Effect of Low Water Availability on Seed Yield and Seed Quality of Basil (Ocimum basilicum)
Abstract
:1. Introduction
2. Results
2.1. Seed Yield
2.2. Thousand Seed Weight (TSW)
2.3. Seed Germination
2.4. Effect of the PEG Concentrations on the Length of Shoot of the Seedlings
2.5. Effect of the PEG Concentrations on the Length of Root of the Seedlings
2.6. Effect of the Factors Studied on the Vigor of the Seed
3. Discussion
3.1. Seed Yield
3.2. Thousand Seed Weight (TSW)
3.3. Seed Germination
3.4. Effect of PEG Solutions on the Length of Shoot
3.5. Effect of PEG Solutions on the Length of Root
3.6. Influence of the Factors Studied on the Vigor of the Seed of Basil Cultivars
4. Materials and Methods
4.1. Study Site
4.2. Plant Cultivars Used in the Study
4.3. Crop Management and Experimental Design
4.4. Seed Yield
4.5. One Thousand Seed Weight
4.6. Seed Germination
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batool, M.; El-Badri, A.M.; Wang, Z.; Mohamed, I.A.A.; Yang, H.; Ai, X.; Salah, A.; Hassan, M.U.; Sami, R.; Kuai, J.; et al. Rapeseed Morpho-Physio-Biochemical Responses to Drought Stress Induced by PEG-6000. Agronomy 2022, 12, 579. [Google Scholar] [CrossRef]
- Dordas, C.A.; Sioulas, C. Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Ind. Crop. Prod. 2008, 27, 75–85. [Google Scholar] [CrossRef]
- Dordas, C.A.; Sioulas, C. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crop. Res. 2009, 110, 35–43. [Google Scholar] [CrossRef]
- Farooq, M.; Gogoi, N.; Barthakur, S.; Baroowa, B.; Bharadwaj, N.; Alghamdi, S.S.; Siddique, K.H.M. Drought Stress in Grain Legumes during Reproduction and Grain Filling. J. Agron. Crop Sci. 2017, 203, 81–102. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, Q.; Chen, L.; Yao, X.; Zhang, W.; Zhang, B.; Xie, F. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol. Biochem. 2019, 146, 12. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghzawi, A.A.-M.; Zaitoun, S.; Gosheh, H.; Alqudah, A. Impacts of drought on pollination of Trigonella moabitica(Fabaceae) via bee visitations. Arch. Agron. Soil Sci. 2009, 55, 683–692. [Google Scholar] [CrossRef]
- Puteh, A.; Mondal, M. Salinity Effect on Dry Mass Partitioning in Different Plant Parts and Ion Uptake in Leaves of Rice Mutants. J. Environ. Sci. Nat. Resour. 2015, 6, 239–245. [Google Scholar] [CrossRef]
- Egli, D.B.; Tekrony, D.M.; Heitholt, J.J.; Rupe, J. Air Temperature During Seed Filling and Soybean Seed Germination and Vigor. Crop. Sci. 2005, 45, 1329–1335. [Google Scholar] [CrossRef]
- Aspinall, D. The effects of soil moisture stress on the growth of barley. II. Grain growth. Aust. J. Agric. Res. 1965, 16, 265–275. [Google Scholar] [CrossRef]
- Brooks, A.; Jenner, C.; Aspinall, D. Effects of Water Deficit on Endosperm Starch Granules and on Grain Physiology of Wheat and Barley. Funct. Plant Biol. 1982, 9, 423–436. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Wang, Z.; Zhu, Q. Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J. Exp. Bot. 2001, 52, 2169–2179. [Google Scholar] [CrossRef] [PubMed]
- Jurgens, S.K.; Johnson, R.R.; Boyer, J.S. Dry Matter Production and Translocation in Maize Subjected to Drought during Grain Fill 1. Agron. J. 1978, 70, 678–682. [Google Scholar] [CrossRef]
- Ouattar, S.; Jones, R.J.; Crookston, R.K. Effect of Water Deficit during Grain Filling on the Pattern of Maize Kernel Growth and Development 1. Crop. Sci. 1987, 27, 726–730. [Google Scholar] [CrossRef]
