Evaluation of Yield and Nutraceutical Traits of Orange-Fleshed Sweet Potato Storage Roots in Two Agro-Climatic Zones of Northern Ethiopia
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Study Area
4.2. Soil Analysis
4.3. Planting Material
4.4. Plant Analysis
4.4.1. Yield
4.4.2. Dry Matter Content
4.4.3. Beta-Carotene
4.4.4. Flavonoids
4.4.5. Polyphenols
4.4.6. Soluble Sugars
4.4.7. Starch
4.4.8. Soluble Proteins
4.4.9. Free Radical Scavenging Activity
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. New FAOSTAT Data Release on Food Balance (2014–2018) Production Year Book; Food and Agricultural Organization: Rome, Italy, 2018; Available online: http://www.fao.org/faostat/en/#data (accessed on 14 May 2020).
- Kapinga, R.S.; Tumwegamire, S.; Ndunguru, J.; Andrade, M.I.; Agili, S.; Mwanga, R.O.M. Catalogue of Orange-Fleshed Sweetpotato Varieties for Sub-Saharan Africa; International Potato Center: Lima, Peru, 2010. [Google Scholar]
- Van Jaarsveld, P.J.; Faber, M.; Tanumihardjo, S.A.; Nestel, P.; Lombard, C.J.; Benadé, A.J.S. B-Carotene rich vitamin A status of primary school children assessed with the modified-relative-dose response. Am. J. Clin. Nutr. 2005, 81, 1080–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNICEF. The State of the World’s Children. Ethiopia. 2017. Available online: https://www.unicef.org/sowc/ (accessed on 2 March 2023).
- UNICEF. Ethiopia Children Factsheet-2018. Unicef, Ethiopia. 2018. Available online: www.unicef.org/ethiopia (accessed on 2 March 2023).
- Tigeneh, W.; Molla, A.; Abreha, A.; Assefa, M. Pattern of Cancer in Tikur Anbessa Specialized Hos-pital Oncology Center in Ethiopia from 1998 to 2010. Int. J. Cancer Res. Mol. Mech. 2015, 1, 2381–3318. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Climate Change and Health, WHO. 2016. Available online: www.who.int/mediacentre/factsheets/fs266/en/ (accessed on 2 March 2023).
- Lebot, V. Sweet potato. In Root and Tuber Crops. Handbook of Plant Breeding; Bradshaw, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 7, pp. 97–125. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Luo, Z.; Huang, L.; Chen, X.; Fang, B.; Zhang, X. Characterization and development of EST-derived SSR markers in cultivated sweetpotato (Ipomoea batatas). BMC Plant Biol. 2011, 11, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, S. Sweetpotato (Ipomoea batatas L.) leaf: Its potential effect on human health and nutrition. J. Food Sci. 2006, 71, R13–R121. [Google Scholar] [CrossRef]
- Hotz, C.; Loechl, C.; Lubowa, A.; Tumwine, J.K.; Ndeezi, G.; Masawi, A.N.; Baingana, R.; Carriquiry, A.; De Brauw, A.; Meenakshi, J.V.; et al. Introduction of β-carotene-rich orange sweetpotato in rural Uganda resulted in increased Vitamin A intakes among children and women and improved Vitamin A status among children. J. Nutr. 2012, 142, 1871–1880. [Google Scholar] [CrossRef] [Green Version]
- Yada, B. Genetic Analysis of Agronomic Traits and Resistance to Sweetpotato Weevil and Sweet Potato Virus Disease in a Bi-parental Sweetpotato Population. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2014; pp. 1–200. [Google Scholar]
- Low, J.W.; Arimond, M.; Osman, N.; Cunguara, B.; Zano, F.; Tschirley, D. A food-based approach introducing orange-fleshed sweetpotatoes increased vitamin A intake and serum retinol concentrations in young children in rural Mozambique. J. Nutr. 2007, 137, 1320–1327. [Google Scholar] [CrossRef] [Green Version]
