Polyphenol and Tryptophan Contents of Purple Corn (Zea mays L.) Variety KND and Butterfly Pea (Clitoria ternatea) Aqueous Extracts: Insights into Phytochemical Profiles with Antioxidant Activities and PCA Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Profiles
2.2. Antioxidant Capacities
2.3. Pearson’s Correlation Coefficients Analysis
2.4. Classification Analysis Based on the Principal Component Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Materials and Sample Extraction
3.3. Determination of Total Anthocyanin Content (TAC)
3.4. Total Phenolic Content (TPC)
3.5. High Performance Liquid Chromatography (HPLC) Analysis
3.5.1. Identification and Quantification of the Phenolic Compounds by HPLC
3.5.2. Delphinidin Analyzed by HPLC
3.5.3. Tryptophan Serotonin and Melatonin Analyzed by HPLC-FD
3.6. Determination of Antioxidant Capacity
3.6.1. ABTS Assay
3.6.2. DPPH Assay
3.6.3. FRAP Assay
3.7. Classification Analysis
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Jeyaraj, E.J.; Lim, Y.Y.; Choo, W.S. Effect of Organic Solvents and Water Extraction on the Phytochemical Profile and Antioxidant Activity of Clitoria ternatea Flowers. ACS Food Sci. Technol. 2021, 1, 1567–1577. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Paredes, S.D.; Barriga, C.; Reiter, R.J.; Rodríguez, A.B. Assessment of the Potential Role of Tryptophan as the Precursor of Serotonin and Melatonin for the Aged Sleep-Wake Cycle and Immune Function: Streptopelia risoria as a Model. Int. J. Tryptophan Res. 2009, 2, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Bhowal, B.; Bhattacharjee, A.; Goswami, K.; Sanan-Mishra, N.; Singla-Pareek, S.L.; Kaur, C.; Sopory, S. Serotonin and Melatonin Biosynthesis in Plants: Genome-Wide Identification of the Genes and Their Expression Reveal a Conserved Role in Stress and Development. Int. J. Mol. Sci. 2021, 22, 11034. [Google Scholar] [CrossRef]
- Dong, J.; Cai, L.; Zhu, X.; Huang, X.; Yin, T.; Fang, H.; Ding, Z. Antioxidant Activities and Phenolic Compounds of Cornhusk, Corncob and Stigma Maydis. J. Braz. Chem. Soc. 2014, 25, 1956–1964. [Google Scholar] [CrossRef]
- Sarepoua, E.; Tangwongchai, R.; Suriharn, B.; Lertrat, K. Relationships between Phytochemicals and Antioxidant Activity in Corn Silk. Int. Food Res. J. 2013, 20, 2073–2079. [Google Scholar]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Hano, C.; Tungmunnithum, D. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef]
- Mohamed, G.; Lertrat, K.; Suriharn, B. Phenolic Compound, Anthocyanin Content, and Antioxidant Activity in Some Parts of Purple Waxy Corn across Maturity Stages and Locations. Int. Food Res. J. 2017, 24, 490–497. [Google Scholar]
- Colombo, R.; Ferron, L.; Papetti, A. Colored Corn: An Up-Date on Metabolites Extraction, Health Implication, and Potential Use. Molecules 2021, 26, 199. [Google Scholar] [CrossRef]
- Khamphasan, P.; Lomthaisong, K.; Harakotr, B.; Ketthaisong, D.; Scott, M.; Lertrat, K.; Suriharn, B. Genotypic Variation in Anthocyanins, Phenolic Compounds, and Antioxidant Activity in Cob and Husk of Purple Field Corn. Agronomy 2018, 8, 271. [Google Scholar] [CrossRef]
