Three Biannual Rotations Cycles with Residue Incorporation Affect Wheat Production and Chemical Soil Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Management
2.2. Wheat Yield and Residue Production
2.3. Soil Analysis
2.4. Experimental Design and Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global Trends in Wheat Production, Consumption and Trade. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer: Cham, Switzerland; CIMMYT: Texcoco, México, 2022. [Google Scholar] [CrossRef]
- Farooq, A.; Farooq, N.; Akbar, H.; Hassan, Z.; Gheewala, S.H. A Critical Review of Climate Change Impact at a Global Scale on Cereal Crop Production. Agronomy 2023, 13, 162. [Google Scholar] [CrossRef]
- Dobermann, A.; Arkebauer, T.; Cassman, K.; Drijber, R.; Lindquist, J.; Specht, J.; Walters, D.; Yang, H.; Miller, D.; Binder, D.; et al. Yield Potential and Optimal Soil Productivity in Irrigated Corn Systems of the North-Central USA; Annual Report to the Fluid Fertilizer Foundation on grant; Department of Agronomy and Horticulture, University of Nebraska: Lincoln, NE, USA, 2003. [Google Scholar]
- Hirzel, J.; Matus, I. Effect of soil depth and increasing fertilization rate on yield and its components of two durum wheat varieties. Chil. J. Agric. Res. 2013, 73, 55–59. [Google Scholar] [CrossRef]
- Huynh, H.T.; Hufnagel, J.; Wurbs, A.; Bellingrath-Kimura, S.D. Influences of soil tillage, irrigation and crop rotation on maize biomass yield in a 9-year field study in Müncheberg, Germany. Field. Crops Res. 2019, 241, 107565. [Google Scholar] [CrossRef]
- Chen, X.; Mao, A.; Zhang, Y.; Zhang, L.; Chang, J.; Gao, H.; Thompson, M.L. Carbon and nitrogen forms in soil organic matter influenced by incorporated wheat and corn residues. Soil Sci. Plant Nutr. 2017, 63, 377–387. [Google Scholar] [CrossRef]
- Hiel, M.; Barbieux, S.; Pierreux, J.; Olivier, C.; Lobet, G.; Roisin, C.; Garré, S.; Colinet, G.; Bodson, B.; Dumont, B. Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils. PeerJ 2018, 6, e4836. [Google Scholar] [CrossRef]
- Kumar, M.; Kundu, D.K.; Ghorai, A.K.; Mitra, S.; Singh, S.R. Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in Inceptisols of eastern Indo-Gangetic Plain. Soil Tillage Res. 2018, 178, 108–117. [Google Scholar] [CrossRef]
- Neugschwandtner, R.; Száková, J.; Pachtrog, V.; Tlustoš, P.; Černý, J.; Kulhánek, M.; Kaul, H.-P.; Euteneuer, P.; Moitzi, G.; Wagentristl, H. Basic soil chemical properties after 15 years in a long-term tillage and crop rotation experiment. Int. Agrophysics 2020, 34, 133–140. [Google Scholar] [CrossRef]
- Owen, E.; Jayasuriya, M.C.N. Use of crop residues as animal feeds in developing countries—A review. Res. Dev. Agric. 1989, 6, 124–138. [Google Scholar]
- Stewart, C.; Roosendaal, D.; Manter, D.; Delgado, J.; Del Grosso, S. Interactions of stover and nitrogen management on soil microbial community and labile carbon under irrigated no-till corn. Soil Sci. Soc. Am. J. 2018, 82, 323–331. [Google Scholar] [CrossRef]
- Urra, J.; Mijangos, I.; Lanzén, A.; Lloveras, J.; Garbisu, C. Effects of corn stover management on soil quality. Europ. J. Soil Biol. 2018, 88, 57–64. [Google Scholar] [CrossRef]
- Paterson, K.C.; Cloy, J.M.; Rees, R.M.; Baggs, E.M.; Martineau, H.; Fornara, D.; Macdonald, A.J.; Buckingham, S. Estimating maximum fine-fraction organic carbon in UK grasslands. Biogeosciences 2021, 18, 605–620. [Google Scholar] [CrossRef]
- Basir, A.; Tariq, M.; Alam, M.; Sattar, A.; Afridi, K.; Adnan, M.; Ali, K.; Ahmad, I. Impacts of tillage, stubble management, and nitrogen on wheat production and soil properties. Can. J. Soil Sci. 2017, 97, 133–140. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Hirzel, J.; Undurraga, P.; León, L.; González, J.; Carrasco, J.; Matus, I. Medium-Term Crop Rotations with Different Residue Incorporation Rates: Effect on Durum Wheat Production and Plant Nutrient Concentration and Extraction. JSSPN J. Soil Sci. Plant Nutr. 2021, 21, 2145–2152. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Eddy, W.C.; Buyarski, C.R.; Adair, E.C.; Ogdahl, M.L.; Weisenhorn, P. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol. Monogr. 2012, 82, 389–405. [Google Scholar] [CrossRef]
- Soto, S. Cereales: Producción, Precios y Comercio Exterior de Trigo, Maíz y Arroz; Boletín de Cereales, Santiago, Chile, Julio 2022. Consultado el 11 del 5 de 2023. Available online: https://www.odepa.gob.cl/publicaciones/boletines/boletin-de-cereales-julio-2022 (accessed on 11 May 2023).
