Chemical Diversity of Artemisia rutifolia Essential Oil, Antimicrobial and Antiradical Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. EOs Component Composition
2.2. Chemical Diversity of EOs
2.3. Antimicrobial Activity
2.4. Antiradical Activity
3. Materials and Methods
3.1. Plant Material Collection and EO Production
3.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis and Principal Component Analysis (PCA)
3.3. Antiradical Activity
3.4. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Component | Peak Area (%) | |||||
---|---|---|---|---|---|---|---|
Our Data | Literature Data | ||||||
T1 [13] | T2 [13] | M3 [15] | M4 [14] | M5 [16] | |||
Monoterpene hydrocarbons | |||||||
1 | Tricyclene | 0.05 | 0.13 | ||||
2 | α-Thujene | 0.12 | 0.1 | 0.12 | |||
3 | α-Pinene | 0.98 | 0.2 | tr * | 0.4 | 1.25 | 0.30 |
4 | Camphene | 1.06 | 0.1 | 0.8 | 0.34 | 0.21 | |
5 | Sabinene | 0.22 | 0.3 | 0.4 | 0.1 | 0.27 | 0.82 |
6 | β-Pinene | 0.37 | 0.1 | 0.1 | 0.2 | 0.19 | |
7 | α-Phellandrene | 0.05 | 0.5 | 0.1 | |||
8 | α-Terpinene | 0.89 | 0.2 | 0.2 | |||
9 | p-Cymol | 0.35 | 1.8 | 0.9 | 1.1 | 1.41 | |
10 | γ-Terpinene | 1.52 | 0.5 | 0.4 | 0.19 | ||
11 | Terpinolene | 0.37 | 0.1 | 0.1 | |||
12 | Santolina triene | 0.1 | 22.38 | ||||
13 | Myrcene | 2.8 | 0.3 | 0.15 | 21.84 | ||
14 | Pseudo-limonene | 5.27 | |||||
15 | Limonene | 0.18 | |||||
16 | E-β-Ocimene | tr | |||||
Total monoterpene hydrocarbons | 5.98 | 2.1 | 2.5 | 2.6 | 4.33 | 50.82 | |
Oxygenated monoterpenes | |||||||
17 | cis-Sabinene hydrate | 0.44 | 0.4 | 0.11 | |||
18 | 2,3-dehydro-1,8-Cineol | 0.15 | 1.2 | ||||
19 | 1,8-Cineol | 16.53 | 3.2 | 11.7 | 19.1 | 25.13 | 4.63 |
20 | trans-Sabinene hydrate | 0.37 | 0.3 | 0.20 | |||
21 | Filifolone | 0.19 | |||||
22 | cis-p-Menth-2-en-1-ol | 0.26 | 1.5 | ||||
23 | Chrysanthenone | 0.64 | 0.1 | 0.8 | |||
24 | trans-p-Menth-2-en-1-ol | 0.23 | 0.9 | 0.5 | |||
25 | Camphor | 16.67 | 0.9 | 0.2 | 22.4 | 21.74 | 2.13 |
26 | Pinocarvone | 0.31 | 0.1 | 0.2 | 0.46 | ||
27 | Borneol | 1.17 | 0.2 | 0.4 | 0.4 | 0.65 | |
28 | Terpinen-4-ol | 3.71 | 0.6 | 1.2 | 1.1 | 0.54 | 0.68 |
29 | α-Terpineol | 3.51 | 0.1 | 0.3 | 1 | 1.64 | |
30 | Bornyl acetate | 0.38 | tr | 0.1 | |||
31 | α-Terpineol formate | 0.40 | |||||
32 | Eugenol | 0.32 | |||||
33 | Santolina alcohol | 0.4 | |||||
34 | trans-2,3-epoxy Pinane | 0.12 | |||||
35 | Linalool | 0.25 | |||||
36 | α-Thujone | 20.9 | 36.6 | 0.7 | 3.38 | ||
37 | β-Thujone | 47.3 | 36.1 | 3.2 | 1.10 | ||
38 | Chryzanthenone | 0.38 | |||||
39 | iso-3-Thujanol | 0.3 | 0.1 | ||||
40 | trans-2-Pinanol | 0.55 | |||||
41 | trans-Verbenol | 0.3 | |||||
42 | p-Menth-3-en-1-ol | 0.1 | 0.2 | ||||
43 | Menthone | 0.9 | |||||
44 | Sabina ketone | 0.2 | 0.3 | ||||
45 | cis-Pinocamphone | 0.1 | |||||
46 | Thuj-3-en-10-al | 0.2 | |||||
47 | p-Cymen-8-ol | 0.1 | 0.2 | ||||
48 | cis-Piperitol | 0.4 | 0.1 | ||||
49 | Myrtenol | 0.3 | |||||
50 | γ-Terpineol | tr | |||||
51 | trans-Piperitol | 0.5 | 0.2 | ||||
52 | trans-Carveol | 0.2 | 0.1 | ||||
