Modeling for Predicting the Potential Geographical Distribution of Three Ephedra Herbs in China
Abstract
:1. Introduction
2. Results
2.1. The SDM and Its Accuracy
2.2. Important Environmental Variables
2.3. Potential Suitable Area Distribution for Three Ephedra Herbs Species
3. Discussion
3.1. Model Results and Verification
3.2. Effects of Environmental Variables on Three Ephedra Herbs
3.3. Conservation Strategies for Ephedra
4. Material and Methods
4.1. Occurrence Collection
4.2. Environmental Parameters
4.3. Model Implementation and Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, Z.F.; Li, Y.J.; Zhang, J.H.; Wang, Q.Q. Comparison on functions of wind break a sand fixation four plant species in Minqin desert. Pratacultural Sci. 2012, 29, 358–363. [Google Scholar]
- Zhang, S. Study on Plant Diversity and Conservation in Saihanwula Nature Reserve, Inner Mongolia. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2007. [Google Scholar]
- Shen, W.T. Chinese Herbal of Takwan (Daguan Bencao) Sung (Song Dynasty) Compiled by Dr. Kimura and Dr. Masao Yosizaki with New index; Hirokawa Publishing Company: Tokyo, Japan, 1970; pp. 182–183. [Google Scholar]
- Committee of the Chinese Pharmacopeia. Pharmacopoeia of the People’s Republic of China (2020), 2nd ed.; Chemical Industry Press: Beijing, China, 2020; pp. 333–334. [Google Scholar]
- Wang, Y.H.; Wang, Q.H.; Xia, Y.G.; Kuang, H.X. Evaluation on the Property and Flavor Pharmacology of the Chemical Split Fraction of Ephedrae Herba—Study on the ‘Pungent Dispersing Bitter Evacuant’Antiasthmatic Effect of the Chemical Split Fraction of Ephedrae Herba. Chin. J. Exp. Tradit. Med. 2011, 17, 136–139. [Google Scholar]
- Xiu, L. Study on the Construction of Comprehensive Evaluation Model of Ephedra Veracity Quality. Master’s Thesis, Ningxia Medical University, Ningxia, China, 2015. [Google Scholar]
- Wang, Y.; Li, C.Y.; Yu, S.H. Effects on the structure of cerebral temporal lobe cortex and capability of learning and memory of filial mice after administration of heroin and ephedrine. Acta Anat. Sin. 2009, 40, 724–731. [Google Scholar] [CrossRef]
- Houssiau, F.A.; Vasconcelos, C.; D’Cruz, D.; Sebastiani, G.D.; Garrido, E.D.; Danieli, M.G.; Abramovicz, D.; Blockmans, D.; Mathieu, A.; Direskeneli, H.; et al. Early response to immunosuppressive therapy predicts good renal outcome in lupus nephritis lessons from long-term follow up of patients in the Euro-Lupus Nephritis Trial—Lessons from long-term follow up of patients in the Euro-Lupus Nephritis Trial. Arthritis Rheum. 2004, 50, 3934–3940. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.W.; Lim, D.W.; Chang, J.U.; Kim, J.E. The Combination of Ephedrae herba and Coicis semen in Gambihwan Attenuates Obesity and Metabolic Syndrome in High-Fat Diet-Induced Obese Mice. Evid.-Based Complement. Altern. Med. 2018, 2018, 5614091. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Advances in pharmacological action and quality control of Yaotongning Capsule. Chin. Tradit. Herb. Drugs 2019, 50, 2224–2228. [Google Scholar]
- Chen, P.Y.; Zhang, G.Y.; Chen, S.; Di, J.P.; Yang, L.Y.; Liu, Y.; Liu, A. Study on quality evaluation method of classical prescription Mahuang Decoction primary standard substances. China J. Chin. Mater. Med. 2020, 45, 5589–5598. [Google Scholar] [CrossRef]
- Wu, Z.; Kong, X.; Zhang, T.; Ye, J.; Fang, Z.; Yang, X. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-alpha-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine. Eur. J. Pharmacol. 2014, 724, 112–121. [Google Scholar] [CrossRef]
- Tuvshintogtokh, I.; Ariungerel, D. Degradation of Mongolian Grassland Vegetation Under Overgrazing by Livestock and Its Recovery by Protection from Livestock Grazing; Springer: Tokyo, Japan, 2013; pp. 115–130. [Google Scholar] [CrossRef]
- Zhang, X.Y. Study on Vegetation Background Value and Succession Rule in Northwest China. Ph.D. Thesis, Northwest A & F University, Shaanxi, China, 2003. [Google Scholar]
- Bai, Y.F.; Huang, J.H.; Zheng, S.X.; Pan, Q.M.; Zhang, L.X.; Zhou, H.K.; Xu, H.L.; Li, Y.L.; Ma, J. Drivers and regulating mechanisms of grassland and desert ecosystem services. Chin. J. Plant Ecol. 2014, 38, 93–102. Available online: https://www.plant-ecology.com/EN/Y2014/V38/I2/93 (accessed on 1 July 2022).
