Assessment of Fresh Miscanthus Straw as Growing Media Amendment in Nursery Production of Sedum spectabile ‘Stardust’ and Hydrangea arborescens ‘Annabelle’
Abstract
:1. Introduction
2. Results and Discussion
2.1. Plant Performance Measurements
2.1.1. Height, Diameter and Shoot Growth
2.1.2. Flowering
2.1.3. Leaf Measurements
2.1.4. Dry Biomass
2.2. Analyses of Leaves
2.3. Substrate Analyses
3. Materials and Methods
3.1. Plant Material and Treatments
- 100% peatmoss (control)
- 70% peatmoss + 30% miscanthus
- 50% peatmoss + 50% miscanthus
- 30% peatmoss + 70% miscanthus
- 100% miscanthus
- 3 g.dm−3 of Basacote premixed with each substrate mix
- 3 g.dm−3 of Basacote premixed with each substrate mix with YaraMila Complex top dressing, 3 times during vegetation period. at a dose of 1 g.dm−3
- 1 g.dm−3 of YaraMila Complex premixed with each substrate mix with YaraMila Complex top dressing, 3 times during vegetation period, at a dose of 1 g.dm−3
3.2. Plant Performance Measurements
- plant height (measured from the level of substrate to the highest shoot)
- plant diameter (measured at the widest and narrowest axis and averaged)
- main shoot number
- main shoot length (measured for all main shoots and averaged)
- leaf number (total leaves on both main and side shoots)
- leaf blade length
- leaf blade width
- leaf blade area
3.3. Leaf Analyses
- in fresh material, chlorophyll a,b and total using spectrophotometry by Arnon [52]
3.4. Substrate Analyses
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blok, C.; Eveleens, B.; van Winkel, A. Growing media for food and quality of life in the period 2020–2050. Acta Hortic. 2021, 341–356. [Google Scholar] [CrossRef]
- Barkham, J.P. For peat's sake: Conservation or exploitation? Biodivers. Conserv. 1993, 2, 556–566. [Google Scholar] [CrossRef]
- Robertson, R.A. Peat, horticulture and environment. Biodivers. Conserv. 1993, 2, 541–547. [Google Scholar] [CrossRef]
- Caron, J.; Heinse, R.; Charpentier, S. Organic Materials Used in Agriculture, Horticulture, Reconstructed Soils, and Filtering Applications. Vadose Zone J. 2015, 14, vzj2015.04.0057. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union. 1992, 206, 7–50. [Google Scholar]
- Jackson, B.E.; Wright, R.D.; Browder, J.F.; Harris, J.R.; Niemiera, A.X. Effect of Fertilizer Rate on Growth of Azalea and Holly in Pine Bark and Pine Tree Substrates. Hortscience 2008, 43, 1561–1568. [Google Scholar] [CrossRef] [Green Version]
- Marble, S.C.; Gilliam, C.H.; Sibley, J.L.; Fain, G.B.; Torbert, H.A.; Gallagher, T.V.; Olive, J.W. Evaluation of Composted Poultry Litter as a Substrate Amendment for WholeTree, Clean Chip Residual, and Pinebark for Container Grown Woody Nursery Crops. J. Environ. Hortic. 2010, 28, 107–116. [Google Scholar] [CrossRef]
- Boyer, C.R.; Torbert, H.A.; Gilliam, C.H.; Fain, G.B.; Gallagher, T.V.; Sibley, J.L. Nitrogen Immobilization in Plant Growth Substrates: Clean Chip Residual, Pine Bark, and Peatmoss. Int. J. Agron. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jahromi, N.B.; Fulcher, A.; Walker, F.; Altland, J. Optimizing Substrate Available Water and Coir Amendment Rate in Pine Bark Substrates. Water 2020, 12, 362. [Google Scholar] [CrossRef] [Green Version]
- Bilderback, T.E.; Fonteno, W.C.; Johnson, D.R. Physical Properties of Media Composed of Peanut Hulls, Pine Bark, and Peatmoss and their Effects on Azalea Growth1. J. Am. Soc. Hortic. Sci. 1982, 107, 522–525. [Google Scholar] [CrossRef]
- Wright, A.N.; Niemiera, A.X.; Harris, J.R.; Wright, R.D. Preplant Lime and Micronutrient Amendments to Pine Bark Affect Growth of Seedlings of Nine Container-grown Tree Species. Hortscience 1999, 34, 669–673. [Google Scholar] [CrossRef] [Green Version]