- Kapcum, C.; Uriyapongson, S.; Uriyapongson, J. Phenolics, Anthocyanins and Antioxidant Activities in Waste Products from Different Parts of Purple Waxy Corn (Zea mays L.). Songklanakarin J. Sci. Technol. 2021, 43, 398–405. [Google Scholar]
- Chaiittianan, R.; Sutthanut, K.; Rattanathongkom, A. Purple Corn Silk: A Potential Anti-Obesity Agent with Inhibition on Adipogenesis and Induction on Lipolysis and Apoptosis in Adipocytes. J. Ethnopharmacol. 2017, 201, 9–16. [Google Scholar] [CrossRef]
- Rimdusit, T.; Thapphasaraphong, S.; Puthongking, P.; Priprem, A. Effects of Anthocyanins and Melatonin From Purple Waxy Corn By-Products on Collagen Production by Cultured Human Fibroblasts. Nat. Prod. Commun. 2019, 14, 1934578X1986351. [Google Scholar] [CrossRef] [Green Version]
- Kosai, P.; Sirisidthi, K.; Jiraungkoorskul, K.; Kk, C. Review on Ethnomedicinal Uses of Memory Boosting Herb, Butterfly Pea, Clitoria ternatea. J. Nat. Remedies 2015, 15, 6. [Google Scholar]
- Gupta, G.; Chahal, J.; Bhatia, M. Clitoria ternatea L.: Old and New Aspects. J. Pharm. Res. 2010, 3, 2610–2614. [Google Scholar]
- Mukherjee, P.K.; Kumar, V.; Kumar, N.S.; Heinrich, M. The Ayurvedic Medicine Clitoria ternatea-From Traditional Use to Scientific Assessment. J. Ethnopharmacol. 2008, 120, 291–301. [Google Scholar] [CrossRef]
- Vankar, P.S.; Srivastava, J. Evaluation of Anthocyanin Content in Red and Blue Flowers. Int. J. Food Eng. 2010, 6. [Google Scholar] [CrossRef]
- Al-Snafi, D.A.E. Pharmacological Importance of Clitoria ternatea—A Review. IOSR J. Pharm. 2016, 6, 68–83. [Google Scholar]
- Gollen, B.; Mehla, J.; Gupta, P. Clitoria ternatea Linn: A Herb with Potential Pharmacological Activities: Future Prospects as Therapeutic Herbal Medicine. J. Pharma Rep. 2018, 3, 1–8. [Google Scholar]
- Luo, Y.; Wang, Q. Bioactive Compounds in Corn. In Cereals and Pulses; Yu, L., Tsao, R., Shahidi, F., Eds.; Wiley: Oxford, UK, 2012; pp. 85–103. ISBN 978-0-8138-1839-9. [Google Scholar]
- Nawaz, H.; Muzaffar, S.; Aslam, M.; Ahmad, S. Phytochemical Composition: Antioxidant Potential and Biological Activities of Corn. In Corn—Production and Human Health in Changing Climate; Amanullah, Fahad, S., Eds.; InTech: Rijeka, Croatia, 2018; ISBN 978-1-78984-155-8. [Google Scholar]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant Phenolics: Recent Advances on Their Biosynthesis, Genetics, and Ecophysiology. Plant. Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Feduraev, P.; Chupakhina, G.; Maslennikov, P.; Tacenko, N.; Skrypnik, L. Variation in Phenolic Compounds Content and Antioxidant Activity of Different Plant Organs from Rumex crispus L. and Rumex obtusifolius L. at Different Growth Stages. Antioxidants 2019, 8, 237. [Google Scholar] [CrossRef] [Green Version]
- Priprem, A.; Limsitthichaikoon, S.; Thappasarapong, S. Anti-Inflammatory Activity of Topical Anthocyanins by Complexation and Niosomal Encapsulation. Int. J. Chem. Mol. Eng. 2015, 9, 142–146. [Google Scholar]
- Navarro, A.; Torres, A.; Fernández-Aulis, F.; Peña, C. Bioactive Compounds in Pigmented Maize. In Corn—Production and Human Health in Changing Climate; Amanullah, F.S., Ed.; InTech: Rijeka, Croatia, 2018; ISBN 978-1-78984-155-8. [Google Scholar]