- Bieler, P.; Fussell, L.; Bidinger, F. Grain growth of Pennisetum glaucum (L.) R.Br. under well-watered and drought-stressed conditions. Field Crop. Res. 1993, 31, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Davies, S.L.; Turner, N.C.; Siddique, K.H.M.; Leport, L.; Plummer, J.A. Seed growth of desi and kabuli chickpea (Cicer arietinum L.) in a short-season Mediterranean-type environment. Aust. J. Exp. Agric. 1999, 39, 181–188. [Google Scholar] [CrossRef]
- Aparicio-Tejo, P.M.; Boyer, J.S. Significance of accelerated leaf senescence at low water potentials for water loss and grain yield in maize. Crop Sci. 1983, 23, 1198–1202. [Google Scholar] [CrossRef]
- De Souza, P.I.; Egli, D.B.; Bruening, W.P. Water Stress during Seed Filling and Leaf Senescence in Soybean. Agron. J. 1997, 89, 807–812. [Google Scholar] [CrossRef]
- Brevedan, R.E.; Egli, D.B. Short Periods of Water Stress during Seed Filling, Leaf Senescence, and Yield of Soybean. Crop Sci. 2003, 43, 2083–2088. [Google Scholar] [CrossRef]
- Egli, D.B.; Bruening, W.P. Water stress, photosynthesis, seed sucrose levels and seed growth in soybean. J. Agric. Sci. 2004, 142, 1–8. [Google Scholar] [CrossRef]
- Whitfield, D.M.; Conner, D.J.; Hall, A.J. Carbon dioxide balance of sunflower (Helianthus annus L.) subjected to water stress during grain filling. Field Crops Res. 1989, 20, 65–80. [Google Scholar]
- Mohamed, I.A.; Shalby, N.; El-Badri, A.M.; Batool, M.; Wang, C.; Wang, Z.; Salah, A.; Rady, M.M.; Jie, K.; Wang, B.; et al. RNA-seq analysis revealed key genes associated with salt tolerance in rapeseed germination through carbohydrate metabolism, hormone, and MAPK signaling pathways. Ind. Crop. Prod. 2021, 176, 114262. [Google Scholar] [CrossRef]
- Batool, M.; El-Badri, A.M.; Hassan, M.U.; Haiyun, Y.; Chunyun, W.; Zhenkun, Y.; Jie, K.; Wang, B.; Zhou, G. Drought Stress in Brassica napus: Effects, Tolerance Mechanisms, and Management Strategies. J. Plant Growth Regul. 2022, 42, 21–45. [Google Scholar] [CrossRef]
- Han, C.; Zhen, S.; Zhu, G.; Bian, Y.; Yan, Y. Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination. Plant Physiol. Biochem. 2017, 115, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kong, Q.; Lim, A.R.; Lu, S.; Zhao, H.; Guo, L.; Yuan, L.; Ma, W. Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives. Plant Commun. 2022, 3, 100328. [Google Scholar] [CrossRef]
- Cai, G.; Kim, S.-C.; Li, J.; Zhou, Y.; Wang, X. Transcriptional Regulation of Lipid Catabolism during Seedling Establishment. Mol. Plant 2020, 13, 984–1000. [Google Scholar] [CrossRef]
- Kaur, M.; Tak, Y.; Bhatia, S.; Asthir, B.; Lorenzo, J.M.; Amarowicz, R. Crosstalk during the carbon-nitrogen cycle that interlinks the biosynthesis. mobilization and accumulation of seed storage reserves. Int. J. Mol. Sci. 2021, 22, 12032–12043. [Google Scholar] [CrossRef]
- Liu, H.; Able, A.J.; Able, J.A. Transgenerational Effects of Water-Deficit and Heat Stress on Germination and Seedling Vigour—New Insights from Durum Wheat microRNAs. Plants 2020, 9, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, C.; Chen, J.; Clark, D.; Perez, H.; Huo, H. Effects of Maternal Environment on Seed Germination and Seedling Vigor of Petunia × hybrida under Different Abiotic Stresses. Plants 2021, 10, 581. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, P.; Verma, V.; Sharma, R.; Bhargava, B.; Irfan, M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. Plant Physiol. Biochem. 2022, 179, 10–24. [Google Scholar]