- Jackson, B.E.; Wright, R.D.; Seiler, J.R. Changes in Chemical and Physical Properties of Pine Tree Substrate and Pine Bark During Long-term Nursery Crop Production. Hortscience 2009, 44, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.-S.; Zhao, Y.; Dou, H.; Cai, X.; Gu, M.; Yu, F. Effects of biochar mixtures with pine-bark based substrates on growth and development of horticultural crops. Hortic. Environ. Biotechnol. 2018, 59, 345–354. [Google Scholar] [CrossRef]
- Gruda, N.; Schnitzler, W. Suitability of wood fiber substrates for production of vegetable transplants II. Sci. Hortic. 2004, 100, 333–340. [Google Scholar] [CrossRef]
- Fain, G.B.; Gilliam, C.H.; Sibley, J.L.; Boyer, C.R.; Witcher, A.L. WholeTree Substrate and Fertilizer Rate in Production of Greenhouse-grown Petunia (Petunia × hybrida Vilm.) and Marigold (Tagetes patula L.). Hortscience 2008, 43, 700–705. [Google Scholar] [CrossRef] [Green Version]
- Fain, G.B.; Gilliam, C.H.; Sibley, J.L.; Boyer, C. WholeTree Substrates Derived from Three Species of Pine in Production of Annual Vinca. Horttechnology 2008, 18, 13–17. [Google Scholar] [CrossRef]
- Owen, W.G.; Jackson, B.E.; Whipker, B.E.; Fonteno, W.C. Pine Wood Chips as an Alternative to Perlite in Greenhouse Substrates: Nitrogen Requirements. HortTechnology 2016, 26, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Chweya, J.A.; Gurnah, A.M.; Fisher, N.M. Preliminary Studies on Some Local Materials for Propagation Media. East Afr. Agric. For. J. 1978, 43, 327–333. [Google Scholar] [CrossRef]
- Evans, M.R.; Konduru, S.; Stamps, R.H. Source Variation in Physical and Chemical Properties of Coconut Coir Dust. Hortscience 1996, 31, 965–967. [Google Scholar] [CrossRef] [Green Version]
- Konduru, S.; Evans, M.R.; Stamps, R.H. Coconut Husk and Processing Effects on Chemical and Physical Properties of Coconut Coir Dust. Hortscience 1999, 34, 88–90. [Google Scholar] [CrossRef] [Green Version]
- Offord, C.A.; Muir, S.; Tyler, J.L. Growth of selected Australian plants in soilless media using coir as a substitute for peat. Aust. J. Exp. Agric. 1998, 38, 879–887. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Puchades, R.; Maquieira, A.; Noguera, V. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresour. Technol. 2002, 82, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Fornes, F.; Belda, R.M.; Abad, M.; Noguera, P.; Puchades, R.; Maquieira, A. The microstructure of coconut coir dusts for use as alternatives to peat in soilless growing media. Aust. J. Exp. Agric. 2003, 43, 1171–1179. [Google Scholar] [CrossRef]
- Rubio, J.S.; E Pereira, W.; Garcia-Sanchez, F.; Murillo, L.; Garcia, A.L.; Martinez, V. Sweet pepper production in substrate in response to salinity, nutrient solution management and training system. Hortic. Bras. 2011, 29, 275–281. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems–A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Heaton, E.A.; Dohleman, F.G.; Miguez, A.F.; Juvik, J.A.; Lozovaya, V.; Widholm, J.; Zabotina, O.A.; McIsaac, G.F.; David, M.B.; Voigt, T.B.; et al. Miscanthus: A promising biomass crop. Adv. Bot. Res. 2010, 56, 75–137. [Google Scholar] [CrossRef]
- Dohleman, F.G.; Long, S.P. More Productive Than Maize in the Midwest: How Does Miscanthus Do It? Plant Physiol. 2009, 150, 2104–2115. [Google Scholar] [CrossRef] [Green Version]
- Cerazy-Waliszewska, J.; Jeżowski, S.; Łysakowski, P.; Waliszewska, B.; Zborowska, M.; Sobańska, K.; Ślusarkiewicz-Jarzina, A.; Białas, W.; Pniewski, T. Potential of bioethanol production from biomass of various Miscanthus genotypes cultivated in three-year plantations in west-central Poland. Ind. Crop. Prod. 2019, 141, 111790. [Google Scholar] [CrossRef]