- Zhang, Y.Q.; Si, J.N.; He, B.Y. Present Siluation of Ephedra Resources and Their Exploiting Countermeasures. World Sci. Technol. 2002, 40, 63–68. [Google Scholar]
- Moraitis, M.L.; Valavanis, V.D.; Karakassis, I. Modelling the effects of climate change on the distribution of benthic indicator species in the Eastern Mediterranean Sea. Sci. Total Environ. 2019, 667, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Michela, P.; Piero, V.; Butchart, S.H.M.; Watson, J.E.M.; Cassola, F.M.; Carlo, R. Author correction: Species’ traits influenced their response to recent climate change. Nat. Clim. Chang. 2018, 8, 750. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Y.; Dong, P.; Zhang, D.; Lei, G. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: Determining conservation and reforestation involvement. For. Ecol. Manag. 2020, 478, 118517. [Google Scholar] [CrossRef]
- Qin, A.; Liu, B.; Guo, Q.; Bussmann, R.W.; Ma, F.; Jian, Z.; Xu, G.; Pei, S. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 2017, 10, 139–146. [Google Scholar] [CrossRef]
- Franklin, J. Species distribution models in conservation biogeography: Developments and challenges. Divers. Distrib. 2013, 19, 1217–1223. [Google Scholar] [CrossRef]
- Escobar, L.E.; Craft, M.E. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling. Front. Microbiol. 2016, 7, 1174. [Google Scholar] [CrossRef]
- Li, G.Q.; Liu, C.C.; Liu, Y.G.; Yang, J. Advances in theoretical issues of species distribution models. Acta Ecol. Sin. 2013, 33, 4827–4835. [Google Scholar] [CrossRef]
- Soberon, J.; Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. USA 2009, 106, 19644–19650. [Google Scholar] [CrossRef]
- Stockwell, D.; Peters, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudik, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Semwal, D.P.; Pandey, A.; Gore, P.G.; Ahlawat, S.P.; Yadav, S.K.; Kumar, A. Habitat prediction mapping using BioClim model for prioritizing germplasm collection and conservation of an aquatic cash crop ‘makhana’ (Euryale ferox Salisb.) in India. Genet. Resour. Crop Evol. 2021, 68, 3445–3456. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, J.E.; DiTommaso, A.; Wang, R.L.; Wu, R.S. Predicting invasions of Wedelia trilobata (L.) Hitchc. with Maxent and GARP models. J. Plant Res. 2015, 128, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, H.; Lyz, Z. Evaluating the performance of species distribution models Biomod2 and MaxEnt using the giant panda distribution data. Chin. J. Appl. Ecol. 2017, 28, 4001–4006. [Google Scholar] [CrossRef]
- Aguirre-Gutierrez, J.; Carvalheiro, L.G.; Polce, C.; van Loon, E.E.; Raes, N.; Reemer, M.; Biesmeijer, J.C. Fit-for-Purpose: Species Distribution Model Performance Depends on Evaluation Criteria—Dutch Hoverflies as a Case Study. PLoS ONE 2013, 8, e63708. [Google Scholar] [CrossRef]
- Thuiller, W. BIOMOD—Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Chang. Biol. 2003, 9, 1353–1362. [Google Scholar] [CrossRef]
- Guo, K.Q.; Jiang, X.L.; Xu, G.B. Potential suitable distribution area of Quercus lamellosa and the influence of climate change. Chin. J. Ecol. 2021, 40, 2563–2574. [Google Scholar] [CrossRef]