- Mwanga, R.O.M.; Odongo, B.; Niringiye, C.; Alajo, A.; Kigozi, B.; Makumbi, R.; Lugwana, E.; Namakula, J.; Mpembe, I.; Kapinga, R.; et al. ‘NASPOT 7’, ‘NASPOT 8’, ‘NASPOT 9 O’, ‘NASPOT 10 O’, and ‘Dimbuka-Bukulula’ sweetpotato. Hort. Sci. 2009, 44, 828–832.s. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Cai, Y.Z.; Yang, X.; Ke, J.; Corke, H. Anthocyanins, hydroxycinnamic acid derivatives, and antioxidant activity in roots of different Chinese purple-fleshed sweetpotato genotypes. J. Agric. Food Chem. 2010, 58, 7588–7596. [Google Scholar] [CrossRef]
- Mitra, S. Nutritional status of orange-fleshed sweet potatoes in alleviating vitamin A malnutrition through a food-based approach. J. Nutr. Food Sci. 2012, 2, 160. [Google Scholar] [CrossRef] [Green Version]
- Acquaah, G. Principles of Plant Breeding and Genetics; Blackwell Publishing: Malden, MA, USA, 2007; pp. 66–71. [Google Scholar]
- Grüneberg, W.J.; Ma, D.; Mwanga, R.O.M.; Carey, E.E.; Huamani, K.; Diaz, F.; Yencho, G.C. Advances in sweetpotato breeding from 1992 to 2012. In Potato and Sweetpotato in Africa: Transforming the Value Chains for Food and Nutrition Security; CABI: Singapore, 2015; pp. 3–68. [Google Scholar] [CrossRef]
- Manrique, K.; Hermann, M. Effect of G × E Interaction on root yield and beta-carotene content of selected sweetpotato (Ipomoea batatas (L.) Lam) varieties and breeding clones. In Scientist and Farmer: Partners in Research for the 21st Century. CIP Program Report 1999–2000; International Potato Center: Lima, Peru, 2001; pp. 281–285. [Google Scholar]
- Grüneberg, W.J.; Manrique, K.; Zhang, D.; Hermann, M. Genotype x environment interactions for a diverse set of sweetpotato clones evaluated across varying ecogeographic conditions in Peru. Crop Sci. 2005, 45, 2160–2171. [Google Scholar] [CrossRef]
- Oriba, A. Characterization of storage root yield, sweetpotato virus disease, dry matter, shape and harvest index in a bi-parental sweetpotato cross in Uganda. Master’s Thesis, College of Agriculture and Natural Resources of Makerere University, Kampala, Uganda, 2017. [Google Scholar]
- Vimala, B.; Nambisan, B.; Hariprakash, B. Retention of carotenoids in orange-fleshed sweetpotato during processing. J. Food Sci. Technol. 2011, 48, 520–524. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.C.; Lin, J.T.; Yand, D.J. Determination of cis- and trans-a- and bcarotenoids in Taiwanese sweet potatoes (Ipomoea batatas (L.) Lam) harvested at various times. Food Chem. 2009, 116, 605–610. [Google Scholar] [CrossRef]
- Tsyno, Y.; Fujia, K. Study on the Dry Matter Production of Sweet Potato. The Relationship between the Dry Matter Production and the Absorption of Mineral Nutrients. Proc. Crop Sci. Soc. Jpn. 1964, 32, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Romero, C.C.; Baigorria, G.A. The effect of temperature on sweetpotato growth and development. In Proceedings of the International Meeting of ASA/CSSA/SSSA/GSA/GCAGS/HGS, Houston, TX, USA, 5–9 October 2008; pp. 201–534. [Google Scholar]
- Hagenimana, V.L.M.; K’osambo, L.; Carey, E.E. Potential of sweetpotato in reducing vitamin A deficiency in Africa. In Impact on a Changing World; International Potato Center: Lima, Peru, 1999; pp. 287–294. [Google Scholar]
- Tumwegamire, S. Genetic Variation Diversity and Genotype by Environment Interactions of Nutritional Quality traits in East African Sweetpotato. Ph.D. Thesis, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda, 2011. [Google Scholar]
- Lamaro, G.P. Adaptability and performance evaluation of sweetpotato (Ipomoea batatas [L.] Lam) in different agro-ecologies of Tigray region, Ethiopia. Master’s Thesis, Mekelle University, Mek’ele, Ethiopia, 2017. [Google Scholar]
- Mulongo, G.; Munyua, H.; Mbabu, A.; Maru, J. What is required to scale-up and sustain biofortification? Achievements, challenges and lessons from scaling-up Orange-Fleshed Sweetpotato in Sub-Sahara Africa. J. Agric. Food Inf. 2021, 4, 100–102. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- UNFCCC (United Nations Framework Convention on Climate Change). Climate Change: Impacts, Vulnerabilities and Adaptabilities and Adaptation in Developing Countries; UNFCCC: Bonn, Germany, 2012; pp. 8–60. [Google Scholar]