- Cárthaigh, D.; Sturm, A.; Schmugler, A. The use of miscanthus as a growing medium additive. Acta Hortic. 1996, 450, 57–62. [Google Scholar] [CrossRef]
- Jensen, H.K.; Leth, M.; Iversen, J.L. Growth of hedera helix and fatsia japonica pot plants in compost substrates based on miscanthus straw and various n-sources. Acta Hortic. 2001, 549, 137–146. [Google Scholar] [CrossRef]
- Altland, J.E.; Locke, J.C. Use of Ground Miscanthus Straw in Container Nursery Substrates. J. Environ. Hortic. 2011, 29, 114–118. [Google Scholar] [CrossRef]
- Bąbelewski, P.; Pancerz, M. Rooting of selected ornamental shrubs in substrates based on miscanthus straw. Acta Hortic. 2016, 1191, 175–182. [Google Scholar] [CrossRef]
- Bąbelewski, P.; Pancerz, M.; Dębicz, R.; Wacławowicz, R. Dynamics of C, N and C/N ratio in substrates based on miscanthus straw in container production ofSpiraea japonica‘Macrophylla’. Acta Hortic. 2017, 1266, 129–136. [Google Scholar] [CrossRef]
- Pancerz, M.; Bąbelewski, P. Influence of miscanthus-based growing media with the amendment of hydrogel and different multicomponent fertilizers on the fresh biomass ofHydrangea arborescens‘Annabelle’. Acta Hortic. 2017, 1266, 237–242. [Google Scholar] [CrossRef]
- Tsakaldimi, M.; Ganatsas, P. A synthesis of results on wastes as potting media substitutes for the production of native plant species. Reforesta 2016, 1, 147–163. [Google Scholar] [CrossRef] [Green Version]
- Starr, Z.W.; Boyer, C.R.; Griffin, J.J. Eastern Redcedar (Juniperus virginiana) as a Substrate Component Effects Growth of Three Tree Species. J. Environ. Hortic. 2012, 30, 189–194. [Google Scholar] [CrossRef]
- Roosta, H.; Afsharipoor, R.S. Effects of different cultivation media on vegetative growth Eco physiological traits and nutrients concentration in strawberry under hydroponic and aquaponic cultivation systems. Adv. Environ. Biol. 2012, 6, 543–555. [Google Scholar]
- Harris, C.N.; Dickson, R.W.; Fisher, P.R.; Jackson, B.E.; Poleatewich, A.M. Evaluating Peat Substrates Amended with Pine Wood Fiber for Nitrogen Immobilization and Effects on Plant Performance with Container-grown Petunia. Horttechnology 2020, 30, 107–116. [Google Scholar] [CrossRef]
- Awang, Y.; Shaharom, A.S.; Mohamad, R.B.; Selamat, A. Growth dynamics of Celosia cristata grown in cocopeat, burnt rice hull and kenaf core fiber mixtures. Am. J. Agric. Biol. Sci. 2010, 5, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Niemiera, A.X.; Leda, C.E. Nitrogen Leaching from Osmocote-Fertilized Pine Bark at Leaching Fractions of 0 to 0.4. J. Environ. Hortic. 1993, 11, 75–77. [Google Scholar] [CrossRef]
- Bassan, A.; Sambo, P.; Zanin, G.; Evans, M. Rice hull-based substrates amended with anaerobic digested residues for tomato transplant production. Acta Hortic. 2011, 1018, 573–581. [Google Scholar] [CrossRef]
- Saberi, A.R.; Aishah, H.S.; Halim, R.A.; Zaharah, A.R. Morphological responses of forage sorghums to salinity and irrigation frequency. Afr. J. Biotechnol. 2011, 10, 9647–9656. [Google Scholar] [CrossRef] [Green Version]
- Prince, T.; Tayama, H.; Bhat, N.; Carver, S. controlled-release fertilizer regimes influence production and postproduction quality of potted chrysanthemums. Hortscience 1990, 25, 1092. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; Robbins, J. Pine Bark Substrates Amended with Parboiled Rice Hulls: Physical Properties and Growth of Container-grown Spirea during Long-term Nursery Production. Hortscience 2011, 46, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Webber, C.L.; Whitworth, J.; Dole, J. Kenaf (Hibiscus cannabinus L.) core as a containerized growth medium component. Ind. Crop. Prod. 1999, 10, 97–105. [Google Scholar] [CrossRef]
