Response of Juvenile Saccharina japonica to the Combined Stressors of Elevated pCO2 and Excess Copper
Abstract
:1. Introduction
2. Results
2.1. Carbonate Parameters
2.2. Relative Growth Rates
2.3. Chlorophyll Fluorescence
2.4. Pigment Contents
2.5. Soluble Carbohydrate Contents
3. Discussion
3.1. The Effect of Copper on Growth and Photosynthetic Physiology at Lower pCO2 Level
3.2. The Effects of Elevated pCO2 Level on Growth and Photosynthetic Physiology in Ambient Copper Condition
3.3. The Effects of Higher Copper on Growth and Photosynthetic Physiology at Elevated pCO2 Level
4. Materials and Methods
4.1. Sample Collection and Maintenance
4.2. Measurement of Growth Rates
4.3. Measurement of Chlorophyll Fluorescence
4.4. Measurements of Pigments
4.5. Measurement of Soluble Carbohydrates
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, M.T.; Newman, J.E. Physiological responses of Gracilariopsis longissima (S.G. Gmelin) Steentoft, L.M. Irvine and Farnham (Rhodophyceae) to sub-lethal copper concentrations. Aquatic. Toxicol. 2003, 64, 201–213. [Google Scholar] [CrossRef]
- Contreras, L.; Moenne, A.; Correa, J.A. Antioxidant responses in Scytosiphon Lomentaria (Phaeophyceae) inhabiting copper-enriched coastal environments. J. Phycol. 2005, 41, 1184–1195. [Google Scholar] [CrossRef]
- Correa, J.A.; González, P.; Sánchez, P.; Muoz, J.; Orellana, M.C. Copper-algae interactions: Inheritance or adaptation? Environ. Monit Assess 1996, 40, 41–54. [Google Scholar] [CrossRef]
- Costa, G.B.; de Felix, M.R.L.; Simioni, C.; Ramlov, F.; Oliveira, E.R.; Pereira, D.T.; Maraschi, M.; Chow, F.; Horta, P.A.; Lalau, C.M.; et al. Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum. Protoplasma 2016, 253, 111–125. [Google Scholar] [CrossRef]
- González, A.; Vera, J.; Castro, J.; Dennett, G.; Mellado, M.; Morales, B.; Correa, J.A.; Moenne, A. Co-occurring increases of calcium and organellar reactive oxygen species determine differential activation of antioxidant and defense enzymes in Ulva compressa (Chlorophyta) exposed to copper excess. Plant Cell Environ. 2010, 33, 1627–1640. [Google Scholar] [CrossRef]
- Wen, J.; Zou, D. Interactive effects of increasing atmospheric CO2 and copper exposure on the growth and photosynthesis in the young sporophytes of Sargassum fusiforme (Phaeophyta). Chemosphere 2021, 269, 129397. [Google Scholar] [CrossRef]
- Huovinen, P.; Leal, P.; Gomez, I. Interacting effects of copper, nitrogen and ultraviolet radiation on the physiology of three south Pacific kelps. Mar. Freshw. Res. 2010, 61, 330–341. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants: Acquisition, transport and interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef] [Green Version]
- Mamboya, F.; Lyimo, T.J.; Landberg, T.; Bjoerk, M. Influence of combined changes in salinity and copper modulation on growth and copper uptake in the tropical green macroalga Ulva reticulata. Estuar. Coast Shelf Sci. 2009, 84, 326–330. [Google Scholar] [CrossRef]
- Zhu, X.; Zou, D.; Huang, Y.; Cao, J.; Sun, Y.; Chen, B.; Chen, X. Physiological responses of Porphyra haitanensis (Rhodophyta) to copper and cadmium exposure. Bot. Mar. 2017, 60, 27–37. [Google Scholar] [CrossRef]
- Gouveia, C.; Kreusch, M.; Schmidt, É.C.; Felix, M.R.D.; Osorio, L.K.P.; Pereira, D.T.; dos Santos, R.; Ouriques, L.C.; Martins, R.D.; Latini, A.; et al. The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis. Microsc. Microanal. 2013, 19, 513–524. [Google Scholar] [CrossRef]
- Gao, G.; Liu, Y.; Li, X.; Feng, Z.; Xu, Z.; Wu, H.; Xu, J. Expected CO2-induced ocean acidification modulates copper toxicity in the green tide alga Ulva prolifera. Environ. Exp. Bot. 2017, 135, 63–72. [Google Scholar] [CrossRef]