- Allen, L.H. Ending hidden hunger: The history of micronutrient deficiency control. In Background Analysis for the World Bank-UNICEF Nutrition Assessment Project World Bank; World Bank: Washington, DC, USA, 2000. [Google Scholar]
- Aritua, V.; Gibson, R.W. The perspective of sweetpotato chlorotic stunt virus in sweetpotato production in Africa: A review. Afr. Crop Sci. J. 2002, 10, 281–310. [Google Scholar]
- Gotor, E.; Irungu, C. The impact of Bioversity International’s African leafy vegetables programme in Kenya. Impact Assess. Proj. Apprais. 2010, 28, 41–55. [Google Scholar] [CrossRef]
- Fekadu, G. Sweetpotato Research and Development in Ethiopia: A Comprehensive Review. J. Agric. Crop Res. 2019, 7, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Tumwegamire, S.; Kapinga, R.; Rubaihayo, P.R.; LaBonte, D.R.; Grüneberg, W.J.; Burgos, G.; Felde, T.Z.; Carpio, R. Evaluation of dry matter, protein, starch, sucrose, ß-carotene, iron, zinc, calcium, and magnesium in East African sweetpotato [Ipomoea batatas (L.) Lam] germplasm. Hort. Sci. 2011, 46, 348–357. [Google Scholar]
- Lamaro, G.P.; Tsehaye, Y.; Girma, A. Orange-fleshed sweet potato [Ipomoea batatas (L.) Lam] genotype by environment interaction for yield and yield components and SPVD resistance under arid and semi-arid climate of northern Ethiopia. Eur. J. Sci. Theol. 2022, 15, 255–276. [Google Scholar] [CrossRef]
- Lamaro, G.P.; Tsehaye, Y.; Girma, A.; Vannini, A.; Fedeli, R.; Loppi, S. Essential Mineral Elements and Potentially Toxic Elements in Orange-Fleshed Sweet Potato Cultivated in Northern Ethiopia. Biology 2023, 12, 266. [Google Scholar] [CrossRef]
- Grüneberg, W.J.; Mwanga, R.O.M.; Andrade, M.; Daapah, H. Sweetpotato Breeding—Chapter 1. In Unleashing the Potential of Sweetpotato in Sub-Saharan Africa: Current Challenges and Way Forward; Andrade, M., Barker, I., Cole, D., Dapaah, H., Elliott, H., Fuentes, S., Oswald, A., Low, J., Lemaga, B., Ortiz, O., et al., Eds.; Working Paper; International Potato Center (CIP): Lima, Peru, 2009; Volume 1, p. 197. [Google Scholar]
- Stinco, C.M.; Benítez-González, A.M.; Hernanz, D.; Vicario, I.M.; Meléndez-Martínez, A.J. Development and validation of a rapid resolution liquid chromatography method for the screening of dietary plant isoprenoids: Carotenoids, tocopherols and chlorophylls. J. Chromatogr. A 2014, 1370, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Tumwegamire, S.; Mwanga, R.O.M.; Andrade, M.I.; Low, J.W.; Ssemakula, G.N.; Laurie, S.M.; Chipungu, F.P.; Ndirigue, J.; Agili, S.; Karanja, L.; et al. Orange-fleshed Sweetpotato for Africa. Catalogue 2014, 2nd ed.; International Potato Center (CIP): Lima, Peru, 2014; p. 74. [Google Scholar]
- Tomlins, K.; Owori, C.; Bechoff, A.; Menya, G.; Westby, A. Relationship among the carotenoid content, dry matter content and sensory attributes of sweet potato. Food Chem. 2012, 131, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Ndirigwe, J. Adaptability and acceptability of orange and yellow-fleshed sweetpotato genotypes in Rwanda. Master’s Thesis, Makerere University, Kampala, Uganda, 2005; p. 98. [Google Scholar]
- Afuape, S.O.; Nwankwo, I.I.M.; Omodamiro, R.M.; Echendu, T.N.C.; Toure, A. Studies on some important consumer and processing traits for breeding sweetpotato for varied end-uses. Am. J. Exp. Agric. 2014, 4, 114–124. [Google Scholar]
- Aryaeian, N.; Sedehi, S.K.; Arablou, T. Polyphenols and their effects on diabetes management: A review. Med. J. Islam. Repub. Iran 2017, 31, 134. [Google Scholar] [CrossRef] [Green Version]