- Maneesai, P.; Iampanichakul, M.; Chaihongsa, N.; Poasakate, A.; Potue, P.; Rattanakanokchai, S.; Bunbupha, S.; Chiangsaen, P.; Pakdeechote, P. Butterfly Pea Flower (Clitoria ternatea Linn.) Extract Ameliorates Cardiovascular Dysfunction and Oxidative Stress in Nitric Oxide-Deficient Hypertensive Rats. Antioxidants 2021, 10, 523. [Google Scholar] [CrossRef]
- Priprem, A.; Damrongrungruang, T.; Limsitthichaikoon, S.; Khampaenjiraroch, B.; Nukulkit, C.; Thapphasaraphong, S.; Limphirat, W. Topical Niosome Gel Containing an Anthocyanin Complex: A Potential Oral Wound Healing in Rats. AAPS PharmSciTech 2018, 19, 1681–1692. [Google Scholar] [CrossRef]
- Thapphasaraphong, S.; Rimdusit, T.; Priprem, A.; Puthongking, P. Crops of Waxy Purple Corn: A Valuable Source of Antioxidative Phytochemicals. IJAAEE 2016, 3, 73–77. [Google Scholar]
- Chen, Z.; Zhang, R.; Shi, W.; Li, L.; Liu, H.; Liu, Z.; Wu, L. The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. J. Agric. Food Chem. 2019, 67, 11288–11306. [Google Scholar] [CrossRef]
- Badria, F.A. Melatonin, Serotonin, and Tryptamine in Some Egyptian Food and Medicinal Plants. J. Med. Food 2002, 5, 153–157. [Google Scholar] [CrossRef]
- Hattori, A.; Migitaka, H.; Ego, M.; Itoh, M.; Yamamoto, K.; Hara, M.; Suzuki, T. Identification of Melatonin in Plants and Its Effects on Plasma Melatonin Levels and Binding to Melatonin Receptors in Vertebrates. J. Biochem. Mol. 1995, 35, 627–634. [Google Scholar]
- Chaiyasut, C.; Sivamaruthi, B.S.; Pengkumsri, N.; Sirilun, S.; Peerajan, S.; Chaiyasut, K.; Kesika, P. Anthocyanin Profile and Its Antioxidant Activity of Widely Used Fruits, Vegetables, and Flowers in Thailand. Asian J. Pharm. Clin. Res. 2016, 9, 218–224. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-Antioxidant Activity Relationship of Methoxy, Phenolic Hydroxyl, and Carboxylic Acid Groups of Phenolic Acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandi, A.; Kalappan, V.M. Pharmacological and Therapeutic Applications of Sinapic Acid—An Updated Review. Mol. Biol. Rep. 2021, 48, 3733–3745. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Sharopov, F.; Fokou, P.; Kobylinska, A.; Jonge, L.; Tadio, K.; Sharifi-Rad, J.; Posmyk, M.; Martorell, M.; Martins, N.; et al. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells 2019, 8, 681. [Google Scholar] [CrossRef] [Green Version]
- Thiraphatthanavong, P.; Wattanathorn, J.; Muchimapura, S.; Thukham-mee, W.; Lertrat, K.; Suriharn, B. The Combined Extract of Purple Waxy Corn and Ginger Prevents Cataractogenesis and Retinopathy in Streptozotocin-Diabetic Rats. Oxid. Med. Cell. Longev. 2014, 2014, 789406. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, W. Identification and Antioxidant Activity of Anthocyanins Extracted from the Seed and Cob of Purple Corn (Zea mays L.). Innov. Food Sci. Emerg. Technol. 2010, 11, 169–176. [Google Scholar] [CrossRef]
- Song, F.L.; Gan, R.Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.B. Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef]
- Siriparu, P.; Panyatip, P.; Pota, T.; Ratha, J.; Yongram, C.; Srisongkram, T.; Sungthong, B.; Puthongking, P. Effect of Germination and Illumination on Melatonin and Its Metabolites, Phenolic Content, and Antioxidant Activity in Mung Bean Sprouts. Plants 2022, 11, 2990. [Google Scholar] [CrossRef]