- Kumar, K.S.; Han, Y.S.; Choo, K.S.; Kong, J.A.; Han, T. Chlorophyll fluorescence based copper toxicity assessment of two algal species. Toxicol. Environ. Health Sci. 2009, 1, 17–23. [Google Scholar] [CrossRef]
- Raven, J.; Caldeira, K.; Elderfifield, H.; Hoegh-Guldberg, H.; Liss, P.; Riebesell, U.; Shepherd, J.; Turley, C.; Watson, A. Ocean Acidifification Due to Increasing Atmospheric Carbon Dioxide; The Royal Society: London, UK, 2005; ISBN 978-0-85403-617-2. [Google Scholar]
- Feely, R.A.; Sabine, C.L.; Lee, K.; Berelson, W.; Kleypas, J.A.; Fabry, V.J.; Millero, F.J. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 2004, 305, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Israel, A.; Hophy, M. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Glob. Change Biol. 2002, 8, 831–840. [Google Scholar] [CrossRef]
- Punchai, P.; Ishimatsu, A.; Nishihara, G.N. The effect of elevated CO2 on the production and respiration of a Sargassum thunbergii community: A mesocosm study. Phycol. Res. 2020, 68, 169–177. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, Y.; Yang, F.; Liang, J.; Long, L. Increased light availability modulates carbon and nitrogen accumulation in the macroalga Gracilariopsis lemaneiformis (Rhodophyta) in response to ocean acidification. Environ. Exp. Bot. 2021, 187, 104492. [Google Scholar] [CrossRef]
- Chu, Y.; Liu, Y.; Li, J.; Gong, Q. Effects of Elevated PCO2 and Nutrient Enrichment on the Growth, Photosynthesis, and Biochemical Compositions of the Brown Alga Saccharina Japonica (Laminariaceae, Phaeophyta). PeerJ 2019, 7, e8040. [Google Scholar] [CrossRef] [Green Version]
- Ober, G.T.; Thornber, C.S. Divergent responses in growth and nutritional quality of coastal macroalgae to the combination of increased pCO(2) and nutrients. Mar. Environ. Res. 2017, 131, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Hepburn, C.D.; Pritchard, D.W.; Cornwall, C.E.; McLeod, R.J.; Beardall, J.; Raven, J.A.; Hurd, C.L. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Glob. Change Biol. 2011, 17, 2488–2497. [Google Scholar] [CrossRef]
- Giordano, M.; Beardall, J.; Raven, J.A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 2005, 56, 99–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raven, J.A.; Beardall, J. Carbon acquisition mechanisms of algae: Carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In Photosynthesis in Algae; Advances in Photosynthesis and Respiration; Larkum, A.W.D., Douglas, S.E., Raven, J.A., Eds.; Springer: Dordrecht, The Netherlands, 2003; Volume 14, pp. 225–244. ISBN 978-94-010-3772-3. [Google Scholar]
- Raven, J.A. Inorganic Carbon Acquisition by Marine Autotrophs. Adv. Bot. Res. 1997, 27, 85–209. [Google Scholar] [CrossRef]
- Todgham, A.E.; Stillman, J.H. Physiological Responses to Shifts in Multiple Environmental Stressors: Relevance in a Changing World. Integr. Comp. Biol. 2013, 53, 539–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunderson, A.R.; Armstrong, E.J.; Stillman, J.H. Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 2016, 8, 357–378. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, W.; Liu, X.; Wang, Z.; Xu, J. Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification. Environ. Sci. Pollut. R 2020, 27, 3202–3212. [Google Scholar] [CrossRef]
- Millero, F.J.; Woosley, R.; Ditrolio, B.; Waters, J. Effect of ocean acidification on the speciation of metals in seawater. Oceanography 2009, 22, 72–85. [Google Scholar] [CrossRef]
- Xu, T.; Cao, J.; Qian, R.; Song, Y.; Wang, W.; Ma, J.; Gao, K.; Xu, J. Ocean acidification exacerbates copper toxicity in both juvenile and adult stages of the green tide alga Ulva linza. Mar. Environ. Res. 2021, 170, 105447. [Google Scholar] [CrossRef]