- K’osambo, L.; Carey, E.E.; Misra, A.K.; Wilkes, J.; Hagenimana, V. Influence of age, farming site, and boiling on pro-vitamin A content in sweet potato (Ipomoea batatas (L.) Lam). J. Food Anal. 1998, 11, 305–321. [Google Scholar] [CrossRef]
- Mohammad, K.A.; Ziaul, H.R.; Sheikh, N.I. Comparison of the proximate composition, total carotenoids and total polyphenol content of nine orange-fleshed sweetpotato varieties grown in Bangladesh. Foods 2016, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, N.R.; Barbosa, J.L.; Barbosa, M.I.M.J. Determination of physico-chemical composition, nutritional facts and technological quality of organic orange and purple-fleshed sweet potatoes and its flours. Int. Food Res. J. 2016, 23, 2071–2078. [Google Scholar]
- Mbusa, H.K.; Ngugi, K.; Olubayo, F.M.; Kivuva, B.M.; Muthomi, J.M.; Nzuve, F.M. The Inheritance of Yield Components and Beta Carotene Content in Sweet Potato. J. Agric. Sci. 2018, 10, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Jones, A. Sweetpotato heritability estimates and their use in breeding. Hort. Sci. 1986, 21, 14–17. [Google Scholar]
- Shumbusha, D.; Tusiime, G.; Edema, R.; Gibson, P.; Adipala, E.; Mwanga, R.O.M. Inheritance of root dry matter content in sweetpotato. Afr. Crop. Sci. J. 2014, 22, 69–78. [Google Scholar]
- Todd, S.M. Application of Near Infrared Spectroscopy to Study Inheritance of Sweetpotato Composition Traits. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2013. [Google Scholar]
- Cervantes-Flores, J.C.; Sosinski, B.; Pecota, K.V.; Mwanga, R.O.M.; Catignani, G.L.; Truong, V.D.; Watkins, R.H.; Ulmer, M.R.; Yencho, G.C. Identification of quantitative trait loci for dry-matter, starch, and ß-carotene content in sweetpotato. Mol. Breed. 2011, 28, 201–216. [Google Scholar] [CrossRef]
- Sun, Y.; Pan, Z.; Yang, C.; Jia, Z.; Guo, X. Comparative assessment of phenolic profiles, cellular antioxidant and antiproliferative activities in ten varieties of sweet potato (Ipomoea batatas) storage roots. Molecules 2019, 24, 4476. [Google Scholar] [CrossRef] [Green Version]
- Hannan, P.A.; Khan, J.A.; Ullah, I.; Ullah, S. Synergistic combinatorial antihyperlipidemic study of selected natural antioxidants; modulatory effects on lipid profile and endogenous antioxidants. Lipids Health Dis. 2016, 15, 151. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Zhang, H.; Li, H.; Li, Y. Analysis on the nutrition composition and antioxidant activity of different types of sweet potato cultivars. Food Sci. Nutr. 2015, 6, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Li, P.G.; Mu, T.H.; Deng, L. Anticancer effects of sweet potato protein on human colorectal cancer cells. World J. Gastroenterol. 2013, 19, 3300–3308. [Google Scholar] [CrossRef]
- Chang, K.; Lo, H.; Lai, Y.; Yao, P.; Lin, K.; Hwang, S. Identification of quantitative trait loci associated with yield-related traits in sweetpotato (Ipomoea batatas). Bot. Stud. 2009, 50, 43–50. [Google Scholar]
- Zum, F.; Burgos, T.G.; Espinoza, J.; Eyzaguirre, R.; Porras, E.; Grüneberg, W. Screening for β-carotene, iron, zinc, starch, individual sugars and protein in sweetpotato germplasm by near-infrared reflectance spectroscopy (NIRS). In Proceedings of the 15th Triennial Symposium of the International Society for Tropical Root Crops, Lima, Peru, 2–6 November 2009. [Google Scholar]
- Hedrén, E.; Diaz, V.; Svanberg, U. Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. Eur. J. Clin. Nutr. 2002, 56, 425–430. [Google Scholar] [CrossRef] [Green Version]
- International Potato Center. Sweet Potato in Africa. 2017. Available online: https://cipotato.org/research/sweetpotato-in-africa/ (accessed on 16 March 2021).