- Guo, Y.L.; Zhao, Z.F.; Li, X. Moderate warming will expand the suitable habitat of Ophiocordyceps sinensis and expand the area of O. sinensis with high adenosine content. Sci. Total Environ. 2021, 787, 147605. [Google Scholar] [CrossRef]
- Lv, F. Prediction of Potential Distribution Area and Chemical Composition of Invasive Alien Plant Solanum Rocalyces. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2020. [Google Scholar]
- Uusitalo, R.; Siljander, M.; Culverwell, C.L.; Mutai, N.C.; Forbes, K.M.; Vapalahti, O.; Pellikka, P.K.E. Predictive mapping of mosquito distribution based on environmental and anthropogenic factors in Taita Hills, Kenya. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 84–92. [Google Scholar] [CrossRef]
- Resquin, F.; Duque-Lazo, J.; Acosta-Munoz, C.; Rachid-Casnati, C.; Carrasco-Letelier, L.; Navarro-Cerrillo, R.M. Modelling Current and Future Potential Habitats for Plantations of Eucalyptus grandis Hill ex Maiden and E. dunnii Maiden in Uruguay. Forests 2020, 11, 948. [Google Scholar] [CrossRef]
- Institute of Botany, the Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 1979; pp. 468–469. [Google Scholar]
- Hong, H.; Chen, H.B.; Yang, D.H.; Shang, M.Y.; Wang, X.; Cai, S.Q.; Mikage, M. Comparison of contents of five ephedrine alkaloids in three official origins of Ephedra Herb in China by high-performance liquid chromatography. J. Nat. Med. 2011, 65, 623–628. [Google Scholar] [CrossRef]
- Ma, X.H.; Lu, Y.Y.; Huang, D.D.; Zhu, T.T.; Lv, P.L.; Jin, L. Ecology suitability study of Ephedra intermedia. China J. Chin. Mater. Med. 2017, 42, 2068–2071. [Google Scholar] [CrossRef]
- He, P.; Li, J.Y.; Li, Y.F.; Xu, N.; Gao, Y.; Guo, L.F.; Huo, T.T.; Peng, C.; Meng, F.Y. Habitat protection and planning for three Ephedra using the MaxEnt and Marxan models. Ecol. Indic. 2021, 133, 108399. [Google Scholar] [CrossRef]
- Pearson, R.G.; Thuiller, W.; Araujo, M.B.; Martinez-Meyer, E.; Brotons, L.; McClean, C.; Miles, L.; Segurado, P.; Dawson, T.P.; Lees, D.C. Model-based uncertainty in species range prediction. J. Biogeogr. 2006, 33, 1704–1711. [Google Scholar] [CrossRef]
- Gao, Y.; Li, J.Y.; Liu, Y.Z.; Meng, F.Y. Potential geagraphical distribution of Salvia miltiorrhiza Bunge based on ensemble model. Plant Sci. J. 2021, 39, 571–579. [Google Scholar] [CrossRef]
- Wu, Y.N.; Ma, Y.J.; Liu, W.L.; Li, X.Y.; Wang, P. Modelling the Distribution of Plateau Pika (Ochotona curzoniae) in Qinghai Lake Basin Using BIOMOD. J. Zool. 2017, 52, 390–402. [Google Scholar] [CrossRef]
- Bi, Y.Q.; Zhang, M.X.; Chen, Y.; Wang, A.X. Applying Biomod2 for modeling of species suitable habitats: A case study of Paeonia lactiflora in China. China J. Chin. Mater. Med. 2022, 47, 376–384. [Google Scholar] [CrossRef]
- Jimenez-Valverde, A.; Lobo, J.M.; Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 2008, 14, 885–890. [Google Scholar] [CrossRef]
- Rather, Z.A.; Ahmad, R.; Dar, A.R.; Dar, T.U.H.; Khuroo, A.A. Predicting shifts in distribution range and niche breadth of plant species in contrasting arid environments under climate change. Environ. Monit. Assess. 2021, 193, 427. [Google Scholar] [CrossRef] [PubMed]