53 | m-Cumenol | 0.1 | 0.1 | ||||
54 | exo-2-Рydroxycineol | 2.3 | |||||
55 | nor-Davanone | 0.1 | |||||
56 | Pulegone | 1 | 0.3 | ||||
57 | Carvone | 0.9 | 0.1 | ||||
58 | Carvacrol methyl ether | 29.58 | |||||
59 | Carvotanacetone | 0.1 | 0.1 | ||||
60 | Geraniol | 2.91 | |||||
61 | cis-Piperitone epoxide | 2.0 | 0.9 | ||||
62 | cis-Chrysanthenyl acetate | 0.2 | tr | ||||
63 | iso-3-Thujanol acetone | 0.1 | 0.1 | ||||
64 | neoiso-3-Thujanol acetone | 0.1 | |||||
65 | Sabinylacetate | 0.9 | |||||
66 | p-Cymen-7-ol | 0.1 | tr | ||||
67 | Thymol | 0.7 | 0.2 | ||||
68 | Carvacrol | 0.9 | 0.4 | 0.1 | |||
69 | Z-Patchenol | 0.2 | |||||
70 | cis-Piperitol acetate | 0.1 | 0.1 | ||||
71 | Piperitone | 0.1 | 0.1 | ||||
72 | Pipertione oxide | 1.4 | tr | ||||
73 | trans-Carvylacetate | 0.2 | |||||
74 | α-Terpenylacetate | 0.3 | 0.1 | ||||
75 | Z-Jasmone | 0.1 | 0.3 | tr | |||
76 | Methyleugenol | tr | |||||
77 | E-Ionone | 0.1 | tr | ||||
Total oxygenated monoterpenes | 45.28 | 85.2 | 92.4 | 55.9 | 89.04 | 7.44 | |
Sesquiterpene hydrocarbons | |||||||
78 | α-Copaene | 0.48 | 0.1 | tr | |||
79 | Caryophyllene | 0.97 | 0.4 | 0.1 | 7.19 | ||
80 | Humulene | 0.07 | 0.59 | ||||
81 | allo-Aromadendrene | 0.19 | |||||
82 | Selina-4,11-diene | 0.13 | 0.97 | ||||
83 | Germacrene D | 1.02 | 2.8 | 1.8 | 0.99 | ||
84 | Bicyclogermacrene | 2.06 | 0.5 | 0.8 | |||
85 | γ-Cadinene | 0.16 | 0.48 | ||||
86 | α-Cedrene | 0.22 | |||||
87 | β-Farnesene | 0.2 | 0.1 | ||||
88 | β-Chamigrene | 0.1 | |||||
89 | Valencene | 1.20 | |||||
90 | Ledene | 0.12 | 2.17 | ||||
91 | Aciphyllene | 1.34 | |||||
92 | Bulnesene | 0.84 | |||||
93 | β-Bisabolene | 0.2 | |||||
94 | δ-Cadinene | 0.1 | tr | 0.42 | |||
95 | β-Elemene | 0.71 | 0.84 | ||||
Total sesquiterpene hydrocarbons | 5.08 | 4.4 | 2.8 | 0 | 0.83 | 17.25 | |
Oxygenated sesquiterpenes | |||||||
96 | Spathulenol | 1.10 | 0.7 | 0.2 | 0.2 | 0.17 | 1.97 |
97 | Caryophyllene oxide | 0.60 | 0.2 | 0.1 | 0.1 | 5.82 | |
98 | dehydro-Sesquicineol | 0.9 | |||||
99 | Davana ether | 0.1 | |||||
100 | Davanone | 1.3 | |||||
101 | Viridiflorol | 0.4 | |||||
102 | Ledol | 0.1 | |||||
103 | Cedrol | 2.27 | |||||
104 | Eremoligenol | 0.69 | |||||
105 | Germacrene-D-1,10-epoxide | 0.3 | |||||
106 | α-Cadinol | 0.1 | 0.1 | ||||
107 | Germacra-4(15),5,10(14)-trien-1α-ol | 0.1 | 0.1 | 0 | |||
108 | α-Bisabolol | 0.42 | |||||
109 | 4-Cuprenen-1-ol | tr | |||||
110 | Aciphilyc acid | 0.91 | |||||
Total oxygenated sesquiterpenes | 1.70 | 1.9 | 1.8 | 0.4 | 0.17 | 12.98 | |
Non-oxygenated hydrocarbons | |||||||
111 | 1-phenyl-2,4-Pentadiyne | 0.1 | |||||
Total non-oxygenated hydrocarbons | 0 | 0 | 0.1 | 0 | 0 | 0 | |
Oxygenated hydrocarbons | |||||||
112 | 4-phenyl-2-Butanol | 3.58 | 3.4 | ||||
113 | 4-phenyl-2-Butanone | 34.95 | 33.1 | ||||
114 | α-methyl-Benzenepropanol acetate | 3.43 | |||||
115 | (2E)-Hexenal | 0.1 | |||||
116 | Benzaldehyde | 0.1 | |||||
117 | 1-Octen-3-ol | 0.1 | |||||
118 | (2E)-Dodecenal | 0.2 | |||||
119 | Phloacetophenone 2,4-dimethylether | 0.3 | |||||
