Assessing Copper-Alternative Products for the Control of Pre- and Postharvest Citrus Anthracnose
Abstract
:1. Introduction
2. Results
2.1. In Vitro Antifungal Activity of Chemical and Biological Alternative Products
2.2. Antifungal Activity of Selected Commercial Products in Artificially Inoculated Fruits
2.3. Antifungal Activity of Selected Commercial Products in the Field
2.4. Climate Data
2.5. Efficacy of Field Treatments in Postharvest Environments
3. Discussion
4. Materials and Methods
4.1. Colletotrichum gloeosporioides Isolate
4.2. Chemical and Biological Alternative Commercial Products
4.3. In Vitro Antifungal Activity of Chemical and Biological Alternative Commercial Products
4.4. In Vivo Antifungal Activity of Selected Alternative Commercial Products in Artificially Inoculated Fruit
4.5. Antifungal Activity of Selected Commercial Products under Field Conditions
4.6. Climate Data
4.7. Effect of Field Treatments on Postharvest Environments
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2022. Available online: http://www.fao.org/faostat/en/#home (accessed on 7 January 2022).
- Caruso, M.; Ferlito, F.; Licciardello, C.; Allegra, M.; Strano, M.C.; Di Silvestro, S.; Russo, M.P.; Pietro Paolo, D.; Caruso, P.; Las Casas, G.; et al. Pomological Diversity of the Italian Blood Orange Germplasm. Sci. Hortic. 2016, 213, 331–339. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 Fungal Pathogens in Molecular Plant Pathology: Top 10 Fungal Pathogens. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Guarnaccia, V.; Groenewald, J.Z.; Polizzi, G.; Crous, P.W. High Species Diversity in Colletotrichum Associated with Citrus Diseases in Europe. Persoonia 2017, 39, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.E. Factors Affecting Postharvest Development of Collectotrichum gloeosporioides in Citrus Fruits. Phytopathology 1975, 65, 404. [Google Scholar] [CrossRef]
- Freeman, S.; Shabi, E. Cross-Infection of Subtropical and Temperate Fruits by Colletotrichum species from Various Hosts. Physiol. Mol. Plant Pathol. 1996, 49, 395–404. [Google Scholar] [CrossRef]
- Kaur, R.; Rewal, H.S.; Sethi, A. Pre-harvest stem-end rot in citrus cultivars due to Colletotrichum gloeosporioides. Eur. J. Hortic. Sci. 2007, 72, 20–25. [Google Scholar]
- Riolo, M.; Aloi, F.; Pane, A.; Cara, M.; Cacciola, S.O. Twig and Shoot Dieback of Citrus, a New Disease Caused by Colletotrichum Species. Cells 2021, 10, 449. [Google Scholar] [CrossRef]
- Vitale, A.; Aiello, D.; Azzaro, A.; Guarnaccia, V.; Polizzi, G. An Eleven-Year Survey on Field Disease Susceptibility of Citrus Accessions to Colletotrichum and Alternaria Species. Agriculture 2021, 11, 536. [Google Scholar] [CrossRef]
- Perrone, G.; Magistà, D.; Ismail, A.M. First report of Colletotrichum kahawae subsp. ciggaro on mandarin in Italy. J. Plant Pathol. 2016, 98, 682. [Google Scholar]
- Piccirillo, G.; Carrieri, R.; Polizzi, G.; Azzaro, A.; Lahoz, E.; Fernández-Ortuño, D.; Vitale, A. In Vitro and in Vivo Activity of QoI Fungicides against Colletotrichum gloeosporioides Causing Fruit Anthracnose in Citrus Sinensis. Sci. Hortic. 2018, 236, 90–95. [Google Scholar] [CrossRef]
- Rhaiem, A.; Taylor, P.W.J. Colletotrichum gloeosporioides Associated with Anthracnose Symptoms on Citrus, a New Report for Tunisia. Eur. J. Plant Pathol. 2016, 146, 219–224. [Google Scholar] [CrossRef]