- Zhong, Z.H.; Qin, S.; Wang, Y.; Ma, C.; Liu, Z.Y. Low pH in simulated acid rain promotes the toxicity of copper on the physiological performance in Sargassum horneri. Photosynthetica 2020, 58, 853–861. [Google Scholar] [CrossRef]
- Koh, C.H.; Shin, H.C. Growth and size distribution of some large brown algae in Ohori, east coast of Korea. Hydrobiologia 1990, 204–205, 225–231. [Google Scholar] [CrossRef]
- Liu, F.L.; Wang, X.L.; Liu, J.D.; Fu, W.D.; Duan, D.L.; Yang, Y.X. Genetic mapping of the Laminaria japonica (Laminariales, Phaeophyta) using amplifified fragment length polymorphism markers. J. Phycol. 2009, 45, 1228–1233. [Google Scholar] [CrossRef]
- Graham, M.H. Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystems 2004, 7, 341–357. [Google Scholar] [CrossRef]
- Liu, F.; Sun, X.; Wang, F.; Wang, W.; Liang, Z.; Lin, Z.; Dong, Z. Breeding, economic traits evaluation, and commercial cultivation of a new Saccharina variety “Huangguan No. 1”. Aquac. Int. 2014, 5, 1665–1675. [Google Scholar] [CrossRef]
- Liu, F.; Yao, J.; Wang, X.; Repnikova, A.; Galanin, D.A.; Duan, D. Genetic diversity and structure within and between wild and cultivated Saccharina japonica (Laminariales, Phaeophyta) revealed by SSR markers. Aquaculture 2012, 358–359, 139–145. [Google Scholar] [CrossRef]
- Kang, J.W.; Chung, I.K. The Interactive Effects of Elevated CO2 and Ammonium Enrichment on the Physiological Performances of Saccharina Japonica (Laminariales, Phaeophyta). Ocean Sci. J. 2018, 53, 487–497. [Google Scholar] [CrossRef]
- Xu, D.; Wang, D.; Li, B.; Fan, X.; Zhang, X.W.; Ye, N.H.; Wang, Y.; Mou, S.; Zhuang, Z. Effects of CO2 and Seawater Acidification on the Early Stages of Saccharina Japonica Development. Environ. Sci. Technol. 2015, 49, 3548–3556. [Google Scholar] [CrossRef]
- Gao, X.; Kim, J.H.; Park, S.K.; Yu, O.H.; Kim, Y.S.; Choi, H.G. Diverse responses of sporophytic photochemical efficiency and gametophytic growth for two edible kelps, Saccharina japonica and Undaria pinnatifida to ocean acidification and warming. Mar. Pollut. Bull 2019, 142, 315–320. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, T. Effects of copper on the growth and development of female gametophytes and young sporophyte of Laminaria japonica. J. Shandong Coll. Oceanol. 1981, 11, 53–60. (In Chinese) [Google Scholar]
- Xia, J.R.; Li, Y.J.; Lu, J.; Chen, B. Effects of copper and cadmium on growth, photosynthesis, and pigment content in Gracilaria lemaneiformis. Bull. Environ. Contam. Toxicol. 2004, 73, 979–986. [Google Scholar] [CrossRef]
- Zhu, X.; Zou, D.; Hong, D. Physiological responses of Hizikia fusiformis to copper and cadmium exposure. Bot. Mar. 2011, 54, 431–439. [Google Scholar] [CrossRef]
- Baumann, H.A.; Morrison, L.; Stengel, D.B. Metal accumulation and toxicity measured by PAM-Chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol. Environ. Saf. 2009, 72, 1063–1075. [Google Scholar] [CrossRef]
- Collén, J.; Pinto, E.; Pedersén, M.; Colepicolo, P. Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals. Arch. Environ. Con. Tox. 2003, 45, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, B.N.; Mehta, S.K.; Gaur, J.P. Recovery of uptake and assimilation of nitrate in Scenedesmus sp previously exposed to elevated levels of Cu2+ and Zn2+. J. Plant Physiol. 2004, 161, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, S.; Zhao, F.; Liu, Y.; Fan, P.; Wang, G. Physiological responses of Porphyra haitanesis to different copper and zinc concentrations. Braz. J. Oceanogr. 2010, 58, 261–267. [Google Scholar] [CrossRef]
- Connan, S.; Stengel, D.B. Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on photosynthesis, growth, and copper accumulation. Aquat. Toxicol. 2011, 104, 94–107. [Google Scholar] [CrossRef]