- Von Reeuwijk, L.P. Procedures for Soil Analysis, 4th ed.; International Soil Reference and information Center: Wageningen, The Netherlands, 1993. [Google Scholar]
- Van Ranst, E.; Verloo, M.; Demeyer, A.; Pauwels, M. Manual for the Soil Chemistry and Fertility Laboratory: Analytical Methods for Soils and Plants, Equipment and Management of Consumables; NUGI 835: Ghent, Belgium, 1999; p. 243. ISBN 90-76603-01-4. [Google Scholar]
- Grüneberg, W.J.; Eyzaguirre, R.; Espinoza, J.; Mwanga, R.O.M.; Andrade, M.; Dapaah, H.; Tumwegamire, S.; Agili, S.; Ndingo-Chipungu, F.P.; Attaluri, S.; et al. Procedures for the Evaluation and Analysis of Sweetpotato Trials; International Potato Center: Lima, Peru, 2010. [Google Scholar]
- Benesi, I.R.M.; Labuschagne, M.T.; Dixon, A.G.O.; Mahungu, N.M. Genotype × environment interaction effects on native cassava starch quality and potential for starch use in the commercial sector. Afr. Crop. Sci. J. 2004, 12, 205–216. [Google Scholar]
- Vannini, A.; Grattacaso, M.; Canali, G.; Nannoni, F.; Di Lella, L.; Protano, G.; Biagiotti, S.; Loppi, S. Potentially toxic elements (PTEs) in soils and bulbs of the elephant garlic (Allium ampeloprasum L.) grown in Valdichiana, a traditional cultivation area of Tuscany, Italy. Appl. Sci. 2021, 11, 7023. [Google Scholar] [CrossRef]
- Heimler, D.; Vignolini, P.; Dini, M.G.; Romani, A. Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. J. Agric. Food. Chem. 2005, 53, 3053–3056. [Google Scholar] [CrossRef]
- Fedeli, R.; Vannini, A.; Celletti, S.; Maresca, V.; Munzi, S.; Cruz, C.; Guarnieri, M.; Loppi, S. Foliar application of wood distillate boosts plant yield and nutritional parameters of chickpea. Ann. Appl. Biol. 2023, 182, 57–64. [Google Scholar] [CrossRef]
- Fedeli, R.; Vannini, A.; Guarnieri, M.; Monaci, F.; Loppi, S. Bio-Based Solutions for Agriculture: Foliar Application of Wood Distillate Alone and in Combination with Other Plant-Derived Corroborants Results in Different Effects on Lettuce (Lactuca Sativa L.). Biology 2022, 11, 404. [Google Scholar] [CrossRef] [PubMed]
- Loppi, S.; Fedeli, R.; Canali, G.; Guarnieri, M.; Biagiotti, S.; Vannini, A. Comparison of the Mineral and Nutraceutical Profiles of Elephant Garlic (Allium ampeloprasum L.) Grown in Organic and Conventional Fields of Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Biology 2021, 10, 1058. [Google Scholar] [CrossRef] [PubMed]
- Vannini, A.; Fedeli, R.; Guarnieri, M.; Loppi, S. Foliar application of wood distillate alleviates ozone-induced damage in lettuce (Lactuca sativa L). Toxics 2022, 10, 178. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R. Version 4.1.2.; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.r-prqoject.org (accessed on 1 November 2021).
- Satterthwaite, F.E. An approximate distribution of estimates of variance components. International biometric society. Biometrics 1946, 2, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.B. Estimating Genotypic Correlations and Their Standard Errors Using Multivariate Restricted Maximum Likelihood Estimation with SAS Proc MIXED. Crop. Sci. 2006, 46, 642. [Google Scholar] [CrossRef] [Green Version]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intake: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Magnesium, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- US National Academy of Sciences. Dietary Reference Intake Report–Water, Potassium, Sodium, Chloride, and Sulphate. Food and Nutrition Board, Institute of Medicine, National Academy of Sciences. 2004. Available online: http://www.nal.usda.gov/fnic/DRI (accessed on 6 November 2021).