- Ben Hadj Daoud, H.; Baraldi, E.; Iotti, M.; Leonardi, P.; Boughalleb-M’Hamdi, N. Characterization and Pathogenicity of Colletotrichum spp. Causing Citrus Anthracnose in Tunisia. Phytopathol. Mediterr. 2019, 58, 175–185. [Google Scholar] [CrossRef]
- Uysal, A.; Kurt, Ş.; Guarnaccia, V. Distribution and characterization of Colletotrichum species associated with Citrus anthracnose in eastern Mediterranean region of Turkey. Eur. J. Plant Pathol. 2022, 163, 125–141. [Google Scholar] [CrossRef]
- Ramos, A.P.; Talhinhas, P.; Sreenivasaprasad, S.; Oliveira, H. Characterization of Colletotrichum gloeosporioides, as the Main Causal Agent of Citrus Anthracnose, and C. karstii as Species Preferentially Associated with Lemon Twig Dieback in Portugal. Phytoparasitica 2016, 44, 549–561. [Google Scholar] [CrossRef]
- Aiello, D.; Carrieri, R.; Guarnaccia, V.; Vitale, A.; Lahoz, E.; Polizzi, G. Characterization and Pathogenicity of Colletotrichum gloeosporioides and C. karstii Causing Preharvest Disease on Citrus sinensis in Italy. J. Phytopathol. 2015, 163, 168–177. [Google Scholar] [CrossRef]
- Bailey, J.A.; Jeger, M.J. British Society for Plant Pathology. In Colletotrichum: Biology, Pathology and Control; C.A.B. International: Wallingford, UK, 1992. [Google Scholar]
- Crous, P.W.; Groenewald, J.Z.; Slippers, B.; Wingfield, M.J. Global Food and Fibre Security Threatened by Current Inefficiencies in Fungal Identification. Phil. Trans. R. Soc. B 2016, 371, 20160024. [Google Scholar] [CrossRef] [Green Version]
- Kandeler, F.; Kampichler, C.; Horak, O. Influence of Heavy Metals on the Functional Diversity of Soil Microbial Communities. Biol. Fertil. Soils 1996, 23, 299–306. [Google Scholar] [CrossRef]
- Aiello, D.; Ferrante, P.; Vitale, A.; Polizzi, G.; Scortichini, M.; Cirvilleri, G. Characterization of Pseudomonas syringae pv. syringae Isolated from Mango in Sicily and Occurrence of Copper-Resistant Strains. J. Plant Pathol. 2015, 97, 273–282. [Google Scholar] [CrossRef]
- Behlau, F.; Canteros, B.I.; Jones, J.B.; Graham, J.H. Copper Resistance Genes from Different Xanthomonads and Citrus Epiphytic Bacteria Confer Resistance to Xanthomonas citri subsp. citri. Eur. J. Plant Pathol. 2012, 133, 949–963. [Google Scholar] [CrossRef]
- Deng, H.; Li, X.-F.; Cheng, W.-D.; Zhu, Y.-G. Resistance and Resilience of Cu-Polluted Soil after Cu Perturbation, Tested by a Wide Range of Soil Microbial Parameters. FEMS Microbiol. Ecol. 2009, 70, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Hippler, F.W.R.; Petená, G.; Boaretto, R.M.; Quaggio, J.A.; Azevedo, R.A.; Mattos, D., Jr. Mechanisms of Copper Stress Alleviation in Citrus Trees after Metal Uptake by Leaves or Roots. Environ. Sci. Pollut. Res. 2018, 25, 13134–13146. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EU) 2018/1981 of the European Parliament and of the Council of 13 December 2018 Renewing the Approval of the Active Substances Copper Compounds, as Candidates for Substitution, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011. Off. J. Eur. Comm. 2018, L317/16. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1981&rid=3 (accessed on 7 January 2022).
- Katsoulas, N.; Løes, A.-K.; Andrivon, D.; Cirvilleri, G.; de Cara, M.; Kir, A.; Knebl, L.; Malińska, K.; Oudshoorn, F.W.; Willer, H.; et al. Current Use of Copper, Mineral Oils and Sulphur for Plant Protection in Organic Horticultural Crops across 10 European Countries. Org. Agr. 2020, 10, 159–171. [Google Scholar] [CrossRef]
- Sinab.it. Available online: https://www.sinab.it/reportannuali/anticipazioni-bio-cifre-2022/ (accessed on 7 January 2022).