Total oxygenated hydrocarbons | 41.96 | 0.6 | 0.1 | 36.6 | 0 | 0 | |
Total monoterpenes | 51.26 | 87.3 | 94.9 | 58.5 | 93.37 | 58.26 | |
Total sesquiterpenes | 6.78 | 6.3 | 4.6 | 0.4 | 1.00 | 30.23 | |
Total hydrocarbons | 41.96 | 0.6 | 0.2 | 36.6 | 0 | 0 |
References
- Atazhanova, G.A. Terpenoids of Plant Essential Oils; ICSPF: Moscow, Russia, 2008; pp. 90–127. [Google Scholar]
- Krasnoborov, I.M. Flora of Siberia, Vol. 13, Asteraceae (Compositae); Nauka: Novosibirsk, Russia, 1997; p. 123. [Google Scholar]
- Flora of China. Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200023320 (accessed on 1 February 2023).
- Budantsev, A.L. Plant Resources of RUSSIA: Wild Flowering Plants, Their Composition and Biological Activity. Vol. 5. Asteraceae (Compositae) Family. Part 1. Genera Achillea—Doronicum; Association of Scientific Publications KMK; SPb: Moscow, Russia, 2012; 317p. [Google Scholar]
- Namzalov, B.B. Endemism and relict phenomena in the flora and vegetation of the steppe ecosystems of Baikalian Siberia. In Biological Diversity of Baikalian Siberia; Korsunov, V.M., Ed.; Nauka: Novosibirsk, Russia, 1999; pp. 184–192. [Google Scholar]
- Voronin, V.I.; Razmakhina, T.B. Artemisia rutifolia (Asteraceae), a new indicator of long-term dynamics of atmospheric humidifying. Botanicheskii Zhurnal 2005, 90, 1565–1572. [Google Scholar]
- Rastitel’nye Resursy SSSR. Cvetkovye Rastenija, ih Himicheskij Sostav, Ispol’zovanie: Semejstvo Asteraceae (Plant Resources of the USSR. Flowering Plants, Their Chemical Composition, Use: Family Asteraceae); Sokolov, P.D., Ed.; Nauka: Saint-Petersburg, Russia, 1993; pp. 59–60. [Google Scholar]
- Tan, R.X.; Jia, J.; Jakupovic, J.; Bohlmann, F.; Huntck, S. Sesquiterpene lactones from Artemisia rutifolia. Phytochemistry 1991, 30, 3033–3035. [Google Scholar] [CrossRef]
- Jakupovic, J.; Tan, R.X.; Bohlmann, F.; Jia, Z.J.; Huneck, S. Sesquiterpene lactones from Artemisia rutifolia. Phytochemistry 1991, 30, 1714–1716. [Google Scholar] [CrossRef]
- Tan, R.X.; Jia, Z.J. Sesquiterpenes from Artemisia rutifolia. Phytochemistry 1992, 31, 2534–2536. [Google Scholar] [CrossRef]
- Ashraf, A.; Sarfraz, R.A.; Mahmood, A. Phenolic compounds’ characterization of Artemisia rutifolia Spreng. from Pakistan flora and their relationship with antioxidant and antimicrobial attributes. Int. J. Food Prop. 2017, 20, 2538–2549. [Google Scholar] [CrossRef] [Green Version]
- Shavarda, A.L. Essential oils of Mongolian plants: A study of the essential oils of Artemisia rutifolia. Chem. Nat. Compd. 1977, 12, 42–45. [Google Scholar] [CrossRef]
- Sharopov, F.S.; Setzer, W.N. Thujone-rich essential oils of Artemisia rutifolia Stephan ex Spreng growing wild in Tajikistan. J. Essent. Oil-Bear. Plants 2011, 14, 136–139. [Google Scholar] [CrossRef]
- Shatar, S.; Bodoev, N.V.; Zhigzhitzhapova, S.V.; Altantsetseg, S.; Namzalov, B.B. Ether-Bearing Plants of the Selenga River Basin; BSU Press: Ulan-Ude, Russia, 2006; 134p. [Google Scholar]