- Goufo, P.; Pereira, J.; Figueiredo, N.; Oliveira, M.B.P.P.; Carranca, C.; Rosa, E.A.S.; Trindade, H. Effect of Elevated Carbon Dioxide (CO2) on Phenolic Acids, Flavonoids, Tocopherols, Tocotrienols, γ-Oryzanol and Antioxidant Capacities of Rice (Oryza sativa L.). J. Cereal Sci. 2014, 59, 15–24. [Google Scholar] [CrossRef]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Arabshahi-Delouee, S.; Urooj, A. Antioxidant Properties of Various Solvent Extracts of Mulberry (Morus indica L.) Leaves. Food Chem. 2007, 102, 1233–1240. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Hanif, S.; Mahmood, Z.; Anwar, F.; Jamil, A. Antioxidant and Antimicrobial Activities of Chowlai (Amaranthus viridis L.) Leaf and Seed Extracts. J. Med. Plants Res. 2012, 6, 822. [Google Scholar] [CrossRef]
Sample | Phenolics Contents | ||||||||
---|---|---|---|---|---|---|---|---|---|
GA | PCCA | p-HO | ChA | VA | p-CA | FA | SA | Relative Phenolic Abundance | |
(mg/g Extract) | |||||||||
C | NQ | 2.60 ± 0.01 e | 1.03 ± 0.06 c | 0.65 ± 0.00 b | 1.23 ± 0.01 e | 1.61 ± 0.00 f | 0.96 ± 0.00 d | NQ | 8.08 ± 0.06 f |
H | NQ | 2.05 ± 0.01 c | 0.89 ± 0.01 b | 1.03 ± 0.01 e | 0.76 ± 0.01 c | 1.75 ± 0.00 h | 1.61 ± 0.01 f | NQ | 8.08 ± 0.02 f |
S | 0.54 ± 0.01 d | 5.84 ± 0.06 g | 2.68 ± 0.03 e | NQ | 0.56 ± 0.02 b | NQ | NQ | ND | 9.62 ± 0.10 g |
CT | 0.58 ± 0.00 f | NQ | NQ | ND | NQ | NQ | NQ | 3.65 ± 0.02 d | 4.23 ± 0.02 b |
CT + C | NQ | 0.58 ± 0.01 a | NQ | NQ | 0.52 ± 0.01 a | NQ | NQ | 1.81 ± 0.02 b | 2.91 ± 0.01 a |
CT + H | 0.57 ± 0.00 e | 0.59 ± 0.00 a | NQ | NQ | NQ | 0.63 ± 0.01 a | 0.57 ± 0.01 a | 1.84 ± 0.02 b | 4.20 ± 0.01 b |
CT + S | 0.59 ± 0.00 g | 2.07 ± 0.01 c | 0.78 ± 0.00 a | ND | NQ | NQ | NQ | 2.01 ± 0.02 c | 5.45 ± 0.01 c |
C + H | NQ | 2.17 ± 0.01 d | 0.85 ± 0.02 ab | 0.79 ± 0.01 d | 0.92 ± 0.01 d | 1.67 ± 0.01 g | 1.07 ± 0.02 e | NQ | 7.47 ± 0.04 e |
C + S | 0.51 ± 0.00 c | 5.01 ± 0.02 f | 2.48 ± 0.03 d | ND | 0.87 ± 0.01 d | 0.91 ± 0.01 c | 0.68 ± 0.01 b | NQ | 10.46 ± 0.06 i |
H + S | 0.49 ± 0.00 a | 4.95 ± 0.02 f | 2.55 ± 0.02 d | 0.68 ± 0.00 c | 0.79 ± 0.05 c | 0.99 ± 0.01 d | 0.73 ± 0.00 b | NQ | 11.17 ± 0.04 j |
C + H + S | NQ | 1.71 ± 0.01 b | 5.01 ± 0.04 f | 0.61 ± 0.01 a | 0.81 ± 0.01 c | 1.12 ± 0.01 e | 0.83 ± 0.02 c | NQ | 10.10 ± 0.05 h |
Mixed | 0.50 ± 0.00 b | 2.06 ± 0.01 c | 0.80 ± 0.04 a | NQ | NQ | 0.72 ± 0.01 b | 0.59 ± 0.00 a | 1.41 ± 0.02 a | 6.08 ± 0.03 d |
Compound | Amount (µg/g Extract) | |||
---|---|---|---|---|
Purple Corn Cob (C) Extract | Purple Corn Husk (H) Extract | Purple Corn Silk (S) Extract | Butterfly Pea (CT) Extract | |
Serotonin | 3.62 ± 0.27 b | 3.05 ± 0.06 a | NQ | NQ |
Tryptophan | 621.89 ± 7.00 c | 24.82 ± 1.20 b | 11.58 ± 0.37 a | 26.74 ± 0.02 b |
Melatonin | 7.85 ± 0.52 b | 3.25 ± 0.04 a | NQ | NQ |
Sample | IC50 Value (µg/mL) | FRAP Assay (mmole/g Extract) | |
---|---|---|---|
ABTS Assay | DPPH Assay | ||
C | 16.64 ± 0.30 e | 45.80 ± 1.59 f | 11.77 ± 0.20 c |
H | 24.52 ± 0.12 h | 74.20 ± 0.30 i | 8.91 ± 0.15 d |
S | 8.58 ± 0.05 b | 17.24 ± 0.43 b | 17.48 ± 0.30 b |
CT | 74.60 ± 0.34 k | 207.68 ± 2.34 l | 3.36 ± 0.07 h |