- Minami, M.; Taichi, F.; Honda, Y.; Ueno, K.; Shinozaki, J.; Itoh, S.; Takano, A.; Berdiyar, J.; Maltsev, I.I.; Nakane, T. Environmental and soil characteristics in Ephedra habitats of Uzbekistan. J. Nat. Med. 2021, 75, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, M.; Fois, M.; Fenu, G.; Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crep. in Egypt. Ecol. Inform. 2019, 50, 68–75. [Google Scholar] [CrossRef]
- Wu, M.Z. Investigation of Wild Ephedra Resources in Gansu Province. Master’s Thesis, Lanzhou University, Lanzhou, China, 2017. [Google Scholar]
- Li, S.; Yang, D.L.; Wang, J.Z.; Liu, G.F. Cultivation, development and utilization of Ephedra resources in China. Gansu Agric. Sci. Techn 2004, 3, 51–53. [Google Scholar] [CrossRef]
- Kakiuchi, N.; Mikage, M.; Ickert-Bond, S.; Maier-Stolte, M.; Freitag, H. A molecular phylogenetic study of the Ephedra distachya/E. sinica complex in Eurasia. Willdenowia 2011, 41, 203–215. [Google Scholar] [CrossRef]
- Hong, H.; Chen, H.B.; Xu, F.; Zang, X.Y.; Yang, D.H. Surveys on resources and vatieties on Chinese markets of crude drug Mahuang. China J. Chin. Mater. Med. 2011, 36, 1129–1132. [Google Scholar]
- Cheng, D.D.; Guo, P.; Zhao, J. Studies of Seasonal Variation of Alkaloids Contained in Ephedra sinica Herba in Inner Mongolia. J. China Pharm. Univ. 1992, 1992, 82–87. [Google Scholar]
- Saito, S.Y.; Maruyama, Y.; Kamiyama, S.; Nakahata, N.; Ohizumi, Y. Ephedrae herba in Mao-Bushi-Saishin-To inhibits IgE-mediated histamine release and increases cAMP content in RBL-2H3 cells. J. Pharmacol. Sci. 2004, 95, 41–46. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.J.; Liu, B.Y.; Ye, A.Z.; Yuan, H. A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma 2012, 171, 85–91. [Google Scholar] [CrossRef]
- Title, P.O.; Bemmels, J.B. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 2018, 41, 291–307. [Google Scholar] [CrossRef]
- Wang, R.L.; Li, Q.; Feng, Z.H.; Shi, Z.P. Predicting potential ecological distribution of Locusta migratoria tibetensis in China using MaxEnt ecological niche modeling. Acta Ecol. Sin. 2017, 37, 8556–8566. [Google Scholar]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Monserud, R.A.; Leemans, R. Comparing global vegetation maps with the kappa-statistic. Ecol. Model. 1992, 62, 275–293. [Google Scholar] [CrossRef]
- Wang, Y.S.; Xie, B.Y.; Wan, F.H.; Xiao, J.L. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodivers. Sci. 2007, 4, 365–372. [Google Scholar] [CrossRef]
- Pavlovic, L.; Stojanovic, D.; Mladenovic, E.; Lakicevic, M.; Orlovic, S. Potential Elevation Shift of the European Beech Stands (Fagus sylvatica L.) in Serbia. Front. Plant Sci. 2019, 10, 849. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Z.; Geng, Q.F.; Xiao, M.Y.; Zhang, M.Y. Predicting Pseudolarix amabilis potential habitat based on four Niche models. Acta Ecol. Sin. 2020, 40, 6096–6104. [Google Scholar] [CrossRef]
Model | E. sinica | E. intermedia | E. equisetina | ||||||
---|---|---|---|---|---|---|---|---|---|
AUC | TSS | Kappa | AUC | TSS | Kappa | AUC | TSS | Kappa | |
ANN | 0.83 | 0.61 | 0.61 | 0.84 | 0.64 | 0.64 | 0.65 | 0.65 | 0.84 |
CTA | 0.83 | 0.64 | 0.64 | 0.85 | 0.70 | 0.70 | 0.57 | 0.57 | 0.79 |
FDA | 0.87 | 0.72 | 0.72 | 0.89 | 0.73 | 0.73 | 0.67 | 0.67 | 0.86 |
GAM | 0.82 | 0.64 | 0.64 | 0.90 | 0.72 | 0.72 | 0.79 | 0.59 | 0.59 |
GBM | 0.92 | 0.77 | 0.77 | 0.93 | 0.78 | 0.78 | 0.91 | 0.76 | 0.76 |
GLM | 0.87 | 0.72 | 0.72 | 0.91 | 0.74 | 0.74 | 0.83 | 0.64 | 0.64 |