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.B.; Aubertot, J.-N. Thirteen Decades of Antimicrobial Copper Compounds Applied in Agriculture. A Review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef] [Green Version]
- Herrera-González, J.A.; Bautista-Baños, S.; Serrano, M.; Romanazzi, G.; Gutiérrez-Martínez, P. Non-Chemical Treatments for the Pre- and Post-Harvest Elicitation of Defense Mechanisms in the Fungi–Avocado Pathosystem. Molecules 2021, 26, 6819. [Google Scholar] [CrossRef]
- Bordoh, P.K.; Ali, A.; Dickinson, M.; Siddiqui, Y.; Romanazzi, G. A Review on the Management of Postharvest Anthracnose in Dragon Fruits Caused by Colletotrichum spp. Crop Prot. 2020, 130, 105067. [Google Scholar] [CrossRef]
- Zahid, N.; Ali, A.; Manickam, S.; Siddiqui, Y.; Maqbool, M. Potential of Chitosan-Loaded Nanoemulsions to Control Different Colletotrichum spp. and Maintain Quality of Tropical Fruits during Cold Storage. J. Appl. Microbiol. 2012, 113, 925–939. [Google Scholar] [CrossRef]
- Danh, L.T.; Giao, B.T.; Duong, C.T.; Nga, N.T.T.; Tien, D.T.K.; Tuan, N.T.; Huong, B.T.C.; Nhan, T.C.; Trang, D.T.X. Use of Essential Oils for the Control of Anthracnose Disease Caused by Colletotrichum acutatum on Post-Harvest Mangoes of Cat Hoa Loc Variety. Membranes 2021, 11, 719. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, L.; Zhou, Y.; Yao, S.; Zeng, K. Chitosan and Pichia membranaefaciens Control Anthracnose by Maintaining Cell Structural Integrity of Citrus Fruit. Biol. Control 2018, 124, 92–99. [Google Scholar] [CrossRef]
- Deng, L.; Zhou, Y.; Zeng, K. Pre-Harvest Spray of Oligochitosan Induced the Resistance of Harvested Navel Oranges to Anthracnose during Ambient Temperature Storage. Crop Prot. 2015, 70, 70–76. [Google Scholar] [CrossRef]
- Deng, L.; Zeng, K.; Zhou, Y.; Huang, Y. Effects of Postharvest Oligochitosan Treatment on Anthracnose Disease in Citrus (Citrus sinensis L. Osbeck) Fruit. Eur. Food Res. Technol. 2015, 240, 795–804. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Zeng, K. Efficacy of Pichia Membranaefaciens Combined with Chitosan against Colletotrichum gloeosporioides in Citrus Fruits and Possible Modes of Action. Biol. Control 2016, 96, 39–47. [Google Scholar] [CrossRef]
- Scortichini, M.; Chen, J.; De Caroli, M.; Dalessandro, G.; Pucci, N.; Modesti, V.; L’aurora, A.; Petriccione, M.; Zampella, L.; Mastrobuoni, F.; et al. A zinc, copper and citric acid biocomplex shows promise for control of Xylella fastidiosa subsp. pauca in olive trees in Apulia region (southern Italy). Phytopathol. Mediterr. 2018, 57, 48–72. [Google Scholar] [CrossRef]
- Scortichini, M.; Loreti, S.; Pucci, N.; Scala, V.; Tatulli, G.; Verweire, D.; Oehl, M.; Widmer, U.; Codina, J.M.; Hertl, P.; et al. Progress towards Sustainable Control of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy). Pathogens 2021, 10, 668. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, C.; Modica, G.; Bella, P.; Dimaria, G.; Cirvilleri, G.; Continella, A.; Catara, V. Preliminary Evaluation of a Zinc-Copper-Citric Acid Biocomplex for the Control of Plenodomus tracheiphilus Causal Agent of Citrus Mal Secco Disease. Acta Hortic. 2022, 1354, 231–236. [Google Scholar] [CrossRef]
- Aiello, D.; Vitale, A.; Panebianco, S.; Lombardo, M.; Anzalone, A.; Catara, V.; Cirvilleri, G. In Vitro and in Vivo Antibacterial Activity of Copper Alternative Products against Xanthomonas euvesicatoria pv. perforans Causing Leaf Spot and Pith Necrosis of Tomato. Acta Hortic. 2022, 1354, 223–230. [Google Scholar] [CrossRef]
- Walters, D.R.; Bingham, I.J. Influence of Nutrition on Disease Development Caused by Fungal Pathogens: Implications for Plant Disease Control. Ann. Appl. Biol. 2007, 151, 307–324. [Google Scholar] [CrossRef]