CT + C | 35.30 ± 0.10 i | 97.50 ± 0.77 j | 3.04 ± 0.04 hi |
CT + H | 46.60 ± 0.19 j | 130.46 ± 0.93 k | 2.77 ± 0.02 i |
CT + S | 20.67 ± 0.31 f | 71.16 ± 0.12 h | 4.91 ± 0.16 g |
C + H | 20.79 ± 0.34 fg | 53.06 ± 0.06 g | 6.31 ± 0.23 f |
C + S | 11.91 ± 0.06 c | 23.56 ± 0.25 c | 8.90 ± 0.11 d |
H + S | 11.84 ± 0.36 c | 34.40 ± 0.21 d | 8.40 ± 0.22 e |
C + H + S | 13.41 ± 0.09 d | 40.17 ± 1.48 e | 8.18 ± 0.15 e |
Mixed | 21.43 ± 0.12 g | 75.93 ± 0.94 i | 5.31 ± 0.02 g |
Trolox | 4.25 ± 0.08 a | 7.32 ± 0.26 a | 44.41 ± 0.11 a |
Phytochemical Compositions | Pearson’s Correlation Coefficient (r) | ||
---|---|---|---|
ABTS | DPPH | FRAP | |
Total phenolic content (TPC) | 0.739 * | 0.960 * | 0.823 * |
Total anthocyanin content (TAC) | 0.098 | 0.170 | 0.613 * |
Delphinidin (Del) | 0.229 | 0.334 | 0.627 * |
Tryptophan (Trp) | 0.113 | −0.005 | 0.331 |
Serotonin (5-HT) | −0.016 | −0.047 | 0.413 |
Melatonin (MLT) | −0.150 | −0.088 | 0.438 |
Gallic acid (GA) | 0.033 | 0.191 | −0.078 |
Protocatechuic acid (PCCA) | 0.663 * | 0.942 * | 0.794 * |
p-Hydroxybenzoic acid (p-HO) | 0.519 | 0.686 * | 0.545 |
Chlorogenic acid (ChA) | 0.039 | −0.014 | 0.244 |
Vanillic acid (VA) | 0.370 | 0.457 | 0.560 |
p-Coumaric acid (p-CA) | −0.092 | 0.057 | 0.199 |
Ferulic acid (FA) | −0.191 | 0.014 | 0.154 |
Sinapic acid (SA) | −0.492 | −0.703 * | −0.699 * |
Sample Code | Dried Material (g) | Water (mL) | |||
---|---|---|---|---|---|
Butterfly Pea (CT) | Silk (S) | Husk (H) | Cob (C) | ||
C | - | - | - | 6.50 | 390 |
H | - | - | 6.50 | - | 390 |
S | - | 6.50 | - | - | 390 |
CT | 6.50 | - | - | - | 390 |
CT + C | 3.25 | - | - | 3.25 | 390 |
CT + H | 3.25 | - | 3.25 | - | 390 |
CT + S | 3.25 | 3.25 | - | - | 390 |
C + H | - | - | 3.25 | 3.25 | 390 |
C + S | - | 3.25 | - | 3.25 | 390 |
H + S | - | 3.25 | 3.25 | - | 390 |
C + H + S | - | 2.17 | 2.17 | 2.17 | 390 |
Mixed * | 1.65 | 1.65 | 1.65 | 1.65 | 390 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratha, J.; Yongram, C.; Panyatip, P.; Powijitkul, P.; Siriparu, P.; Datham, S.; Priprem, A.; Srisongkram, T.; Puthongking, P. Polyphenol and Tryptophan Contents of Purple Corn (Zea mays L.) Variety KND and Butterfly Pea (Clitoria ternatea) Aqueous Extracts: Insights into Phytochemical Profiles with Antioxidant Activities and PCA Analysis. Plants 2023, 12, 603. https://doi.org/10.3390/plants12030603
Ratha J, Yongram C, Panyatip P, Powijitkul P, Siriparu P, Datham S, Priprem A, Srisongkram T, Puthongking P. Polyphenol and Tryptophan Contents of Purple Corn (Zea mays L.) Variety KND and Butterfly Pea (Clitoria ternatea) Aqueous Extracts: Insights into Phytochemical Profiles with Antioxidant Activities and PCA Analysis. Plants. 2023; 12(3):603. https://doi.org/10.3390/plants12030603
Chicago/Turabian StyleRatha, Juthamat, Chawalit Yongram, Panyada Panyatip, Patcharapol Powijitkul, Pimolwan Siriparu, Suthida Datham, Aroonsri Priprem, Tarapong Srisongkram, and Ploenthip Puthongking. 2023. "Polyphenol and Tryptophan Contents of Purple Corn (Zea mays L.) Variety KND and Butterfly Pea (Clitoria ternatea) Aqueous Extracts: Insights into Phytochemical Profiles with Antioxidant Activities and PCA Analysis" Plants 12, no. 3: 603. https://doi.org/10.3390/plants12030603