- Pawlik-Skowronska, B.; Pirszel, J.; Brown, M.T. Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat. Aquat. Toxicol. 2007, 83, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Contreras, L.; Moenne, A.; Gaillard, F.; Potin, P.; Correa, J.A. Proteomic analysis and identification of copper stress-regulated proteins in the marine alga Scytosiphon gracilis (Phaeophyceae). Aquat. Toxicol. 2010, 96, 85–89. [Google Scholar] [CrossRef]
- Contreras, L.; Mella, D.; Moenne, A.; Correa, J.A. Differential responses to copper-induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). Aquat. Toxicol. 2009, 94, 94–102. [Google Scholar] [CrossRef]
- Cid, A.; Herrero, C.; Torres, E.; Abalde, J. Copper toxicity on the marine microalga Phaeodactylum tricornutum: Effects on photosynthesis and related parameters. Aquat. Toxicol. 1995, 31, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, H.D.; Nielsen, S.L. Photosynthetic responses to Cu2+ exposure are independent of light acclimation and uncoupled from growth inhibition in Fucus serratus (Phaeophyceae). Mar. Pollut. Bull. 2005, 51, 715–721. [Google Scholar] [CrossRef]
- Xiao, X.; Li, W.; Jin, M.; Zhang, L.; Qin, L.; Geng, W. Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. Mar. Environ. Res. 2023, 183, 105805. [Google Scholar] [CrossRef]
- Maksymiec, W. Effect of copper on cellular processes in higher plants. Photosynthetica 1997, 34, 321–342. [Google Scholar] [CrossRef]
- Yamasaki, H.; Pilon, M.; Shikanai, T. How do plants respond to copper deficiency? Plant Signal Behav. 2008, 3, 231–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, L.R.; Farina, M.; Amado, G.M. Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol. Environ. Saf. 2004, 58, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.D.; Brownlee, C.; Coelho, S.M.; Brown, M. Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytol. 2003, 160, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Celis-Plá, P.S.M.; Brown, M.T.; Santillán-Sarmiento, A.; Korbee, N.; Sáez, C.A.; Figueroa, F.L. Ecophysiological and metabolic responses to interactive exposure to nutrients and copper excess in the brown macroalga Cystoseira tamariscifolia. Mar. Pollut. Bull. 2018, 128, 214–222. [Google Scholar] [CrossRef]
- Caron, L.; Douady, D.; Martino, A.D.; Quinet, M. Light harvesting in brown algae. Cah. Biol. Mar. 2001, 42, 109–124. [Google Scholar]
- Chojnacka, K.; Chojnacki, A.; Górecka, H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process. Chemosphere 2005, 59, 75–84. [Google Scholar] [CrossRef]
- Dummermuth, A.L.; Karsten, U.; Fisch, K.M.; König, G.M.; Wiencke, C. Responses of marine macroalgae to hydrogen-peroxide stress. J. Exp. Mar. Biol. Ecol. 2003, 289, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Romeo, M.; Gnassia-Barelli, M. Organic ligands and their role in complexation and transfer of trace metals (micronutrients) in marine algae. In Macroalgae, Eutrophication and Trace Metal Cycling in Estuaries and Lagoons: Proceedings of the Coast-48 Symposium of Sub Group III, Thessaloniki, 1993; Rijstenbil, J.W., Haritonidis, S., Eds.; Delta Instituut voor Hydrobiologisch Onderzoek (DIHO): Wageningen, The Netherlands, 1993; pp. 121–135. [Google Scholar]
- Van den Berg, C.M.G.; Wong, P.; Chau, Y. Measurement of Complexing Materials Excreted from Algae and Their Ability to Ameliorate Copper Toxicity. J. Fish Res. Board Can. 1979, 36, 901–905. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, J.; Chu, Y.; Liu, Y.; Li, J. The brown algae Saccharina japonica and Sargassum horneri exhibit species-specific responses to synergistic stress of ocean acidification and eutrophication. J. Ocean Univ. China 2021, 20, 1253–1262. [Google Scholar] [CrossRef]