- Calzarano, F.; Stagnari, F.; D’Egidio, S.; Pagnani, G.; Galieni, A.; Di Marco, S.; Metruccio, E.G.; Pisante, M. Durum Wheat Quality, Yield and Sanitary Status under Conservation Agriculture. Agriculture 2018, 8, 140. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Wang, H.; Bao, L.; Zhou, J. Crop yields and soil organic carbon fractions as influenced by straw incorporation in a rice-wheat cropping system in southeastern Chine. Nutr. Cycl. Agroecosystems 2018, 112, 61–73. [Google Scholar] [CrossRef]
- Melander, B.; Rasmussen, I.E.; Olesen, J.E. Legacy effects of leguminous green manure crops on the weed seed bank in organic crop rotations. Agric. Ecosyst. Environ. 2020, 302, 107078. [Google Scholar] [CrossRef]
- Sadzawka, A.; Carrasco, M.A.; Grez, R.; Mora, M.D.L.L.; Flores, H.; Neaman, A. Métodos de Análisis Recomendados Para los Suelos de Chile; Revisión 2006; Serie Actas-Instituto de Investigaciones Agropecuarias: Santiago, Chile, 2006; 164p. [Google Scholar]
- SAS Institute. Usage and Reference; SAS Institute: Cary, NC, USA, 1989; Version 6; 501p. [Google Scholar]
- Hirzel, J.; Meier, S.; Morales, A.; Undurraga, P.; Salazar, F. Soil chemical properties and wheat production in three Andisol with applications of materials derived from the cellulose industry. Rev. Bras. Ciência. Do Solo. 2021, 45, e0200193. [Google Scholar] [CrossRef]
- Song, Y.; Li, G.; Lowrie, R. Leaf nitrogen and phosphorus resorption improves wheat grain yield in rotation with legume crops in south-eastern Australia. Soil Tillage Res. 2021, 209, 104978. [Google Scholar] [CrossRef]
- Taveira, C.J.; Farrell, R.E.; Wagner-Riddle, C.; Ferrari, P.V.; Deen, B.; Congreves, K.A. Tracing crop residue N into subsequent crops: Insight from long-term crop rotations that vary in diversity. Field. Crops Res. 2020, 255, 107904. [Google Scholar] [CrossRef]
- Pandiaraj, T.; Selvaraj, S.; Ramu, N. Effects of crop residue management and nitrogen fertilizer on soil nitrogen and carbon content and productivity of wheat (Tritucum aestivum L.) in two cropping systems. J. Agric. Sci. Technol. 2015, 17, 249–260. [Google Scholar]
- Sainju, U.M.; Lenssen, A.W.; Allen, B.L.; Jabro, J.D.; Stevens, W.B. Crop water and nitrogen productivity in response to long-term diversified crop rotations and management systems. Agric. Water Manag. 2021, 257, 107149. [Google Scholar] [CrossRef]
- De Cárcer, P.S.; Sinaj, S.; Santonja, M.; Fossati, D.; Jeangros, B. Long-term effects of crop succession, soil tillage and climate on wheat yield and soil properties. Soil Tillage Res. 2019, 190, 209–219. [Google Scholar] [CrossRef]
- Havlin, J.L.; Tisdale, S.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers. An Introduction to Nutrient Management, 8th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2016; 520p. [Google Scholar]
- Zhang, X.; Xin, X.; Zhu, A.; Yang, W.; Zhang, J.; Ding, S.; Mu, L.; Shao, L. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil Tillage Res. 2018, 178, 99–107. [Google Scholar] [CrossRef]
- Fageria, N.K.; Nascente, A.S. Chapter Six—Management of Soil Acidity of South American Soils for Sustainable Crop Production. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 128, pp. 221–275. [Google Scholar]
- Selim, M.M. A review of advantages, disadvantages and challenges of crop rotations. Egypt. J. Agron. 2019, 41, 1–10. [Google Scholar] [CrossRef]
- Collins, S. Residue Composition Influences Nutrient Release from Crop Residues. Ph.D. Thesis, The University of Western Australia, Crawley, Australia, 2009. Available online: https://research-repository.uwa.edu.au/en/publications/residue-composition-influences-nutrient-release-from-crop-residue (accessed on 5 May 2023).