- Frangi, P.; Amoroso, G.; Piatti, R. Alternative growing media to peat obtained from two fast growing species of poaceae. Acta Hortic. 2012, 927, 967–972. [Google Scholar] [CrossRef]
- Kuisma, E.; Palonen, P.; Yli-Halla, M. Reed canary grass straw as a substrate in soilless cultivation of strawberry. Sci. Hortic. 2014, 178, 217–223. [Google Scholar] [CrossRef]
- Mustafa, G.; Ali, M.A.; Smith, D.; Schwinghamer, T.; Lamont, J.R.; Ahmed, N.; Hussain, S.; Arshad, M. Guar, jantar, wheat straw, and rice hull composts as replacements for peat in muskmelon transplant production. Int. J. Recycl. Org. Waste Agric. 2016, 5, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Altland, J. Use of Processed Biofuel Crops for Nursery Substrates. J. Environ. Hortic. 2010, 28, 129–134. [Google Scholar] [CrossRef]
- Hicklenton, P.R.; Cairns, K.G. Solubility and Application Rate of Controlled-release Fertilizer Affect Growth and Nutrient Uptake in Containerized Woody Landscape Plants. J. Am. Soc. Hortic. Sci. 1992, 117, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.R.; Buck, J.S.; Sambo, P. The pH, Electrical Conductivity, and Primary Macronutrient Concentration of Sphagnum Peat and Ground Parboiled Fresh Rice Hull Substrates Over Time in a Greenhouse Environment. Horttechnology 2011, 21, 103–108. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- King, E.J. The colorimetric determination of phosphorus. Biochem. J. 1932, 26, 292–297. [Google Scholar] [CrossRef]
- Toth, S.J.; Prince, A.L. Estimation of cation-exchange capacity and exchangeable ca, k, and na contents of soils by flame photometer techniques. Soil Sci. 1949, 67, 439–446. [Google Scholar] [CrossRef]
- Shinn, M.B. Colorimetric Method for Determination of Nitrate. Ind. Eng. Chem. Anal. Ed. 1941, 13, 33–35. [Google Scholar] [CrossRef]
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote® Plus 6M 16-8-12(+2 + TE) 2 doses | Basacote + YaraMila | YaraMila 12N(5N-NO3+7N-NH4) +11P2O5+18K2O +2.7MgO +20SO3 +0.015B+0.2Fe +0.02Mn +0.02Zn | Mean A | |
Height (cm) | ||||
100% P | 30.7 e | 37.6 a | 34.4 bc | 34.2 a |
70%P + 30%M | 32.9 d | 35.5 b | 28.9 f | 32.4 b |
50%P + 50%M | 30.7 e | 33.8 cd | 26.3 g | 30.3 c |
30%P + 70%M | 27.3 g | 39.9 ef | 26.2 gh | 27.8 d |
100%M | 23.0 i | 28.7 f | 24.9 h | 25.5 e |
Mean B | 28.9 b (32.9–23.0) | 33.1 a (39.9–28.7) | 28.1 c (34.4–24.9) | |
Diameter (cm) | ||||
100% P | 25.9 c | 29.4 a | 27.9 b | 27.7 a |
70%P + 30%M | 24.2 e | 26.4 c | 21.2 f | 23.9 b |
50%P + 50%M | 21.2 fg | 25.0 d | 15.1 j | 20.4 c |
30%P + 70%M | 17.3 i | 20.5 gh | 14.7 j | 17.5 d |
100%M | 13.0 k | 19.9 h | 15.0 j | 16.0 e |
Mean B | 20.3 b (25.9–13.0) | 24.24 a (29.4–19.9) | 18.8 c (27.9–14.7) |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
Height (cm) | ||||
100% P | 43.5 c | 47.1 b | 51.2 a | 47.3 a |
70%P + 30%M | 37.0 e | 49.7 a | 40.8 d | 42.5 b |
50%P + 50%M | 34.6 f | 44.2 c | 30.8 g | 36.6 c |
30%P + 70%M | 30.9 g | 29.1 h | 25.5 h | 28.5 d |
100%M | 20.7 j | 21.4 j | 23.2 i | 21.8 e |
Mean B | 33.3 c (43.5–20.7) | 38.3 a (49.7–21.4) | 34.3 b (51.2–23.2) | |
Diameter (cm) | ||||
100% P | 34.2 c | 38.1 b | 40.7 a | 37.7 a |
70%P + 30%M | 30.8 d | 40.1 a | 30.7 d | 33.9 b |
50%P + 50%M | 34.8 c | 40.7 a | 26.6 f | 33.7 b |
30%P + 70%M | 26.2 f | 28.2 e | 27.5 ef | 27.3 c |
100%M | 16.2 i | 19.9 h | 23.5 g | 19.9 d |
Mean B | 28.3 c (34.8–16.2) | 33.4 a (40.7–19.9) | 29.8 b (40.7–23.5) | |
Main shoot number | ||||
100% P | 3.8 cd | 4.3 b | 3.9 c | 3.9 a |