- Franklin, N.M.; Stauber, J.L.; Markich, S.J.; Lim, R.P. pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat. Toxicol. 2000, 48, 275–289. [Google Scholar] [CrossRef]
- Peterson, H.G.; Healey, F.P.; Wagemann, R. Metal Toxicity to Algae: A Highly pH Dependent Phenomenon. Can. J. Fish Aquat. Sci. 1984, 41, 974–979. [Google Scholar] [CrossRef]
- Kochoni, E.; Fortin, C. Iron Modulation of Copper Uptake and Toxicity in a Green Alga (Chlamydomonas reinhardtii). Environ. Sci. Technol. 2019, 53, 6539–6545. [Google Scholar] [CrossRef]
- Tatewaki, M. Formation of a Crustose Sporophyte with Unilocular Sporangia in Scitosiphon L. Phycologia 1966, 6, 62–66. [Google Scholar] [CrossRef]
- Li, T.; Sun, G.; Yang, C.; Liang, K.; Ma, S.; Huang, L. Using self-organizing map for coastal water quality classification: Towards a better understanding of patterns and processes. Sci. Total Environ. 2018, 628–629, 1446–1459. [Google Scholar] [CrossRef]
- Pierrot, D.; Lewis, E.; Wallace, D.W.R. MS Excel Program Developed For CO2 System Calculations; Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy: Oak Ridge, TN, USA, 2006. [Google Scholar]
- Porra, R.J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 2002, 73, 633–640. [Google Scholar] [CrossRef]
- Parsons, T.R.; Strickland, J.D. Discussion of spectrophotometric determination of marine plant pigments with revised equations for ascertaining chlorophylls. J. Mar. Res. 1963, 21, 155–163. [Google Scholar]
- Seely, G.R.; Duncan, M.J.; Vidaver, W.E. Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Mar. Biol. 1972, 12, 184–188. [Google Scholar] [CrossRef]
- Yemm, E.W.; Willis, A.J. The Estimation of Carbohydrates in Plant Extracts by Anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [Green Version]
Copper | pCO2 (ppmv) | pH | TA (μmol L−1) | DIC (μmol kg−1) | CO32− (μmol kg−1) | HCO3− (μmol kg−1) | CO2 (μmol kg−1) |
---|---|---|---|---|---|---|---|
Control | 400 | 7.90 ± 0.02 a | 2230 ± 18 a | 2132 ± 24 a | 84.8 ± 3.1 a | 2020.9 ± 25.6 a | 26.6 ± 1.6 a |
1000 | 7.53 ± 0.04 c | 2223 ± 8 a | 2232 ± 7 b | 38.5 ± 3.7 c | 2128.2 ± 4.8 b | 65.4 ± 6.8 c | |
LCu | 400 | 7.89 ± 0.02 a | 2234 ± 15 a | 2137 ± 21 a | 84.4 ± 3.1 a | 2026.0 ± 22.3 a | 26.9 ± 1.6 a |
1000 | 7.58 ± 0.01 b | 2228 ± 18 a | 2223 ± 20 b | 42.9 ± 0.7 bc | 2122.3 ± 18.7 b | 57.9 ± 1.8 b | |
Mcu | 400 | 7.87 ± 0.03 a | 2227 ± 21 a | 2138 ± 16 a | 80.1 ± 5.0 a | 2029.0 ± 14.3 a | 28.4 ± 1.7 a |
1000 | 7.58 ± 0.03 b | 2232 ± 4 a | 2228 ± 6 b | 42.8 ± 3.0 bc | 2126.5 ± 4.7 b | 58.6 ± 4.2 b | |
Hcu | 400 | 7.88 ± 0.02 a | 2224 ± 7 a | 2131 ± 8 a | 81.1 ± 2.6 a | 2023.9 ± 8.9 a | 27.9 ± 1.1 a |
1000 | 7.60 ± 0.03 b | 2216 ± 13 a | 2205 ± 17 b | 44.7 ± 2.9 b | 2105.6 ± 16.0 b | 55.0 ± 4.1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; He, L.; Pan, J.; Zhou, Y.; Ge, R.; Li, S.; Shi, Y.; Chen, X.; Chu, Y. Response of Juvenile Saccharina japonica to the Combined Stressors of Elevated pCO2 and Excess Copper. Plants 2023, 12, 1140. https://doi.org/10.3390/plants12051140
Zhang W, He L, Pan J, Zhou Y, Ge R, Li S, Shi Y, Chen X, Chu Y. Response of Juvenile Saccharina japonica to the Combined Stressors of Elevated pCO2 and Excess Copper. Plants. 2023; 12(5):1140. https://doi.org/10.3390/plants12051140
Chicago/Turabian StyleZhang, Wenze, Lianghua He, Jiangqi Pan, Yuhong Zhou, Ruxiang Ge, Sufang Li, Yunyun Shi, Xinhua Chen, and Yaoyao Chu. 2023. "Response of Juvenile Saccharina japonica to the Combined Stressors of Elevated pCO2 and Excess Copper" Plants 12, no. 5: 1140. https://doi.org/10.3390/plants12051140
APA StyleZhang, W., He, L., Pan, J., Zhou, Y., Ge, R., Li, S., Shi, Y., Chen, X., & Chu, Y. (2023). Response of Juvenile Saccharina japonica to the Combined Stressors of Elevated pCO2 and Excess Copper. Plants, 12(5), 1140. https://doi.org/10.3390/plants12051140