- Trendafilova, A.; Shatar, S.; Todorova, M.; Altantsetseg, S. Essential oil composition of four Mongolian Artemisia species. Compt. Rend. Acad. Bulg. Sci. 2010, 63, 503–510. [Google Scholar]
- Ayurzana, A.; Jambal, I.; Boldkhuu, N.; Batbayar, B.; Romanenk, E.P.; Shatar, A. Study on chemical composition of essential oil, ethanol extract, and anti-cancer, anti- bacterial activity of Artemisia rutifolia Steph.ex Spreng grown in Mongolia. J. Pharm. Res. Int. 2022, 34, 1–8. [Google Scholar] [CrossRef]
- Kaltschmidt, B.P.; Ennen, I.; Greiner, J.F.W.; Dietsch, R.; Patel, A.; Kaltschmidt, B.; Kaltschmidt, C.; Hütten, A. Preparation of Terpenoid-Invasomes with Selective Activity against S. aureus and Characterization by Cryo Transmission Electron Microscopy. Biomedicines 2020, 8, 105. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Radacsi, P.; Gosztola, B.; Rajhart, P.; Nemeth, E.Z. Accumulation and composition of essential oil due to plant development and organs in wormwood (Artemisia absinthium L.). Ind. Crops Prod. 2018, 123, 232–237. [Google Scholar] [CrossRef]
- Pelkonen, O.; Abass, K.; Wiesner, J. Thujone and thujone-containing herbal medicinal and botanical products: Toxicological assessment. RTR 2013, 65, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Dybowski, M.P.; Dawidowicz, A.L. The determination of α- and β-thujone in human serum—Simple analysis of absinthe congener substance. Forensic Sci. Int. 2016, 259, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Padosch, S.A.; Lachenmeier, D.W.; Kröner, L.U. Absinthism: A fictitious 19th century syndrome with present impact. Subst. Abuse Treat. Prev. Policy 2006, 1, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.T.; Radácsi, P.; Rajhárt, P.; Németh, É. Variability of thujone content in essential oil due to plant development and organs from Artemisia absinthium L. and Salvia officinalis L. J. Appl. Bot. Food Qual. 2019, 92, 100–105. [Google Scholar] [CrossRef]
- Judzentiene, A.; Budiene, J. Variability of Artemisia campestris L. essential oils from Lithuania. J. Essent. Oil Res. 2014, 26, 328–333. [Google Scholar] [CrossRef]
- Masotti, V.; Juteau, F.; Bessière, J.M.; Viano, J. Seasonal and phenological variations of the essential oil from the narrow endemic species Artemisia molinieri and its biological activities. J. Agric. Food Chem. 2003, 51, 7115–7121. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. App. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Németh, É.Z.; Nguyen, H.T. Thujone, a widely debated volatile compound: What do we know about it? Phytochem. Rev. 2020, 19, 405–423. [Google Scholar] [CrossRef]
- Beresneva, I.A. Climates of the Arid Zone of Asia; Nauka: Moscow, Russia, 2006; 287p. [Google Scholar]