- Fang, Y.; Ren, T.; Zhang, S.; Liu, Y.; Liao, S.; Li, X.; Cong, R.; Lu, J. Rotation with oilseed rape as the winter crop enhances rice yield and improves soil indigenous nutrient supply. Soil Tillage Res. 2021, 212, 105065. [Google Scholar] [CrossRef]
- Raboanatahiry, N.; Li, H.; Yu, L.; Li, M. Rapeseed (Brassica napus): Processing, Utilization, and Genetic Improvement. Agronomy 2021, 11, 1776. [Google Scholar] [CrossRef]
- Scott, D.A.; Eberle, C.; Gesch, R.W.; Schneider, S.; Weyers, S.; Johnson, J.M.F. Yield, nitrogen, and water use benefits of diversifying crop rotations with specialty oilseeds. Agric. Ecosyst. Environ. 2021, 317, 107472. [Google Scholar] [CrossRef]
- Sarker, J.R.; Singh, B.P.; Fang, Y.; Cowie, A.L.; Dougherty, W.J.; Collins, D.; Dalal, C.; Singh, K. Tillage history and crop residue input enhanced native carbon mineralization and nutrient supply in contrasting soils under long-term farming systems. Soil Tillage Res. 2019, 193, 71–84. [Google Scholar] [CrossRef]
- Heard, J.; Hay, D. Nutrient Content, Uptake Pattern and Carbon: Nitrogen Ratios of Prairie Crops; Manitoba Agriculture, Food and Rural Initiatives: Carman, MB, Canada, 2006; Available online: http://umanitoba.ca/faculties/afs/MAC_proceedings/proceedings/2006/heard_hay_nutrient_uptake.pdf (accessed on 5 May 2023).
- Peoples, M.B.; Swan, A.D.; Goward, L.; Kirkegaard, J.A.; Hunt, J.R.; Li, G.D.; Schwenke, G.D.; Herridge, D.F.; Moodie, M.; Wilhelm, N.; et al. Soil mineral nitrogen benefits derived from legumes and comparisons of the apparent recovery of legume or fertilizer nitrogen by wheat. Soil Res. 2017, 55, 600–615. [Google Scholar] [CrossRef]
- Woźniak, A. Effect of various systems of tillage on winter barley yield, weed infestation and soil propierties. Appl. Ecol. Environ. Res. 2020, 18, 3483–3496. [Google Scholar] [CrossRef]
- Hirzel, J.; Undurraga, P.; León, L.; Panichini, M.; González, J.; Carrasco, J.; Matus, I. Different Residues Affect Wheat Nutritional Composition. J. Soil Sci. Plant Nutr. 2019, 20, 75–82. [Google Scholar] [CrossRef]
- Khakbazan, M.; Mohr, R.M.; Huang, J.; Xie, R.; Volkmar, K.M.; Tomasiewicz, D.J.; Moulin, A.P.; Derksen, D.A.; Irvine, B.R.; McLaren, D.L.; et al. Effects of crop rotation on energy use efficiency of irrigated potato with cereals, canola, and alfalfa over a 14-year period in Manitoba, Canada. Soil Tillage Res. 2019, 195, 104357. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Gülser, C.; Ekberli, I.; Candemir, F.; Demir, Z. Spatial variability of soil physical properties in a cultivated field. Eurasian J. Soil Sci. 2016, 5, 192–200. [Google Scholar] [CrossRef]
- Santiago-Mejía, B.E.; Martínez-Menez, M.R.; Rubio-Granados, E.; Vaquera-Huerta, H.; Sánchez-Escudero, J. Spatial variability of physical and chemical soil properties in a Lama-Bordo system in the High Mixtec Region of Oaxaca, México. Agric. Soc. Y Desarro. 2018, 15, 2. [Google Scholar]
- Mganga, K.Z.; Kuzyakov, Y. Land use and fertilisation affect priming in tropical andosols. Europ. J. Soil Biol. 2018, 87, 9–16. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Clay (%) | 16.7 |
Silt (%) | 44.6 |
Sand (%) | 38.7 |
Bulk density (g cm−3) | 1.00 |
pH (soil:water 1:5) | 5.52 |
Organic matter (g kg−1) | 109.2 |
EC (dS m−1) | 0.11 |