- Dordas, C. Role of Nutrients in Controlling Plant Diseases in Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Cabot, C.; Martos, S.; Llugany, M.; Gallego, B.; Tolrà, R.; Poschenrieder, C. A Role for Zinc in Plant Defense Against Pathogens and Herbivores. Front. Plant Sci. 2019, 10, 1171. [Google Scholar] [CrossRef]
- Savi, G.D.; Vitorino, V.; Bortoluzzi, A.J.; Scussel, V.M. Effect of Zinc Compounds on Fusarium verticillioides Growth, Hyphae Alterations, Conidia, and Fumonisin Production: Zinc-Induced Alterations in Fusarium verticillioides. J. Sci. Food Agric. 2013, 93, 3395–3402. [Google Scholar] [CrossRef]
- Luo, Y.; Yao, A.; Tan, M.; Li, Z.; Qing, L.; Yang, S. Effects of Manganese and Zinc on the Growth Process of Phytophthora nicotianae and the Possible Inhibitory Mechanisms. PeerJ 2020, 8, e8613. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Fan, Y.; Gao, L.; Cao, X.; Ye, J.; Li, G. The Dual Roles of Zinc Sulfate in Mitigating Peach Gummosis. Plant Dis. 2016, 100, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, C.D.P.; Pozza, E.A.; Pozza, A.A.A.; Elmer, W.H.; Pereira, A.B.; Guimarães, D.d.S.G.; Monteiro, A.C.A.; de Rezende, M.L.V. Boron, Zinc and Manganese Suppress Rust on Coffee Plants Grown in a Nutrient Solution. Eur. J. Plant Pathol. 2020, 156, 727–738. [Google Scholar] [CrossRef]
- Kalim, S.; Luthra, Y.P.; Gandhi, S.K. Cowpea Root Rot Severity and Metabolic Changes in Relation to Manganese Application. J. Phytopathol. 2003, 151, 92–97. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Gonçalves, D.C.; Ribeiro, W.R.; Gonçalves, D.C.; Menini, L.; Costa, H. Recent Advances and Future Perspective of Essential Oils in Control Colletotrichum spp.: A Sustainable Alternative in Postharvest Treatment of Fruits. Food Res. Int. 2021, 150, 110758. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal Activity of Citrus Essential Oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [Google Scholar] [CrossRef]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Abd-Alla, M.A.; Haggag, W.M. Use of some plant essential oils as post-harvest botanical fungicides in the management of anthracnose disease of mango fruits (Mangi feraindica L.) caused by Colletotrichum gloeosporioides (Penz). Int. J. Agric. For. 2013, 3, 1–6. [Google Scholar]
- Bosquez-Molina, E.; Jesús, E.R.; Bautista-Baños, S.; Verde-Calvo, J.R.; Morales-López, J. Inhibitory Effect of Essential Oils against Colletotrichum gloeosporioides and Rhizopus stolonifer in Stored Papaya Fruit and Their Possible Application in Coatings. Postharvest Biol. Technol. 2010, 57, 132–137. [Google Scholar] [CrossRef]
- Romanazzi, G.; Feliziani, E.; Sivakumar, D. Chitosan, a Biopolymer with Triple Action on Postharvest Decay of Fruit and Vegetables: Eliciting, Antimicrobial and Film-Forming Properties. Front. Microbiol. 2018, 9, 2745. [Google Scholar] [CrossRef]
- Rajestary, R.; Landi, L.; Romanazzi, G. Chitosan and Postharvest Decay of Fresh Fruit: Meta-analysis of Disease Control and Antimicrobial and Eliciting Activities. Compr. Rev. Food Sci. Food Saf. 2021, 20, 563–582. [Google Scholar] [CrossRef] [PubMed]