70%P + 30%M | 3.6 d | 3.1 e | 2.4 g | 3.0 c |
50%P + 50%M | 2.8 f | 4.9 a | 2.4 g | 3.3 b |
30%P + 70%M | 2.4 g | 2.0 h | 3.2 e | 2.5 d |
100%M | 1.7 i | 2.4 g | 1.5 i | 1.8 e |
Mean B | 2.8 b (3.8–1.7) | 3.3 a (4.3–2.0) | 2.7 c (3.9–1.5) | |
Main shoot length (cm) | ||||
100% P | 32.5 d | 36.8 b | 41.6 a | 36.9 a |
70%P + 30%M | 29.5 ef | 41.3 a | 34.5 cd | 34.8 b |
50%P + 50%M | 28.5 f | 34.6 c | 30.7 e | 31.3 c |
30%P + 70%M | 29.0 ef | 25.7 g | 25.6 g | 26.8 d |
100%M | 16.0 i | 18.8 h | 19.6 h | 18.1 e |
Mean B | 27.1 c (32.5–16.0) | 31.5 a (41.3–18.8) | 30.2 b (41.6–19.6) |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
Inflorescence Number | ||||
100% P | 6.7 ab | 6.6 c | 6.8 ab | 6.7 a |
70%P + 30%M | 4.9 gh | 6.7 ab | 6.1 e | 5.9 c |
50%P + 50%M | 6.0 de | 7.0 a | 5.1 fg | 6.1 b |
30%P + 70%M | 4.1 i | 5.2 f | 4.7 h | 4.7 d |
100%M | 4.0 i | 5.2 f | 5.1 fg | 4.7 d |
Mean B | 5.2 c (6.7–4.0) | 6.09 a (7.0–5.2) | 5.6 b (6.8–4.7) |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
Leaves Number | ||||
100% P | 84.8 a | 70.2 b | 50.4 c | 68.5 a |
70%P + 30%M | 40.6 e | 40.4 e | 43.2 d | 41.4 b |
50%P + 50%M | 39.5 e | 41.1 e | 26.3 g | 35.6 c |
30%P + 70%M | 27.8 g | 30.0 f | 24.4 h | 27.4 d |
100%M | 20.5 j | 23.3 hi | 21.7 ij | 21.8 e |
Mean B | 42.6 a | 41.0 b | 33.2 c | |
Leaf blade area (cm3) | ||||
100% P | 14.29 e | 19.56 a | 17.61 b | 17.15 a |
70%P + 30%M | 17.04 c | 17.26 bc | 16.13 d | 16.81 b |
50%P + 50%M | 14.23 e | 19.38 a | 9.33 h | 14.31 c |
30%P + 70%M | 11.22 g | 15.83 d | 9.62 h | 12.22 d |
100%M | 6.52 j | 12.84 f | 8.11 i | 9.16 e |
Mean B | 12.66 b | 16.98 a | 12.16 c |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
Leaves Number (Total) | ||||
100% P | 59.8 d | 68.8 c | 71.3 b | 66.6 a |
70%P + 30%M | 60.1 d | 55.7 e | 50.4 f | 55.4 b |
50%P + 50%M | 44.6 h | 85.1 a | 34.5 j | 54.7 b |
30%P + 70%M | 29.9 k | 36.7 i | 23.8 m | 30.2 d |
100%M | 34.1 j | 26.0 l | 46.9 g | 35.7 c |
Mean B | 45.7 b | 54.5 a | 45.4 b | |
Leaf blade area (cm3) | ||||
100% P | 50.69 e | 63.73 c | 84.50 a | 66.31 a |
70%P + 30%M | 63.05 c | 69.39 b | 58.08 d | 63.51 a |
50%P + 50%M | 39.40 | 53.98 de | 47.33 ef | 46.90 b |
30%P + 70%M | 45.80 f | 43.35 f | 41.67 f | 43.61 b |
100%M | 15.82 h | 27.64 g | 26.56 g | 23.34 c |
Mean B | 42.95 b | 32.79 c | 51.63 a |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
Shoot Fresh Weight (g) | ||||
Shoot dry weight (g) | ||||
100% P | 115.22 e | 166.37 c | 137.49 d | 139.69 b |
70%P + 30%M | 132.91 d | 200.51 a | 102.32 f | 145.25a |
50%P + 50%M | 131.51 d | 193.70 b | 54.30 h | 126.50 c |
30%P + 70%M | 99.32 f | 113.70 e | 73.19 g | 95.40 d |
100%M | 45.18 i | 118.53 e | 75.65 g | 79.79 e |
Mean B | 104.83 b | 158.56 a | 88.59 c | |
Root dry weight (g) | ||||
100% P | 30.26 b | 28.20 c | 23.44 fg | 27.30 a |
70%P + 30%M | 25.70 e | 24.04 f | 19.91 i | 23.22 c |
50%P + 50%M | 27.35 d | 33.63 a | 17.59 j | 26.19 b |
30%P + 70%M | 22.57 h | 24.06 f | 17.33 j | 21.32 d |
100%M | 14.36 k | 22.83 gh | 16.96 j | 18.05 e |
Mean B | 24.05 b | 26.55 a | 19.05 c |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
Shoot Fresh Weight (g) | ||||
Shoot dry weight (g) | ||||
100% P | 45.07 b | 47.80 a | 34.11 e | 42.32 a |
70%P + 30%M | 34.80 e | 40.20 d | 23.51 h | 32.83 c |
50%P + 50%M | 42.20 c | 42.80 c | 26.35 g | 37.11 b |
30%P + 70%M | 31.02 f | 16.11 k | 19.17 i | 22.10 d |
100%M | 17.58 j | 8.51 l | 5.40 m | 10.50 e |
Mean B | 34.13 a | 31.09 b | 21.71 c | |
Root dry weight (g) | ||||
100% P | 13.60 b | 12.97 c | 11.13 d | 12.23 a |
70%P + 30%M | 11.20 d | 14.10 a | 8.15 h | 11.15 b |
50%P + 50%M | 14.08 a | 14.04 a | 9.00 g | 12.37 a |