- Yung, W.; Huang, C.; Li, M.; Lam, H. Changes in epigenetic features in legumes under abiotic stresses. Plant Genome 2022, 2, 20237. [Google Scholar] [CrossRef]
- Hassan, S.; Aldosari, A. Overview on the ecological and geographical appraisal of important medicinal and aromatic plants: An endangered component in the flora of Saudi Arabia. Sci. Res. Essays 2012, 7, 1639–1646. [Google Scholar] [CrossRef]
- Pereira, B.A.S. A flora nativa. In Alternativas de Desenvolvimento dos Cerrados: Manejo dos Recursos Naturais Renováveis; Dias, B.F.S., Ed.; Fundação Pró-Natureza: Brasília, Brazil, 1992; pp. 53–57. [Google Scholar]
- Sajjadi, S.E. Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran. DARU 2006, 14, 128–130. [Google Scholar]
- Finch-Savage, W.E. Influence of seed quality on crop establishment. growth and yield. In Seed Quality: Basic Mechanisms and Agricultural Implication; Basra, A.S., Ed.; Food Products Press: New York, NY, USA, 1995; pp. 361–384. [Google Scholar]
- Darrah, H.H. The Cultivated Basils; Buckeye Printing Company, Ind.: St. Louis, MO, USA, 1988. [Google Scholar]
- Simon, J.E.; Quinn, J.; Murray, R.G. Basil: A Source of Essential Oils. In Advances in New Crops; Janick, J., Simon, J.E., Eds.; Timber Press: Portland, OR, USA, 1990; pp. 484–489. [Google Scholar]
- Carović-Stanko, K.; Liber, Z.; Besendorfer, V.; Javornik, B.; Bohanec, B.; Kolak, I.; Šatović, Z. Genetic relations among basil taxa (Ocimum, L.) based on molecular markers, nuclear DNA content, and chromosome number. Plant Syst. Evol. 2009, 285, 13–22. [Google Scholar] [CrossRef]
- Patel, R.P.; Singh, R.; Saikia, S.K.; Rao, B.R.; Sastry, K.; Zaim, M.; Lal, R.K. Phenotypic characterization and stability analysis for biomass and essential oil yields of fifteen genotypes of five Ocimum species. Ind. Crop. Prod. 2015, 77, 21–29. [Google Scholar] [CrossRef]
- Meckel, L.; Egli, D.B.; Phillips, R.E.; Radcliffe, D.; Leggett, J.E. Effect of Moisture Stress on Seed Growth in Soybeans 1. Agron. J. 1984, 76, 647–650. [Google Scholar] [CrossRef]
- Artlip, T.S.; Madison, J.T.; Setter, T.L. Water deficit in developing endosperm of maize: Cell division and nuclear DNA endoreduplication. Plant Cell Environ. 1995, 18, 1034–1040. [Google Scholar] [CrossRef]
- Zinselmeier, C.; Westgate, M.E.; Schussler, J.R.; Jones, R.J. Low Water Potential Disrupts Carbohydrate Metabolism in Maize (Zea mays L.) Ovaries. Plant Physiol. 1995, 107, 385–391. [Google Scholar] [CrossRef]
- Kalamartzis, I.; Dordas, C.; Georgiou, P.; Menexes, G. The Use of Appropriate Cultivar of Basil (Ocimum basilicum) Can Increase Water Use Efficiency under Water Stress. Agronomy 2020, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Kalamartzis, I.; Menexes, G.; Georgiou, P.; Dordas, C. Effect of Water Stress on the Physiological Characteristics of Five Basil (Ocimum basilicum L.) Cultivars. Agronomy 2020, 10, 1029. [Google Scholar] [CrossRef]
- Dordas, C. Foliar Boron Application Improves Seed Set, Seed Yield, and Seed Quality of Alfalfa. Agron. J. 2006, 98, 907–913. [Google Scholar] [CrossRef]
- Absar, N.; Kaur, P.; Singh, A.K.; Khan, N.; Singh, S. Optimization of seed rate and seedling establishment technique for raising the nursery of French basil (Ocimum basilicum L.). Ind. Crop. Prod. 2016, 85, 190–197. [Google Scholar] [CrossRef]
- Blum, A. Drought resistance. water use efficiency. and yield potential- are they compatible. dissonant. or mutually exclusive. Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar]