- Riseh, R.S.; Hassanisaadi, M.; Vatankhah, M.; Babaki, S.A.; Barka, E.A. Chitosan as a Potential Natural Compound to Manage Plant Diseases. Int. J. Biol. Macromol. 2022, 220, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, S.; Vitale, A.; Platania, C.; Restuccia, C.; Polizzi, G.; Cirvilleri, G. Postharvest Efficacy of Resistance Inducers for the Control of Green Mold on Important Sicilian Citrus Varieties. J. Plant Dis. Prot. 2014, 121, 177–183. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Parafati, L.; Licciardello, F.; Muratore, G.; Hamdi, M.; Cirvilleri, G.; Restuccia, C. Edible Coatings Incorporating Pomegranate Peel Extract and Biocontrol Yeast to Reduce Penicillium digitatum Postharvest Decay of Oranges. Food Microbiol. 2018, 74, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Calderone, F.; Vitale, A.; Panebianco, S.; Lombardo, M.F.; Cirvilleri, G. COS-OGA Applications in Organic Vineyard Manage Major Airborne Diseases and Maintain Postharvest Quality of Wine Grapes. Plants 2022, 11, 1763. [Google Scholar] [CrossRef] [PubMed]
- Fauteux, F.; Rémus-Borel, W.; Menzies, J.G.; Bélanger, R.R. Silicon and Plant Disease Resistance against Pathogenic Fungi. FEMS Microbiol. Lett. 2005, 249, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchand, P.A. Basic Substances under EC 1107/2009 Phytochemical Regulation: Experience with Non-Biocide and Food Products as Biorationals. J. Plant Prot. Res. 2016, 56, 312–318. [Google Scholar] [CrossRef]
- Pallag, A.; Bungau, S.; Tit, D.M.; Jurca, T.; Sirbu, V.; Honiges, A.; Horhogea, C. Comparative Study of Polyphenols, Flavonoids and Chlorophylls in Equisetum arvense L. Populations. Rev. Chim. 2016, 67, 530–533. [Google Scholar]
- Dagostin, S.; Schärer, H.-J.; Pertot, I.; Tamm, L. Are There Alternatives to Copper for Controlling Grapevine Downy Mildew in Organic Viticulture? Crop Prot. 2011, 30, 776–788. [Google Scholar] [CrossRef]
- Llamazares De Miguel, D.; Mena-Petite, A.; Díez-Navajas, A.M. Toxicity and Preventive Activity of Chitosan, Equisetum Arvense, Lecithin and Salix Cortex against Plasmopara viticola, the Causal Agent of Downy Mildew in Grapevine. Agronomy 2022, 12, 3139. [Google Scholar] [CrossRef]
- Wszelaki, A.L.; Miller, S.A. Determining the Efficacy of Disease Management Products in Organically-Produced Tomatoes. Plant Health Prog. 2005, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Trebbi, G.; Negri, L.; Bosi, S.; Dinelli, G.; Cozzo, R.; Marotti, I. Evaluation of Equisetum arvense (Horsetail Macerate) as a Copper Substitute for Pathogen Management in Field-Grown Organic Tomato and Durum Wheat Cultivations. Agriculture 2020, 11, 5. [Google Scholar] [CrossRef]
- Langa-Lomba, N.; Buzón-Durán, L.; Martín-Ramos, P.; Casanova-Gascón, J.; Martín-Gil, J.; Sánchez-Hernández, E.; González-García, V. Assessment of Conjugate Complexes of Chitosan and Urtica dioica or Equisetum arvense Extracts for the Control of Grapevine Trunk Pathogens. Agronomy 2021, 11, 976. [Google Scholar] [CrossRef]
- Ali, A.; Muhammad, M.T.M.; Sijam, K.; Siddiqui, Y. Potential of Chitosan Coating in Delaying the Postharvest Anthracnose (Colletotrichum gloeosporioides Penz.) of Eksotika II Papaya. Int. J. Food Sci. Technol. 2010, 45, 2134–2140. [Google Scholar] [CrossRef]
- Correa-Pacheco, Z.N.; Bautista-Baños, S.; Valle-Marquina, M.Á.; Hernández-López, M. The Effect of Nanostructured Chitosan and Chitosan-Thyme Essential Oil Coatings on Colletotrichum Gloeosporioides Growth in Vitro and on Cv Hass Avocado and Fruit Quality. J. Phytopathol. 2017, 165, 297–305. [Google Scholar] [CrossRef]
- Marino, A.K.; Junior, J.S.P.; Magalhães, K.M.; Mattiuz, B.-H. Chitosan-Propolis Combination Inhibits Anthracnose in “Hass” Avocados. Emir. J. Food Agric. 2018, 30, 681. [Google Scholar] [CrossRef]
- Tripathi, D.; Raikhy, G.; Kumar, D. Chemical Elicitors of Systemic Acquired Resistance—Salicylic Acid and Its Functional Analogs. Curr. Plant Biol. 2019, 17, 48–59. [Google Scholar] [CrossRef]
- Oostendorp, M.; Kunz, W.; Dietrich, B.; Staub, T. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 2001, 107, 19–28. [Google Scholar] [CrossRef]
