.6 ± 0.1 c | 22.0 ± 0.3 a | 0.05 ± 0.01 d | 0.22 ± 0.02 b | 0.28 ± 0.02 b | – |
N420 | 3.1 ± 0.1 b | 18.5 ± 1.4 b | 0.18 ± 0.03 b | 0.82 ± 0.04 a | 1.00 ± 0.07 a | 23.2 ± 1.6 a |
N420 + BC(R) | 4.2 ± 0.1 a | 18.8 ± 0.7 b | 0.25 ± 0.01 a | 0.82 ± 0.09 a | 1.07 ± 0.10 a | 24.9 ± 2.4 a |
N420 + BC(W) | 2.5 ± 0.2 c | 20.8 ± 2.7 ab | 0.14 ± 0.02 c | 0.84 ± 0.09 a | 0.98 ± 0.07 a | 22.7 ± 1.7 a |
Amino Acid Components | Amino Acid Content (%) | |||
---|---|---|---|---|
N420 | N420 + BC(R) | N420 + BC(W) | ||
EAA | Threonine | 0.23 ± 0.03 | 0.25 ± 0.02 | 0.23 ± 0.03 |
Valine | 0.41 ± 0.04 | 0.45 ± 0.03 | 0.42 ± 0.05 | |
Methionine | 0.15 ± 0.01 | 0.16 ± 0.01 | 0.16 ± 0.00 | |
Isoleucine | 0.30 ± 0.02 a | 0.23 ± 0.01 b | 0.25 ± 0.02 b | |
Leucine | 0.52 ± 0.08 | 0.50 ± 0.01 | 0.49 ± 0.01 | |
Phenylalanine | 0.34 ± 0.02 b | 0.44 ± 0.04 a | 0.36 ± 0.02 b | |
Lysine | 0.28 ± 0.04 | 0.24 ± 0.01 | 0.24 ± 0.01 | |
ΣEAA | 2.25 ± 0.10 | 2.19 ± 0.03 | 2.21 ± 0.13 | |
NEAA | Aspartate | 0.59 ± 0.04 | 0.57 ± 0.03 | 0.56 ± 0.03 |
Serine | 0.35 ± 0.03 | 0.37 ± 0.03 | 0.38 ± 0.02 | |
Glutamate | 1.43 ± 0.09 | 1.32 ± 0.02 | 1.36 ± 0.02 | |
Proline | 0.19 ± 0.00 a | 0.17 ± 0.00 b | 0.18 ± 0.01 ab | |
Glycine | 0.24 ± 0.01 | 0.26 ± 0.03 | 0.24 ± 0.02 | |
Alanine | 0.39 ± 0.01 | 0.39 ± 0.01 | 0.39 ± 0.01 | |
Cystine | 0.10 ± 0.00 | 0.12 ± 0.01 | 0.11 ± 0.01 | |
Leucine | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.00 | |
Histidine | 0.11 ± 0.01 | 0.14 ± 0.03 | 0.11 ± 0.00 | |
Arginine | 0.48 ± 0.03 | 0.51 ± 0.01 | 0.49 ± 0.03 | |
ΣNEAA | 4.04 ± 0.02 | 3.93 ± 0.07 | 3.99 ± 0.13 | |
ΣTAA | 6.29 ± 0.10 | 6.12 ± 0.06 | 6.19 ± 0.19 | |
EAA/TAA | 35.7 ± 1.00 | 35.8 ± 0.60 | 35.6 ± 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Liu, J.; Sun, H.; Xing, J.; Zhang, Z.; Jiang, J. Effects of Biochar Applied in Either Rice or Wheat Seasons on the Production and Quality of Wheat and Nutrient Status in Paddy Profiles. Plants 2023, 12, 4131. https://doi.org/10.3390/plants12244131
Chen Z, Liu J, Sun H, Xing J, Zhang Z, Jiang J. Effects of Biochar Applied in Either Rice or Wheat Seasons on the Production and Quality of Wheat and Nutrient Status in Paddy Profiles. Plants. 2023; 12(24):4131. https://doi.org/10.3390/plants12244131
Chicago/Turabian StyleChen, Zirui, Jiale Liu, Haijun Sun, Jincheng Xing, Zhenhua Zhang, and Jiang Jiang. 2023. "Effects of Biochar Applied in Either Rice or Wheat Seasons on the Production and Quality of Wheat and Nutrient Status in Paddy Profiles" Plants 12, no. 24: 4131. https://doi.org/10.3390/plants12244131
APA StyleChen, Z., Liu, J., Sun, H., Xing, J., Zhang, Z., & Jiang, J. (2023). Effects of Biochar Applied in Either Rice or Wheat Seasons on the Production and Quality of Wheat and Nutrient Status in Paddy Profiles. Plants, 12(24), 4131. https://doi.org/10.3390/plants12244131