Available N (mg kg−1) | 54.1 |
Olsen P (mg kg−1) | 21.3 |
Exchangeable K (cmolc kg−1) | 0.54 |
Exchangeable Ca (cmolc kg−1) | 4.20 |
Exchangeable Mg (cmolc kg−1) | 0.36 |
Exchangeable Na (cmolc kg−1) | 0.08 |
Exchangeable Al (cmolc kg−1) | 0.12 |
Available S (mg kg−1) | 23.5 |
Fuente de Variación | Grain Yield | Residue Production |
---|---|---|
Year (Y) | 0.0068 | 0.68 |
Crop Rotation (CR) | 0.74 | 0.25 |
Residue Level (RL) | 0.39 | 0.60 |
Interaction Y × CR | 0.0088 | 0.38 |
Interaction Y × RL | 0.61 | 0.99 |
Interaction CR × RL | 0.19 | 0.64 |
Interaction Y × CR × RL | 0.66 | 0.44 |
Soil Properties | Crop Rotation (CR) | Residue Level (R) | CR × R Interaction |
---|---|---|---|
pH | 0.028 | 0.043 | 0.90 |
Organic matter | <0.01 | 0.63 | 0.99 |
Available N | <0.01 | 0.06 | 0.55 |
Available P | <0.01 | 0.10 | 0.79 |
Exchangeable Ca | 0.21 | 0.67 | 0.65 |
Exchangeable Mg | 0.29 | 0.03 | 0.53 |
Exchangeable K | 0.89 | 0.16 | 0.40 |
Exchangeable Na | 0.05 | 0.63 | 0.81 |
Exchangeable Al | <0.01 | 0.02 | 0.20 |
Available S | <0.01 | 0.87 | 0.56 |
Soil Properties | Canola–Wheat | Bean–Wheat |
---|---|---|
pH | 6.02 a | 5.94 b |
OM, g kg−1 | 101.0 a | 86.0 b |
Available N, mg kg−1 | 11.5 b | 15.2 a |
Available P, mg kg−1 | 20.4 a | 17.6 b |
Exchangeable Ca, cmol+ kg−1 | 5.25 a | 4.85 a |
Exchangeable Mg, cmol+ kg−1 | 0.52 a | 0.49 a |
Exchangeable K, cmol+ kg−1 | 0.49 a | 0.49 a |
Exchangeable Na, cmol+ kg−1 | 0.06 a | 0.06 a |
Exchangeable Al, cmol+ kg−1 | 0.07 a | 0.04 b |
Available S, mg kg−1 | 40.2 a | 32.8 b |
Soil Properties | Residue Level (%) | |||
---|---|---|---|---|
0 | 50 | 100 | 200 | |
pH | 5.90 b | 5.96 ab | 6.02 ab | 6.04 a |
OM, g kg−1 | 92.0 a | 93.0 a | 93.0 a | 95.0 a |
Available N, mg kg−1 | 15.7 a | 13.3 a | 12.3 a | 12.1 a |
Available P, mg kg−1 | 19.8 a | 20.2 a | 17.8 a | 18.4 a |
Exchangeable Ca, cmol+ kg−1 | 5.21 a | 5.17 a | 4.72 a | 5.10 a |
Exchangeable Mg, cmol+ kg−1 | 0.47 b | 0.51 ab | 0.47 b | 0.58 a |
Exchangeable K, cmol+ kg−1 | 0.45 a | 0.49 a | 0.47 a | 0.55 a |
Exchangeable Na, cmol+ kg−1 | 0.07 a | 0.06 a | 0.06 a | 0.06 a |
Exchangeable Al, cmol+ kg−1 | 0.07 a | 0.06 ab | 0.05 b | 0.05 b |
Available S, mg kg−1 | 38.3 a | 35.3 a | 36.3 a | 36.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirzel, J.; Undurraga, P.; Vera, C.; Matus, I.; Michelow, P. Three Biannual Rotations Cycles with Residue Incorporation Affect Wheat Production and Chemical Soil Properties. Plants 2023, 12, 4194. https://doi.org/10.3390/plants12244194
Hirzel J, Undurraga P, Vera C, Matus I, Michelow P. Three Biannual Rotations Cycles with Residue Incorporation Affect Wheat Production and Chemical Soil Properties. Plants. 2023; 12(24):4194. https://doi.org/10.3390/plants12244194
Chicago/Turabian StyleHirzel, Juan, Pablo Undurraga, Carola Vera, Iván Matus, and Pascal Michelow. 2023. "Three Biannual Rotations Cycles with Residue Incorporation Affect Wheat Production and Chemical Soil Properties" Plants 12, no. 24: 4194. https://doi.org/10.3390/plants12244194
APA StyleHirzel, J., Undurraga, P., Vera, C., Matus, I., & Michelow, P. (2023). Three Biannual Rotations Cycles with Residue Incorporation Affect Wheat Production and Chemical Soil Properties. Plants, 12(24), 4194. https://doi.org/10.3390/plants12244194