Parameters | Aba’ala | Mekelle-1 | Mekelle-2 | |||
---|---|---|---|---|---|---|
OC (%) | 1.90 | Moderate | 0.48 | Low | 0.52 | Low |
Total N (%) | 0.14 | Low | 0.09 | Very low | 0.10 | Very low |
Available K (ppm) | 121 | High | 134 | High | 134 | High |
Available P (ppm) | 38.7 | High | 26.6 | High | 26.6 | High |
Fe (ppm) | 15.1 | High | 11.0 | High | 11.0 | High |
Zn (ppm) | 6.5 | Moderate | 5.4 | Moderate | 5.4 | Moderate |
Ca (ppm) | 25.4 | Moderate | 29.4 | Moderate | 29.4 | Moderate |
CEC (cmol/kg) | 38.0 | High | 41.3 | High | 41.3 | High |
EC (ds/m) | 0.11 | Salt free | 0.23 | Negligible | 0.23 | Negligible |
pH | 6.9 | Neutral | 7.0 | Neutral | 7.0 | Neutral |
Sand (%) | 28 | 18 | 18 | |||
Silt (%) | 54 | 49 | 49 | |||
Clay (%) | 18 | 33 | 33 | |||
Soil type | Silty loam | Silty clay | Silty clay |
Parameter | Genotype | Location | Interaction | CV | Residual |
---|---|---|---|---|---|
Yield | 1128.41 * | 685.86 * | 22.75 * | 1.8 | 10.84 |
Dry matter | 149.90 * | 35.50 * | 1.54 * | 2.0 | 1.48 |
Beta-carotene | 2.01 * | 10.63 * | 1.41 * | 2.6 | 0.07 |
Flavonoids | 0.83 * | 1.96 * | 0.84 * | 1.7 | 0.03 |
Polyphenols | 0.13 * | 1.91 * | 0.21 * | 1.5 | 0.01 |
Sucrose | 23.14 * | 167.03 * | 11.09 * | 2.6 | 0.13 |
Glucose | 0.89 * | 3.99 * | 0.69 * | 3.3 | 0.00 |
Fructose | 2.78 * | 4.09 * | 1.51 * | 1.9 | 0.00 |
Starch | 605.30 * | 1979.09 * | 512.06 * | 2.1 | 30.83 |
Soluble proteins | 51.46 * | 278.24 * | 0.48 * | 2.9 | 0.02 |
Antiradical activity (ARA %) | 219.45 * | 142.61 * | 37.88 * | 1.2 | 8.92 |
Locality | Genotype | Y (t/ha) | DM (%) | BC (µg/mg) | FL (µg/mg) | PP (µg/mg) | SU (%) | GL (%) | FR (%) | ST (%) | SP (%) | ARA (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aba’ala | Amelia | 6.9 ± 0.1 | 33.2 ± 1.2 | 0.73 ± 0.05 | 0.44 ± 0.03 | 0.34 ± 0.04 | 3.86 ± 0.27 | 0.38 ± 0.07 | 0.20 ± 0.00 | 35.53 ± 4.31 | 2.79 ± 0.13 | 33.06 ± 4.50 |
Aba’ala | Gloria | 12.7 ± 0.2 | 34.6 ± 0.1 | 0.38 ± 0.02 | 1.39 ± 0.22 | 1.28 ± 0.02 | 3.85 ± 0.11 | 0.19 ± 0.00 | 0.82 ± 0.05 | 61.85 ± 5.29 | 1.46 ± 0.03 | 47.21 ± 1.55 |
Aba’ala | Ininda | 31.8 ± 0.1 | 31.0 ± 0. 8 | 1.34 ± 0.08 | 2.04 ± 0.07 | 1.15 ± 0.02 | 3.60 ± 0.04 | 0.32 ± 0.03 | 0.50 ± 0.05 | 46.42 ± 1.19 | 1.73 ± 0.18 | 48.27 ± 2.12 |
Aba’ala | Kulfo | 3.1 ± 0.1 | 26.3 ± 0.3 | 1.94 ± 0.07 | 1.79 ± 0.03 | 1.05 ± 0.01 | 4.33 ± 0.25 | 0.19 ± 0.00 | 0.40 ± 0.04 | 69.59 ± 2.50 | 1.66 ± 0.07 | 36.10 ± 0.59 |