- Dhanda, S.S.; Sethi, G.S.; Behl, R.K. Indices of Drought Tolerance in Wheat Genotypes at Early Stages of Plant Growth. J. Agron. Crop. Sci. 2004, 190, 6–12. [Google Scholar] [CrossRef]
- Agrawal, A.A. Maternal effects associated with herbivory: Mechanisms and consequences of transgenerational induced plant resistance. Ecology 2002, 83, 3408–3415. [Google Scholar] [CrossRef]
- Conrath, U.; Beckers, G.J.M.; Flors, V.; García-Agustín, P.; Jakab, G.; Mauch, F.; Newman, M.-A.; Pieterse, C.M.J.; Poinssot, B.; Pozo, M.J.; et al. Priming: Getting Ready for Battle. Mol. Plant-Microbe Interact. 2006, 19, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Ton, J.; D’Alessandro, M.; Jourdie, V.; Jakab, G.; Karlen, D.; Held, M.; Mauch-Mani, B.; Turlings, T.C. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 2006, 49, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Ventouris, Y.E.; Tani, E.; Avramidou, E.V.; Abraham, E.M.; Chorianopoulou, S.N.; Vlachostergios, D.N.; Papadopoulos, G.; Kapazoglou, A. Recurrent Water Deficit and Epigenetic Memory in Medicago sativa L. Varieties. Appl. Sci. 2020, 10, 3110. [Google Scholar] [CrossRef]
- Farsiani, A.; Ghobadi, M.E. Effects of PEG and NaCl Stress on Two Cultivars of Corn (Zea mays L.) at Germination and Early Seedling Stages. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2009, 9, 382–385. [Google Scholar]
- Eliege, A.; de Oliveira, P.; Zucareli, C.; Prete, C.E.C.; Zamuner, D. Osmotic potential of the substrate on seeds germination and initial development of seedling sweet corn. Agric. Brazil. J. Agrarian Sci. 2014, 9, 477–482. [Google Scholar]
- Shtereva, L.; Vassilevska-Ivanova, R.; Kraptchev, B. Evaluation of drought tolerance in new Bulgarian sweet corn genotypes with using stress tolerance indices. Genetika 2015, 47, 639–650. [Google Scholar] [CrossRef]
- Rangel-Fajardo, M.A.; Gómez-Montiel, N.; Haas, J.I.T.; Basto-Barbudo, D.D.L.C.; Villalobos-González, A.; Buros-Díaz, J.A. Polyethylene glicol 8000 to identify corn tolerant to water stress during germination. Agron. Mesoam. 2019, 30, 255–266. [Google Scholar] [CrossRef]
- Almansouri, M.; Kinet, J.-M.; Lutts, S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 2001, 231, 243–254. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; Lopez-Aguilar, R.; Kaya, C.; Larrinaga-Mayoral, J.; Flores-Hernandez, A. Comparative Effects of NaCl and Polyethylene Glycol on Germination, Emergence and Seedling Growth of Cowpea. J. Agron. Crop. Sci. 2002, 188, 235–247. [Google Scholar] [CrossRef]
- Kalefetogllu Macar, T.; Turan, O.; Ekmekci, Y. Effect of water deficit induced by PEG and NaCl on Chickpea (Cicer arietinum L.) cultivar and lines at early seedling stage. G. U. J. Sci. 2009, 22, 5–14. [Google Scholar]
- Ojeda-Silvera, C.M.; Murillo-Amador, B.; Reynaldo-Escobar, I.M.; Troyo-Dieguez, E.; Ruiz-Espinoza, F.H.; Nieto-Garibay, A. Water stress on germination and seedling growth of genotypes of sweet basil. Mex. Ciencias Agricolas 2013, 4, 229–241. [Google Scholar]
- Sharp, R.E.; Davies, W.J. Root Growth and Water Uptake by Maize Plants in Drying Soil. J. Exp. Bot. 1985, 36, 1441–1456. [Google Scholar] [CrossRef]
- Sharp, R.E.; Silk, W.K.; Hsiao, T.C. Growth of the Maize Primary Root at Low Water Potentials. Plant Physiol. 1988, 87, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Thornley, J.H.M. Modelling Shoot:Root Relations: The Only Way Forward? Ann. Bot. 1998, 81, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Okcu, G.; Kaya, M.D.; Atak, M. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk. J. Agric. For. 2005, 29, 237–242. [Google Scholar]