MARS | 0.89 | 0.75 | 0.75 | 0.91 | 0.74 | 0.74 | 0.83 | 0.62 | 0.62 |
MaxEnt | 0.76 | 0.50 | 0.50 | 0.76 | 0.51 | 0.51 | 0.76 | 0.50 | 0.50 |
RF | 0.93 | 0.78 | 0.78 | 0.93 | 0.78 | 0.78 | 0.91 | 0.76 | 0.76 |
SRE | 0.72 | 0.43 | 0.43 | 0.74 | 0.47 | 0.47 | 0.66 | 0.32 | 0.32 |
Ensemble | 0.97 | 0.84 | 0.79 | 0.98 | 0.87 | 0.81 | 0.98 | 0.91 | 0.87 |
Variable Type | Code (Unit) | Description | Variables Used in Modeling | ||
---|---|---|---|---|---|
E. sinica | E. intermedia | E. equisetina | |||
Climatic variables | bio1 (°C) | Annual mean air temperature | √ | √ | √ |
bio2 (°C) | Mean diurnal temperature range (max. temp–min. temp) | √ | √ | ||
bio3 | Isothermality | √ | √ | √ | |
bio4 (°C) | Temperature seasonality | √ | |||
bio5 (°C) | Max temperature of warmest month | ||||
bio6 (°C) | Min temperature of coldest month | ||||
bio7 (°C) | Temperature annual range | √ | √ | ||
bio8 (°C) | Mean temperature of wettest quarter | √ | |||
bio9 (°C) | Mean temperature of driest quarter | ||||
bio10 (°C) | Mean temperature of warmest quarter | ||||
bio11 (°C) | Mean temperature of coldest quarter | ||||
bio12 (mm) | Annual precipitation | √ | √ | √ | |
bio13 (mm) | Precipitation of wettest month | ||||
bio14 (mm) | Precipitation of driest month | √ | √ | ||
bio15 (mm) | Coefficient of variation of precipitation | √ | √ | √ | |
bio16 (mm) | Precipitation of wettest quarter | ||||
bio17 (mm) | Precipitation of the driest quarter | √ | |||
bio18 (mm) | Precipitation of warmest quarter | ||||
bio19 (mm) | Precipitation of coldest quarter | ||||
Srad (kJ· m−2·d−1) | Solar radiation | √ | √ | √ | |
Vapr (hPa) | Vapor pressure | √ | √ | √ | |
Soil variables | soil | Soil type | √ | √ | √ |
clay1 | Topsoil Clay Fraction (0–30 cm) | √ | √ | ||
clay2 | Subsoil Clay Fraction (30–100 cm) | √ | √ | ||
sand1 | Topsoil Sand Fraction (0–30 cm) | √ | √ | √ | |
sand2 | Subsoil Sand Fraction (30–100 cm) | ||||
sq1 | Nutrient availability | √ | √ | √ | |
sq2 | Nutrient retention capacity | ||||
sq3 | Rooting conditions | √ | √ | √ | |
sq4 | Oxygen availability to roots | √ | |||
sq5 | Excess salts | √ | √ | √ | |
sq6 | Toxicity | ||||
sq7 | Workability (constraining field management) | ||||
Topographical variables | Ele (m) | Elevation above sea level | √ | √ | √ |
Slop (%) | Slope | √ | √ | √ | |
asp (degrees) | Aspect | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Gao, Y.; He, P.; He, Y.; Meng, F. Modeling for Predicting the Potential Geographical Distribution of Three Ephedra Herbs in China. Plants 2023, 12, 787. https://doi.org/10.3390/plants12040787
Guo L, Gao Y, He P, He Y, Meng F. Modeling for Predicting the Potential Geographical Distribution of Three Ephedra Herbs in China. Plants. 2023; 12(4):787. https://doi.org/10.3390/plants12040787
Chicago/Turabian StyleGuo, Longfei, Yu Gao, Ping He, Yuan He, and Fanyun Meng. 2023. "Modeling for Predicting the Potential Geographical Distribution of Three Ephedra Herbs in China" Plants 12, no. 4: 787. https://doi.org/10.3390/plants12040787
APA StyleGuo, L., Gao, Y., He, P., He, Y., & Meng, F. (2023). Modeling for Predicting the Potential Geographical Distribution of Three Ephedra Herbs in China. Plants, 12(4), 787. https://doi.org/10.3390/plants12040787