- Faize, L.; Faize, M. Functional Analogues of Salicylic Acid and Their Use in Crop Protection. Agronomy 2018, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Marolleau, B.; Gaucher, M.; Heintz, C.; Degrave, A.; Warneys, R.; Orain, G.; Lemarquand, A.; Brisset, M.-N. When a Plant Resistance Inducer Leaves the Lab for the Field: Integrating ASM into Routine Apple Protection Practices. Front. Plant Sci. 2017, 8, 1938. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Jiang, J.; Wang, N. Control of Citrus Huanglongbing via Trunk Injection of Plant Defense Activators and Antibiotics. Phytopathology 2018, 108, 186–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupper, K.C.; Corrêa, F.E.; de Azevedo, F.A.; da Silva, A.C. Bacillus subtilis to Biological Control of Postbloom Fruit Drop Caused by Colletotrichum acutatum under Field Conditions. Sci. Hortic. 2012, 134, 139–143. [Google Scholar] [CrossRef]
- Klein, M.N.; Silva, A.C.; Lopes, M.R.; Kupper, K.C. Application of Microorganisms, Alone or in Combination, to Control Postbloom Fruit Drop in Citrus. Trop. Plant Pathol. 2013, 38, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.R.; Klein, M.N.; Ferraz, L.P.; da Silva, A.C.; Kupper, K.C. Saccharomyces Cerevisiae: A Novel and Efficient Biological Control Agent for Colletotrichum acutatum during Pre-Harvest. Microbiol. Res. 2015, 175, 93–99. [Google Scholar] [CrossRef] [PubMed]
Class of Products | Colony Diameter (cm) ± SEM * | |||
---|---|---|---|---|
Products | 1% | 0.5% | 0.1% | |
Control | 8.5 ± 0.0 a | 8.5 ± 0.0 a | 8.5 ± 0.0 a | |
Mineral fertilizers | Vitibiosap 458 Plus® | 0.0 ± 0.0 h | 0.0 ± 0.0 i | 6.0 ± 0.2 cd |
Dentamet® | 0.0 ± 0.0 h | 0.5 ± 0.0 i | 6.0 ± 0.3 cd | |
Kiram® | 1.4 ± 0.1 g | 2.8 ± 0.2 fg | 8.2 ± 0.1 ab | |
Kiram Film® | 4.1 ± 0.1 d | 5.4 ± 0.1 d | 6.2 ± 0.1 cd | |
Kiram AT® | 4.5 ± 0.0 cd | 7.1 ± 0.1 b | 7.7 ± 0.1 b | |
Plant defence stimulator | BION® (Acibenzolar-S-methyl) | 3.5 ± 0.2 e | 4.1 ± 0.2 e | 5.4 ± 0.2 d |
Basic substances | Biorend® (Chitosan hydrochloride) | 4.9 ± 0.1 bc | 6.3 ± 0.1 c | 7.6 ± 0.2 b |
Equibasic® (Equisetum) | 5.1 ± 0.1 b | 5.7 ± 0.1 d | 6.7 ± 0.1 c | |
Essential oil | Prev-Am Plus® (Sweet orange essential oil) | 0.1 ± 0.0 h | 0.4 ± 0.1 i | 1.1 ± 0.4 f |
Biological control agents | Amylo-X® LC (B. amyloliquefacines D747) | 2.6 ± 0.3 f | 3.0 ± 0.2 f | 3.0 ± 0.2 e |
Botector® (A. pullulans DSM14940) | 3.9 ± 0.4 de | 3.9 ± 0.8 e | 8.3 ± 0.1 ab | |
Cu fungicides | Ossiclor® (Copper oxychloride) | 0.5 ± 0.0 h | 2.4 ± 0.2 g | 2.5 ± 0.2 e |
Idrox® (Copper hydroxide) | 1.4 ± 0.04 g | 1.6 ± 0.1 h | 5.5 ± 0.0 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardo, M.F.; Panebianco, S.; Azzaro, A.; Catara, V.; Cirvilleri, G. Assessing Copper-Alternative Products for the Control of Pre- and Postharvest Citrus Anthracnose. Plants 2023, 12, 904. https://doi.org/10.3390/plants12040904
Lombardo MF, Panebianco S, Azzaro A, Catara V, Cirvilleri G. Assessing Copper-Alternative Products for the Control of Pre- and Postharvest Citrus Anthracnose. Plants. 2023; 12(4):904. https://doi.org/10.3390/plants12040904
Chicago/Turabian StyleLombardo, Monia Federica, Salvina Panebianco, Antonino Azzaro, Vittoria Catara, and Gabriella Cirvilleri. 2023. "Assessing Copper-Alternative Products for the Control of Pre- and Postharvest Citrus Anthracnose" Plants 12, no. 4: 904. https://doi.org/10.3390/plants12040904
APA StyleLombardo, M. F., Panebianco, S., Azzaro, A., Catara, V., & Cirvilleri, G. (2023). Assessing Copper-Alternative Products for the Control of Pre- and Postharvest Citrus Anthracnose. Plants, 12(4), 904. https://doi.org/10.3390/plants12040904