30%P + 70%M | 10.32 e | 13.90 ab | 5.04 i | 9.75 c |
100%M | 8.02 h | 9.86 f | 4.09 j | 7.32 d |
Mean B | 11.44 b | 12.77 a | 7.48 c |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
Chlorophyll a | ||||
100% P | 0.174 d | 0.220 b | 0.164 e | 0.186 b |
70%P + 30%M | 0.112 g | 0.133 f | 0.080 h | 0.109 e |
50%P + 50%M | 0.110 g | 0.169 de | 0.104 g | 0.128 d |
30%P + 70%M | 0.132 f | 0.194 c | 0.173 de | 0.166 c |
100%M | 0.531 a | 0.167 de | 0.088 h | 0.262 a |
Mean B | 0.212 a | 0.176 b | 0.122 c | |
Chlorophyll b | ||||
100% P | 0.148 a | 0.112 c | 0.107 cd | 0.122 a |
70%P + 30%M | 0.087 fg | 0.090 f | 0.070 i | 0.082 b |
50%P + 50%M | 0.06 4i | 0.101 e | 0.083 g | 0.083 b |
30%P + 70%M | 0.102 de | 0.129 b | 0.131 b | 0.121 a |
100%M | 0.058 j | 0.110 c | 0.076 h | 0.081 b |
Mean B | 0.092 b | 0.109 a | 0.093 b | |
Total chlorophyll | ||||
100% P | 0.322 b | 0.331 b | 0.271 d | 0.308 b |
70%P + 30%M | 0.200 f | 0.224 e | 0.150 h | 0.191 e |
50%P + 50%M | 0.174 g | 0.271 d | 0.187 f | 0.210 d |
30%P + 70%M | 0.233 e | 0.324 b | 0.304 c | 0.287 c |
100%M | 0.589 a | 0.277 d | 0.165 g | 0.343 a |
Mean B | 0.304 a | 0.285 b | 0.215 c |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
Chlorophyll a | ||||
100% P | 0.500 h | 0.936 a | 0.907 b | 0.781 a |
70%P + 30%M | 0.438 i | 0.604 g | 0.502 h | 0.515 d |
50%P + 50%M | 0.619 g | 0.723 e | 0.690 f | 0.678 c |
30%P + 70%M | 0.496 h | 0.806 d | 0.872 c | 0.725 b |
100%M | 0.518 h | 0.623 g | 0.377 j | 0.506 d |
Mean B | 0.514 c | 0.739 a | 0.670 b | |
Chlorophyll b | ||||
100% P | 0.359 f | 0.504 a | 0.469 b | 0.444 a |
70%P + 30%M | 0.206 l | 0.311 h | 0.272 j | 0.263 d |
50%P + 50%M | 0.304h i | 0.388 e | 0.355 f | 0.349 c |
30%P + 70%M | 0.297 i | 0.456 c | 0.443 d | 0.399 b |
100%M | 0.249 k | 0.334 g | 0.205 l | 0.263 d |
Mean B | 0.283 c | 0.399 a | 0.349 b | |
Total chlorophyll | ||||
100% P | 0.859 i | 1.440 a | 1.376 b | 1.225 a |
70%P + 30%M | 0.644 k | 0.915 h | 0.774 j | 0.778 d |
50%P + 50%M | 0.923 h | 1.111 e | 1.045 f | 1.027 c |
30%P + 70%M | 0.793 j | 1.263 d | 1.315 c | 1.124 b |
100%M | 0.767 j | 0.958 g | 0.582 l | 0.769 d |
Mean B | 0.797 c | 1.137 a | 1.019 b |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
NO3− | ||||
100% P | 21.7 cd | 29.3 a | 22.3 c | 24.4 a |
70%P + 30%M | 20.3 def | 18.7 f | 20.7 cde | 19.9 c |
50%P + 50%M | 24.3 b | 20.3 def | 19.7 ef | 21.4 b |
30%P + 70%M | 19.3 ef | 16.3 g | 16.7 g | 17.4 d |
100%M | 16.3 g | 137 h | 14.3 h | 14.8 e |
Mean B | 20.4 a | 19.7 a | 18.7 b | |
P | ||||
100% P | 182 i | 247 f | 372 a | 267 a |
70%P + 30%M | 198 h | 227 g | 300 c | 242 d |
50%P + 50%M | 277 e | 287 d | 203 h | 255 b |
30%P + 70%M | 197 h | 347 b | 197 h | 247 c |
100%M | 201 h | 226 g | 275 e | 234 e |
Mean B | 211 b | 267 a | 269 a | |
K | ||||
100% P | 1817 ef | 1467 h | 2017 c | 1767 c |
70%P + 30%M | 1617 g | 1792 f | 2642 a | 2016 a |
50%P + 50%M | 1867 de | 1900 d | 2183 b | 1983 b |
30%P + 70%M | 1142 i | 1908 d | 1933 d | 1661 d |
100%M | 1192 i | 1483 h | 1492 h | 1389 e |
Mean B | 1527 c | 1710 b | 2053 a | |
Ca | ||||
100% P | 6208 b | 4067 i | 5683 d | 5319 c |
70%P + 30%M | 6117 b | 4933 f | 5933 c | 5661 b |
50%P + 50%M | 7792 a | 5108 e | 4758 g | 5886 a |
30%P + 70%M | 5742 d | 3942 j | 4367 h | 4683 d |
100%M | 4767 g | 3442 l | 3642 k | 3950 e |
Mean B | 6125 a | 4298 c | 4877 b | |
Mg | ||||
100% P | 146 e | 204 a | 199 a | 183 a |
70%P + 30%M | 153 e | 180 b | 171 c | 168 c |
50%P + 50%M | 201 a | 198 a | 161 d | 187 a |
30%P + 70%M | 150 e | 150 e | 128 f | 143 d |
100%M | 145 e | 205 a | 168 cd | 173 b |
Mean B | 159 c | 187 a | 166 b |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