Aba’ala | Melinda | 3.4 ± 0.7 | 26.2 ± 0.7 | 1.97 ± 0.13 | 1.52 ± 0.19 | 0.72 ± 0.09 | 1.64 ± 0.10 | 0.20 ± 0.00 | 0.20 ± 0.00 | 61.15 ± 1.93 | 2.08 ± 0.09 | 24.68 ± 5.62 |
Mekelle-1 | Amelia | 15.0 ± 0.1 | 30.9 ± 0. 5 | 2.39 ± 0.13 | 1.55 ± 0.05 | 0.71 ± 0.13 | 4.43 ± 0.10 | 0.53 ± 0.03 | 1.05 ± 0.01 | 49.97 ± 2.35 | 0.63 ± 0.05 | 41.40 ± 3.69 |
Mekelle-1 | Gloria | 21.4 ± 0.1 | 32.3 ± 0.5 | 1.27 ± 0.07 | 1.76 ± 0.08 | 1.10 ± 0.08 | 7.03 ± 0.10 | 0.20 ± 0.00 | 1.21 ± 0.05 | 78.94 ± 2.96 | 0.20 ± 0.01 | 52.38 ± 0.28 |
Mekelle-1 | Ininda | 34.9 ± 0.8 | 28.5 ± 0.2 | 2.72 ± 0.11 | 2.82 ± 0.11 | 1.21 ± 0.11 | 6.36 ± 0.36 | 0.47 ± 0.01 | 0.20 ± 0.00 | 47.43 ± 1.44 | 0.44 ± 0.01 | 50.90 ± 0.41 |
Mekelle-1 | Kulfo | 9.2 ± 1.0 | 24.0 ± 1.5 | 1.25 ± 0.12 | 2.09 ± 0.15 | 1.09 ± 0.12 | 8.44 ± 0.40 | 0.19 ± 0.00 | 0.19 ± 0.00 | 77.87 ± 3.27 | 0.80 ± 0.11 | 64.82 ± 0.55 |
Mekelle-1 | Melinda | 11.8 ± 0.3 | 22.9 ± 1.8 | 1.38 ± 0.08 | 1.10 ± 0.05 | 0.88 ± 0.08 | 2.81 ± 0.40 | 0.22 ± 0.01 | 0.19 ± 0.00 | 87.49 ± 2.04 | 1.87 ± 0.13 | 43.10 ± 0.52 |
Mekelle-2 | Amelia | 23.2 ± 0.7 | 30.5 ± 0.9 | 3.72 ± 0.25 | 1.13 ± 0.07 | 0.32 ± 0.06 | 8.12 ± 0.55 | 0.20 ± 0.00 | 0.20 ± 0.01 | 41.56 ± 5.27 | 1.77 ± 0.03 | 28.67 ± 4.74 |
Mekelle-2 | Gloria | 27.9 ± 0.1 | 32.3 ± 1.2 | 2.52 ± 0.10 | 1.03 ± 0.03 | 0.35 ± 0.01 | 11.66 ± 0.18 | 2.48 ± 0.03 | 3.19 ± 0.05 | 52.49 ± 2.32 | 1.47 ± 0.06 | 30.97 + 0.58 |
Mekelle-2 | Ininda | 43.0 ± 0.2 | 28.7 ± 1.4 | 3.75 ± 0.22 | 1.97 ± 0.05 | 0.35 ± 0.02 | 13.22 ± 0.09 | 0.95 ± 0.01 | 1.94 ± 0.03 | 40.98 ± 2.29 | 1.56 ± 0.04 | 26.17 ± 0.85 |
Mekelle-2 | Kulfo | 19.2 ± 1.1 | 23.5 ± 0.8 | 1.98 ± 0.04 | 1.53 ± 0.01 | 0.66 ± 0.01 | 11.42 ± 0.37 | 1.42 ± 0.06 | 1.94 ± 0.05 | 47.22 ± 0.76 | 1.52 ± 0.02 | 51.26 ± 1.75 |
Mekelle-2 | Melinda | 11.8 ± 0.8 | 23.2 ± 0.5 | 2.64 ± 0.08 | 1.07 ± 0.03 | 0.34 ± 0.01 | 5.79 ± 0.18 | 0.85 ± 0.03 | 0.20 ± 0.00 | 42.16 ± 2.26 | 1.81 ± 0.02 | 25.97 ± 0.77 |
Genotypes | 200% | 100% | 50% |
---|---|---|---|
Amelia | 33.06 ± 4.50 | 41.40 ± 3.69 | 28.67 ± 4.74 |
Gloria | 30.97 ± 0.58 | 52.38 ± 0.28 | 47.21 ± 1.55 |
Ininda | 26.17 ± 0.85 | 50.90 ± 0.41 | 48.27 ± 2.12 |
Kulfo | 51.26 ± 1.75 | 64.82 ± 0.55 | 36.10 ± 0.59 |
Melinda | 25.97 ± 0.77 | 43.10 ± 0.52 | 24.68 ± 5.62 |
Random Term | H2 | Standard Error |
---|---|---|
Yield | 0.27 | 0.10 |
Dry matter | 0.70 | 0.30 |
Beta-carotene | 0.91 | 0.01 |
Flavonoids | 0.16 | 0.01 |
Polyphenols | 0.12 | 0.00 |
Sucrose | 0.27 | 0.05 |
Glucose | 0.12 | 0.00 |
Fructose | 0.22 | 0.00 |
Starch | 0.69 | 0.08 |