- Sharopov, F.; Braun, M.S.; Gulmurodov, I.; Khalifaev, D.; Isupov, S.; Wink, M. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils of selected aromatic plants from Tajikistan. Foods 2015, 4, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Raikova, S.V.; Golikov, A.G.; Shub, G.M.; Durnova, N.A.; Shapoval, O.G.; Rakhmetova, A.Y. Antimicrobial activity of essential oil of peppermint (Mentha piperita L.). Saratov Sci. Med. J. 2011, 7, 787–790. [Google Scholar]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Daferera, D.; Polissiou, M.; Sokmen, A. Antioxidative activity of the essential oils of Thymus sipyleus subsp. sipyleus var. sipyleus and Thymus sipyleus subsp. sipyleus var. rosulans. J. Food Eng. 2005, 66, 447–454. [Google Scholar] [CrossRef]
- Zengin, H.; Baysal, A.H. Antibacterial and Antioxidant Activity of Essential Oil Terpenes against Pathogenic and Spoilage-Forming Bacteria and Cell Structure-Activity Relationships Evaluated by SEM Microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kordali, S.; Cakir, A.; Mavi, A.; Kilic, H.; Yildirim, A. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia Species. J. Agric. Food Chem. 2005, 53, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Tykheev, Z.A.; Zhigzhitzhapova, S.V.; Zhang, F.; Taraskin, V.V.; Anenkhonov, O.A.; Radnaeva, L.D.; Chen, S. Constituents of Essential Oil and Lipid Fraction from the Aerial Part of Bupleurum scorzonerifolium Willd. (Apiaceae) from Different Habitats. Molecules 2018, 23, 1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | RI * | Rt | Component | Peak Area (%) | Molecular Formula |
---|---|---|---|---|---|
1 | 921 | 9.17 | Tricyclene | 0.05 | C10H16 |
2 | 926 | 9.32 | α-Thujene | 0.12 | C10H16 |
3 | 932 | 9.56 | α-Pinene | 0.98 | C10H16 |
4 | 947 | 10.08 | Camphene | 1.06 | C10H16 |
5 | 973 | 10.95 | Sabinene | 0.22 | C10H16 |
6 | 975 | 11.06 | β-Pinene | 0.37 | C10H16 |
7 | 990 | 11.55 | 2,3-dehydro-1,8-Cineol | 0.15 | C10H16O |
8 | 1004 | 12.04 | α-Phellandrene | 0.05 | C10H16 |
9 | 1017 | 12.49 | α-Terpinene | 0.89 | C10H16 |
10 | 1024 | 12.78 | p-Cymol | 0.35 | C10H14 |
11 | 1031 | 13.07 | 1,8-Cineol | 16.53 | C10H18O |
12 | 1058 | 14.04 | γ-Terpinene | 1.52 | C10H16 |
13 | 1066 | 14.33 | trans-Sabinene hydrate | 0.37 | C10H18O |
14 | 1088 | 15.13 | Terpinolene | 0.37 | C10H16 |
15 | 1098 | 15.48 | cis-Sabinene hydrate | 0.44 | C10H18O |
16 | 1103 | 15.70 | Filifolone | 0.19 | C10H14O |
17 | 1121 | 16.35 | cis-p-Menth-2-en-1-ol | 0.26 | C10H18O |
18 | 1126 | 16.49 | Chrysanthenone | 0.64 | C10H14O |
19 | 1141 | 17.06 | trans-p-Menth-2-en-1-ol | 0.23 | C10H18O |
20 | 1144 | 17.29 | Camphor | 16.67 | C10H16O |
21 | 1162 | 17.88 | Pinocarvone | 0.31 | C10H14O |
22 | 1166 | 17.99 | Borneol | 1.17 | C10H18O |
23 | 1177 | 18.41 | Terpinen-4-ol | 3.71 | C10H18O |
24 | 1191 | 18.88 | α-Terpineol | 3.51 | C10H18O |
25 | 1241 | 20.91 | 4-phenyl-2-Butanol | 3.58 | C10H14O |
26 | 1247 | 21.25 | 4-phenyl-2-Butanone | 34.95 | C10H12O |
27 | 1287 | 22.21 | Bornyl acetate | 0.38 | C12H20O2 |
28 | 1306 | 24.30 | α-Terpineol formate | 0.40 | C11H18O2 |
29 | 1359 | 24.56 | Eugenol | 0.32 | C10H12O2 |
30 | 1378 | 25.26 | α-Copaene | 0.48 | C15H24 |
31 | 1418 | 25.79 | α-methyl-Benzenepropanol acetate | 3.43 | C12H16O2 |
32 | 1422 | 26.70 | Caryophyllene | 0.97 | C15H24 |