NO3− | ||||
100% P | 14.1 a | 13.1 c | 12.9 c | 13.4 a |
70%P + 30%M | 13.5 b | 11.3 e | 12.1 d | 12.3 b |
50%P + 50%M | 13.0 c | 10.9 f | 10.8 f | 11.6 c |
30%P + 70%M | 11.3 e | 10.6 f | 10.6 f | 10.8 d |
100%M | 10.6 f | 10.6 f | 10.8 f | 10.6 e |
Mean B | 12.5 a | 11.3 b | 11.4 b | |
P | ||||
100% P | 142 j | 344 a | 220 f | 235 b |
70%P + 30%M | 179 g | 167 h | 231 e | 192 d |
50%P + 50%M | 156 i | 230 e | 180 g | 189 d |
30%P + 70%M | 288 c | 131 k | 214 f | 211 c |
100%M | 305 b | 274 d | 301 b | 293 a |
Mean B | 214 b | 229 a | 229 a | |
K | ||||
100% P | 83 gh | 157 c | 103 e | 114 b |
70%P + 30%M | 87 fg | 173 b | 83 gh | 114 b |
50%P + 50%M | 120 d | 247 a | 87 fg | 151 a |
30%P + 70%M | 87 fg | 127 d | 73 hi | 96 c |
100%M | 63 ij | 97 ef | 53 j | 71 d |
Mean B | 88 b | 160 a | 80 c | |
Ca | ||||
100% P | 1550 de | 1337 gh | 1570 cd | 1486 b |
70%P + 30%M | 1350 fgh | 1397 f | 1300 h | 1349 c |
50%P + 50%M | 2160 a | 1607 c | 1983 b | 1917 a |
30%P + 70%M | 1503 e | 1383 fg | 1587 cd | 1491 b |
100%M | 593 i | 547 i | 583 i | 574 d |
Mean B | 1431 a | 1254 c | 1405 b | |
Mg | ||||
100% P | 282 d | 199 j | 227 h | 236 d |
70%P + 30%M | 290 d | 395 a | 283 d | 322 a |
50%P + 50%M | 214 i | 340 b | 252 ef | 268 b |
30%P + 70%M | 247 efg | 242 fg | 253 e | 247 c |
100%M | 305 c | 254 e | 239 g | 266 b |
Mean B | 268 b | 286 a | 251 c |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
pH | ||||
100% P | 6.5 ab | 5.3 h | 5.7 fg | 5.8 d |
70%P + 30%M | 5.6 g | 5.7 fg | 5.8 f | 5.7 d |
50%P + 50%M | 6.0 de | 6.1 d | 6.4 bc | 6.1 c |
30%P + 70%M | 6.4 bc | 6.2 bc | 6.5 ab | 6.4 b |
100%M | 6.6 a | 6.3 cd | 6.6 a | 6.5 a |
Mean B | 6.2 a | 5.9 b | 6.2 a | |
EC (mS/cm) | ||||
100% P | 893 bc | 1447 a | 645 g | 995 a |
70%P + 30%M | 823 d | 888 c | 623 g | 778 c |
50%P + 50%M | 691 f | 780 e | 910 b | 794 b |
30%P + 70%M | 430 i | 671 f | 376 j | 493 d |
100%M | 302 k | 534 h | 369 j | 402 e |
Mean B | 628 b | 864 a | 585 c |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
pH | ||||
100% P | 8.4 a | 7.9 b | 7.7 bc | 8.0 a |
70%P + 30%M | 7.7 bc | 7.4 de | 7.5 cd | 7.5 b |
50%P + 50%M | 7.2 ef | 7.1 f | 7.3 | 7.2 c |
30%P + 70%M | 7.4 de | 7.3 ef | 7.3 ef | 7.3 c |
100%M | 7.4 de | 7.1 f | 7.4 de | 7.3 c |
Mean B | 7.6 a | 7.4 b | 7.5 b | |
EC (mS/cm) | ||||
100% P | 605 e | 742 c | 669d | 672 a |
70%P + 30%M | 493 f | 796 a | 430h | 572 c |
50%P + 50%M | 751 b | 795 a | 440g | 662 b |
30%P + 70%M | 353 j | 411 i | 337k | 367 d |
100%M | 191 l | 339 k | 168m | 233 e |
Mean B | 478 b | 617 a | 408 c |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
N Total (% d.w.) | ||||
100% P | 1.59 e | 1.86 ab | 1.75 cd | 1.73 a |
70%P + 30%M | 1.51 e | 1.97 a | 1.85 bc | 1.78 a |
50%P + 50%M | 1.60 e | 1.79 bcd | 1.56 e | 1.65 b |
30%P + 70%M | 1.52 e | 1.74 d | 1.72 d | 1.66 b |
100%M | 1.50 e | 1.39 f | 1.60 e | 1.50 c |
Mean B | 1.54 c | 1.75 a | 1.70 b | |
NO3− (mg/dm3) | ||||
100% P | 17.0 efg | 10.7 h | 18.3 e | 15.3 d |
70%P + 30%M | 15.3 g | 46.3 a | 17.3 ef | 26.3 a |
50%P + 50%M | 22.3 bc | 20.3 d | 22.7 b | 21.8 b |
30%P + 70%M | 16.3 fg | 20.3 d | 20.7 cd | 19.1 c |
100%M | 5.7 i | 4.3 i | 5.3 i | 5.1 d |
Mean B | 15.3 c | 20.4 a | 16.9 b | |
P (mg/dm3) | ||||
100% P | 23 k | 116 e | 66 h | 69 d |
70%P + 30%M | 39 j | 100 f | 228 a | 122 a |
50%P + 50%M | 17 l | 127 c | 88 g | 77 c |
30%P + 70%M | 23 k | 123 d | 86 g | 77 c |
100%M | 53 i | 118 e | 162 b | 111 b |
Mean B | 31 c | 117 b | 126 a | |
K (mg/dm3) | ||||
100% P | 57 e | 183 a | 53 ef | 98 a |
70%P + 30%M | 53 ef | 123 b | 83 d | 87 b |
50%P + 50%M | 57 e | 117 b | 50 ef | 74 c |