Soluble proteins | 0.33 | 0.01 |
Antiradical activity | 0.11 | 0.09 |
BC | DM | ARA | FL | FR | GL | PP | SP | SU | ST | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|
BC | 1.00 | ||||||||||
DM | −0.18 | 1.00 | |||||||||
ARA | −0.58 * | −0.13 | 1.00 | ||||||||
FL | −0.09 | −0.09 | 0.45 * | 1.00 | |||||||
FR | 0.19 | 0.26 | −0.08 | −0.17 | 1.00 | ||||||
GL | 0.32 * | 0.00 | −0.21 | −0.25 | 0.87 * | 1.00 | |||||
PP | −0.50 * | 0.09 | 0.69 * | 0.76 * | −0.26 | −0.47 * | 1.00 | ||||
SP | −0.09 | −0.07 | −0.47 * | −0.71 * | −0.18 | −0.01 | −0.56 * | 1.00 | |||
SU | 0.66 * | −0.14 | −0.13 | −0.01 | 0.68 * | 0.68 * | −0.40 * | −0.26 | 1.00 | ||
ST | −0.19 | 0.02 | 0.45 * | 0.76 * | −0.27 | −0.34 * | 0.63 * | −0.72 * | −0.16 | 1.00 | |
Y | 0.53 * | 0.27 * | −0.08 | 0.05 | 0.40 * | 0.39 * | −0.11 | −0.33 * | 0.57 * | 0.09 * | 1.00 |
RDA/RAI (mg d−1) | Age Group | Genotypes | |||||
---|---|---|---|---|---|---|---|
Amelia | Gloria | Ininda | Kulfo | Melinda | |||
Vitamin A retinol equivalent | 500 | 6–12 months | 114 | 103 | 130 | 86 | 100 |
400 | 4–8 years | 143 | 129 | 163 | 108 | 125 | |
700 | ≥19 years | 82 | 73 | 93 | 61 | 71 | |
770 | Pregnant women 30–50 years | 74 | 67 | 84 | 56 | 65 | |
1300 | Lactation 19–50 years | 44 | 40 | 50 | 33 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamaro, G.P.; Tsehaye, Y.; Girma, A.; Vannini, A.; Fedeli, R.; Loppi, S. Evaluation of Yield and Nutraceutical Traits of Orange-Fleshed Sweet Potato Storage Roots in Two Agro-Climatic Zones of Northern Ethiopia. Plants 2023, 12, 1319. https://doi.org/10.3390/plants12061319
Lamaro GP, Tsehaye Y, Girma A, Vannini A, Fedeli R, Loppi S. Evaluation of Yield and Nutraceutical Traits of Orange-Fleshed Sweet Potato Storage Roots in Two Agro-Climatic Zones of Northern Ethiopia. Plants. 2023; 12(6):1319. https://doi.org/10.3390/plants12061319
Chicago/Turabian StyleLamaro, Gloria Peace, Yemane Tsehaye, Atkilt Girma, Andrea Vannini, Riccardo Fedeli, and Stefano Loppi. 2023. "Evaluation of Yield and Nutraceutical Traits of Orange-Fleshed Sweet Potato Storage Roots in Two Agro-Climatic Zones of Northern Ethiopia" Plants 12, no. 6: 1319. https://doi.org/10.3390/plants12061319
APA StyleLamaro, G. P., Tsehaye, Y., Girma, A., Vannini, A., Fedeli, R., & Loppi, S. (2023). Evaluation of Yield and Nutraceutical Traits of Orange-Fleshed Sweet Potato Storage Roots in Two Agro-Climatic Zones of Northern Ethiopia. Plants, 12(6), 1319. https://doi.org/10.3390/plants12061319