- Bibi, A.; Sadaqat, H.A.; Akram, H.M.; Mohammed, M.I. Physiological markers for screening sorghum (Sorghum bicolor) germplasm under water stress condition. Int. J. Agric. Biol. 2010, 12, 451–455. [Google Scholar]
- Hamayun, M.; Afzal Khan, S.; Khan Shinwari, Z.; Latif Khan, A.; Ahmad, N.; In-Jung, L. Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pakistan J. Bot. 2010, 42, 977–986. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration. Guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Ghamarnia, H.; Amirkhani, D.; Arji, I. Basil (Ocimum basilicum L.) Water Use, Crop Coefficients and SIMDualKc Model Implementing in a Semi-arid Climate. Int. J. Plant Soil Sci. 2015, 4, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Dordas, C.; Papathanasiou, F.; Lithourgidis, A.; Petrevska, J.-K.; Papadopoulos, I.; Pankou, C.; Gekas, F.; Ninou, E.; Mylonas, I.; Sistanis, I.; et al. Evaluation of physiological characteristics as selection criteria for drought tolerance in maize inbred lines and their hybrids. Maydica 2018, 63, 14. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Gomez, K.; Gomez, A. Statistical Procedures for Agricultural Research; John Willey & Sons, Inc.: Singapore, 1984. [Google Scholar]
Parameters | Year (Y) | Irrigation (W) | Cultivar (C) | C × Y | W × Y | C × W | C × Y × W |
---|---|---|---|---|---|---|---|
Seed yield | NS | * | * | * | NS | * | NS |
TSW | NS | NS | * | * | * | NS | NS |
Effects | Parameters | |||
---|---|---|---|---|
Seed Germination | Length of Shoot | Length of Root | Seed Vigor | |
Year (Y) | NS | * | * | NS |
Irrigation (W) | * | NS | NS | NS |
Cultivar (C) | * | * | * | NS |
PEG concentration (S) | * | * | * | NS |
W × C | NS | NS | NS | NS |
W × S | NS | NS | NS | * |
W × Y | NS | NS | NS | NS |
C × S | * | * | * | * |
C × Y | * | * | * | * |
S × Y | * | * | * | * |
W × C × S | NS | * | * | * |
W × C × Y | NS | NS | NS | NS |
W × S × Y | NS | NS | NS | NS |
C × S × Y | * | * | * | * |
W × C × S × Y | NS | NS | NS | NS |
Year 2015 | Year 2016 | |||||||
---|---|---|---|---|---|---|---|---|
June | July | August | September | June | July | August | September | |
Tmax (°C) | 29.8 | 34.3 | 33.8 | 29.2 | 32.4 | 34.5 | 32.8 | 27.4 |
Tmin (°C) | 17.1 | 20.5 | 20.4 | 14.6 | 18.7 | 21.2 | 19.2 | 12.2 |
Tmean (°C) | 23.2 | 27.5 | 27.1 | 26.2 | 25.9 | 27.8 | 26.1 | 26.4 |
Rainfall (mm) | 96.2 | 8.2 | 1.1 | 20 | 15.2 | 1.2 | 0.8 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalamartzis, I.; Menexes, G.; Dordas, C. Effect of Low Water Availability on Seed Yield and Seed Quality of Basil (Ocimum basilicum). Plants 2023, 12, 1094. https://doi.org/10.3390/plants12051094
Kalamartzis I, Menexes G, Dordas C. Effect of Low Water Availability on Seed Yield and Seed Quality of Basil (Ocimum basilicum). Plants. 2023; 12(5):1094. https://doi.org/10.3390/plants12051094
Chicago/Turabian StyleKalamartzis, Iakovos, George Menexes, and Christos Dordas. 2023. "Effect of Low Water Availability on Seed Yield and Seed Quality of Basil (Ocimum basilicum)" Plants 12, no. 5: 1094. https://doi.org/10.3390/plants12051094
APA StyleKalamartzis, I., Menexes, G., & Dordas, C. (2023). Effect of Low Water Availability on Seed Yield and Seed Quality of Basil (Ocimum basilicum). Plants, 12(5), 1094. https://doi.org/10.3390/plants12051094