30%P + 70%M | 43 f | 97 c | 27 g | 56 e |
100%M | 93 cd | 57 e | 53 ef | 68 d |
Mean B | 61 b | 115 a | 53 c | |
Ca (mg/dm3) | ||||
100% P | 1193 d | 997 h | 1123 f | 1104 c |
70%P + 30%M | 1197 d | 963 i | 1083 g | 1081 d |
50%P + 50%M | 1223 c | 1356 b | 1473 a | 1351 a |
30%P + 70%M | 1160 e | 1227 c | 1167 e | 1184 b |
100%M | 483 j | 343 l | 403 k | 410 e |
Mean B | 1051 a | 977 b | 1050 a | |
Mg (mg/dm3) | ||||
100% P | 119 g | 128 f | 163 b | 136 a |
70%P + 30%M | 116 g | 150 c | 145 d | 137 a |
50%P + 50%M | 117 g | 129 f | 168 a | 138 a |
30%P + 70%M | 138 e | 143d e | 129 f | 137 a |
100%M | 63 i | 65 i | 72 h | 66 b |
Mean B | 111 c | 123 b | 135 a |
Substrate (A) | Fertilization (B) | |||
---|---|---|---|---|
Basacote | Basacote + YaraMila | YaraMila | Mean A | |
N Total (% d.w.) | ||||
100% P | 2.89 cdef | 3.60 ab | 3.64 ab | 3.37 a |
70%P + 30%M | 2.53 efg | 4.05 a | 3.48 b | 3.35 a |
50%P + 50%M | 2.89 cdef | 3.94 a | 2.93 cde | 3.25 a |
30%P + 70%M | 2.86 def | 3.33 bc | 3.21 bcd | 3.13 a |
100%M | 2.43 fg | 2.17 ef | 2.19 g | 2.45 b |
Mean B | 2.67 c | 3.53 a | 3.14 b | |
NO3− (mg/dm3) | ||||
100% P | 12.2 h | 10.6 i | 12.6 h | 11.8 d |
70%P + 30%M | 13.9 g | 13.8 g | 13.4 g | 13.7 c |
50%P + 50%M | 28.7 a | 18.0 f | 27.1 b | 24.6 a |
30%P + 70%M | 19.2 e | 23.4 d | 24.8 c | 22.5 b |
100%M | 6.7 k | 7.4 j | 7.8 j | 7.3 e |
Mean B | 16.1 b | 14.6 c | 17.2 a | |
P (mg/dm3) | ||||
100% P | 27 k | 45 i | 87 e | 53 d |
70%P + 30%M | 14 l | 73g | 54 h | 47 e |
50%P + 50%M | 28 k | 107 c | 104 c | 79 b |
30%P + 70%M | 25 k | 79 f | 100 d | 68 c |
100%M | 42 j | 163 a | 144 b | 116 a |
Mean B | 27 c | 94 b | 98 a | |
K (mg/dm3) | ||||
100% P | 2633 f | 3133 b | 1317 l | 2361 c |
70%P + 30%M | 2708 e | 2767 d | 3383 a | 2953 a |
50%P + 50%M | 2508 g | 2617 f | 2833 c | 2653 b |
30%P + 70%M | 2133 h | 2133 h | 2508 g | 2258 d |
100%M | 1617 k | 1816 j | 1908 i | 1781 e |
Mean B | 2320 c | 2493 a | 2390 b | |
Ca (mg/dm3) | ||||
100% P | 3025 a | 2100 de | 1917f | 2347 a |
70%P + 30%M | 2675 b | 1758 g | 1525h | 1986 c |
50%P + 50%M | 2800 b | 1525 h | 1525 h | 1950 cd |
30%P + 70%M | 2325 c | 1867 fg | 1525 h | 1905 d |
100%M | 2200 cd | 2050 e | 1975 ef | 2075 b |
Mean B | 2605 a | 1860 b | 1693 c | |
Mg (mg/dm3) | ||||
100% P | 117 g | 124 f | 145 c | 129 c |
70%P + 30%M | 116 g | 141 cd | 132 e | 130 c |
50%P + 50%M | 137 d | 165 a | 153 b | 151 a |
30%P + 70%M | 121 fg | 166 a | 117 g | 134 b |
100%M | 39 j | 68 h | 46 i | 51 d |
Mean B | 106 c | 133 a | 119 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pancerz, M.; Czaplicka, M.; Bąbelewski, P. Assessment of Fresh Miscanthus Straw as Growing Media Amendment in Nursery Production of Sedum spectabile ‘Stardust’ and Hydrangea arborescens ‘Annabelle’. Plants 2023, 12, 1639. https://doi.org/10.3390/plants12081639
Pancerz M, Czaplicka M, Bąbelewski P. Assessment of Fresh Miscanthus Straw as Growing Media Amendment in Nursery Production of Sedum spectabile ‘Stardust’ and Hydrangea arborescens ‘Annabelle’. Plants. 2023; 12(8):1639. https://doi.org/10.3390/plants12081639
Chicago/Turabian StylePancerz, Magdalena, Marta Czaplicka, and Przemysław Bąbelewski. 2023. "Assessment of Fresh Miscanthus Straw as Growing Media Amendment in Nursery Production of Sedum spectabile ‘Stardust’ and Hydrangea arborescens ‘Annabelle’" Plants 12, no. 8: 1639. https://doi.org/10.3390/plants12081639
APA StylePancerz, M., Czaplicka, M., & Bąbelewski, P. (2023). Assessment of Fresh Miscanthus Straw as Growing Media Amendment in Nursery Production of Sedum spectabile ‘Stardust’ and Hydrangea arborescens ‘Annabelle’. Plants, 12(8), 1639. https://doi.org/10.3390/plants12081639