33 | 1456 | 27.77 | Humulene | 0.07 | C15H24 |
34 | 1464 | 28.00 | allo-Aromadendrene | 0.19 | C15H24 |
35 | 1477 | 28.41 | Selina-4,11-diene | 0.13 | C15H24 |
36 | 1484 | 28.61 | Germacrene D | 1.02 | C15H24 |
37 | 1500 | 29.09 | Bicyclogermacrene | 2.06 | C15H24 |
38 | 1517 | 29.59 | γ-Cadinene | 0.16 | C15H24 |
39 | 1580 | 31.52 | Spathulenol | 1.10 | C15H24O |
40 | 1586 | 31.70 | Caryophyllene oxide | 0.60 | C15H24O |
Total oxygenated hydrocarbons | 41.96 | ||||
Total monoterpenes | 51.26 | ||||
Total sesquiterpenes | 6.78 | ||||
Total hydrocarbons | 41.96 |
Tested Substance | Zone of Inhibition, mm | |||||||
---|---|---|---|---|---|---|---|---|
Gram-Positive | Gram-Negative | Fungi | ||||||
Streptococcus pyogenes | Staphylococcus aureus | Bacillus cereus | Pseudomonas aeruginosa | Salmonella enterica | Escherichia coli | Candida albicans | Aspergillus niger | |
Essential oil | 14 | 14 | 14 | 0 | 12 | 13 | 11 | 21 |
Positive control * | 25 | 28 | 24 | 26 | 27 | 27 | 46 | 37 |
Sample Code | Country | Locality | Collection Period | Latitude Longitude | Attitude (m) | Yield of the Essential Oil, v/w (%) | Source of Data |
---|---|---|---|---|---|---|---|
22–48 | Russia | Surroundings of the Novoselenginsk Village, Selenginsky District, Buryatia | 14.06.2022 | N 51.25556 E 106.431389 | 549 | 1.82 | Present study |
T1 | Tajikistan | Khonaobod Village, Muminobod region | 02.05.2010 | N 38.107547 E 69.966431 | 1200 | 0.50 | [13] |
T2 | Tajikistan | Chormaghzak Village, Yovon region | 25.07.2010 | N 38.417502 E 69.172175 | 1300 | 0.80 | [13] |
M3 | Mongolia | Middle Gobi Province | 08.09.2007 | – * | – | 0.20 | [15] |
M4 | Mongolia | – | – | – | – | 1.20 | [14] |
M5 | Mongolia | Khrakhiraa Mountain, Uvs aimag | 09.2019 | – | – | 0.96 | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dylenova, E.P.; Zhigzhitzhapova, S.V.; Emelyanova, E.A.; Tykheev, Z.A.; Chimitov, D.G.; Goncharova, D.B.; Taraskin, V.V. Chemical Diversity of Artemisia rutifolia Essential Oil, Antimicrobial and Antiradical Activity. Plants 2023, 12, 1289. https://doi.org/10.3390/plants12061289
Dylenova EP, Zhigzhitzhapova SV, Emelyanova EA, Tykheev ZA, Chimitov DG, Goncharova DB, Taraskin VV. Chemical Diversity of Artemisia rutifolia Essential Oil, Antimicrobial and Antiradical Activity. Plants. 2023; 12(6):1289. https://doi.org/10.3390/plants12061289
Chicago/Turabian StyleDylenova, Elena P., Svetlana V. Zhigzhitzhapova, Elena A. Emelyanova, Zhargal A. Tykheev, Daba G. Chimitov, Danaya B. Goncharova, and Vasiliy V. Taraskin. 2023. "Chemical Diversity of Artemisia rutifolia Essential Oil, Antimicrobial and Antiradical Activity" Plants 12, no. 6: 1289. https://doi.org/10.3390/plants12061289
APA StyleDylenova, E. P., Zhigzhitzhapova, S. V., Emelyanova, E. A., Tykheev, Z. A., Chimitov, D. G., Goncharova, D. B., & Taraskin, V. V. (2023). Chemical Diversity of Artemisia rutifolia Essential Oil, Antimicrobial and Antiradical Activity. Plants, 12(6), 1289. https://doi.org/10.3390/plants12061289