Composition Analysis and Nutritional Value Evaluation of Amino Acids in the Fruit of 161 Jujube Cultivars
Abstract
:1. Introduction
2. Results
2.1. Amino Acid Composition and Content in Different Cultivars of Jujube Fruits
2.2. Nutritional Value Evaluation of Amino Acids in Fruits of Different Jujube Cultivars
2.3. Comparison of RC and SRC of Amino Acids in the Fruit of Jujube Different Cultivars
2.4. Correlation Analysis of the Contents of Amino Acids
2.5. Principal Component Analysis of Amino Acids
2.6. Comprehensive Evaluation of Different Cultivars
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Amino Acid Determination
4.3. Methods for Evaluating Amino Acids Nutrition
4.4. Data Statistics and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, M.J.; Wang, M. Chinese jujube germplasm resources. China For. Press 2009, 840, 56–57. [Google Scholar]
- Lei, C.G.; Chen, J.P.; Lu, D.X. The Nutritive Value and Health Function of Zipiphi Jujube Dates. Adv. Mod. Biomed. 2006, 6, 3. [Google Scholar]
- Liu, M.J.; Wang, J.R.; Wang, L.L.; Liu, P.; Zhao, J.; Zhao, Z.H.; Yao, S.R.; Stănică, F.; Liu, Z.G.; Wang, L.X.; et al. The historical and current research progress on jujube–a superfruit for the future. Hortic. Res. 2020, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, J. Fruit scientific research in New China in the past 70 years: Chinese jujube. J. Fruit Sci. 2019, 36, 1369–1381. [Google Scholar]
- Xiao, B.; Liu, Q.W.; Wang, X.J.; Zhou, J.H. Crucial Functional Components and Physiological Functions of the Fruit of Ziziphus Jujuba (Jujube). Food Res. Dev. 2018, 39, 5. [Google Scholar]
- Wu, X.Y.; Wang, R.C.; Liu, Q. Evaluation of in Vitro Antioxidant Activity of Flavonoids and Polysaccharides from Different Varieties of Jujube. Hubei Agric. Sci. 2017, 56, 5. [Google Scholar]
- Zou, M. Identification of Main Antioxidant Components and Antioxidant Activities of Zizyphus Jujuba cv. Yuanlingzao. Food Sci. Technol. 2021, 46, 5. [Google Scholar]
- Zhang, L.; Yang, C.; Ding, W.Y.; Zhang, J.N.; Han, J.M.; Gao, F. Flavonoids Content and Antioxidant Activity of Different Jujube Varieties. Guizhou Agric. Sci. 2018, 46, 3. [Google Scholar]
- Huang, H.Y. Study on the enhancement of immunity by jujube extract. Health Everyone 2016, 16, 2. [Google Scholar]
- Solano, F. Metabolism and functions of amino acids in the skin. Amino Acids Nutrit. Health 2020, 1265, 187–199. [Google Scholar]
- Luckose, F.; Pandey, M.C.; Radhakrishna, K. Effects of amino acid derivativeson physical, mental, and physiological activities. Crit. Rev. Food Sci. Nutrit. 2015, 55, 1793–1807. [Google Scholar] [CrossRef] [PubMed]
- Lieu, E.L.; Tu, N.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med. 2020, 52, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.; Pearce, E.L. Amino assets: How amino acids support immunity. Cell Metabol. 2020, 32, 154–175. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, P.; Li, X.X.; Mcknight, J.R.; Satterfield, M.C.; et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 2011, 40, 1053–1063. [Google Scholar] [CrossRef]
- Hanratty, C.G.; McGrath, L.T.; McAuley, D.F.; Young, I.S.; Johnston, G.D. The effects of oral methionine and homocysteine on endothelial function. Heart 2001, 85, 326–330. [Google Scholar] [CrossRef]
- Moormann, J.; Heinemann, B.; Hildebrandt, T.M. News about amino acid metabolism in plant–microbe interactions. Trends Biochem. Sci. 2022, 47, 839–850. [Google Scholar] [CrossRef]
- Vinayashree, S.; Vasu, P. Biochemical, nutritional and functional properties of protein isolate and fractions from pumpkin (Cucurbita moschata var. Kashi Harit) seeds. Food Chem. 2021, 340, 128177. [Google Scholar] [CrossRef]
- Holecek, M. Ammonia and amino acid profiles in liver cirrhosis: Effects of variables leading to hepatic encephalopathy. Nutrition 2015, 31, 14–20. [Google Scholar] [CrossRef]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Plant proteins as high-quality nutritional source for human diet. Trends Food Sci. Technol. 2020, 97, 170–184. [Google Scholar] [CrossRef]
- Li, X.X.; Zhang, X. Summary of free amino acids to improve crop flavor quality. J. China Agric. Univ. 2022, 27, 73–81. [Google Scholar]
- Kong, Y.; Zhang, L.L.; Sun, Y.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T. Determination of the free amino acid, organic acid, and nucleotide in commercial vinegars. J. Food Sci. 2017, 82, 1116–1123. [Google Scholar] [CrossRef]
- Lioe, H.N.; Apriyantono, A.; Takara, K.; Wada, K.; Yasuda, M. Umami taste enhancement of MSG/NaCl mixtures by Subthreshold L-α-aromatic amino acids. J. Food Sci. 2005, 70, s401–s405. [Google Scholar] [CrossRef]
- Shimomura, Y.; Kitaura, Y. Physiological and pathological roles of branched–chain amino acids in the regulation of protein and energy metabolism and neurological functions. Pharmacol. Res. 2018, 133, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Hiraiwa, A.H.; Okumura, A.T.; Kondo, A.T.; Kato, T.; Kazama, S.; Ishihara, T.; Iwata, E.; Shimojo, M.; Kondo, S.; Aoki, S.; et al. Usefulness of the plasma branched–chain amino acid/aromatic amino acid ratio for predicting future cardiac events in patients with heart failure. J. Cardiol. 2020, 75, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, M.H.; Yamaguchi, N.; Hase, R.; Takahashi, H.; Ishimaru, Y.; Watanabe, R.; Saito, H.; Shimokawa, J.; Yamamoto, H.; Kikuchi, S.; et al. Plasma Branched–Chain and Aromatic Amino Acids in Relation to Hypertension. Nutrients 2020, 12, 3791. [Google Scholar] [CrossRef]
- Zhang, X.; Ojanen, X.; Zhuang, H.; Wu, N.; Cheng, S.; Wiklund, P. Branched – chain and aromatic amino acids are associated with insulin resistance during pubertal development in girls. J. Adolesc. Health 2019, 65, 313–314. [Google Scholar] [CrossRef]
- Wang, D.G.; Feng, Z.P.; Chen, X.; Fu, M.; Huang, Z.H.; Cui, L.J. Comprehensive evaluation of phenotypic traits of Sour-jujube germplasm resources. J. Chin. Med. Mater. 2019, 6, 1273–1276. [Google Scholar]
- Wang, C.; Wu, D.F.; He, W.Z.; Wu, W.L. Evaluation on amino acid nutritional value of Xinjiang Jun jujube. J. Agric. Sci. Technol. 2019, 21, 108–116. [Google Scholar]
- Shi, Q.; Han, G.; Liu, Y.; Jiang, J.J.; Jia, Y.Y.; Li, X.G. Nutrient composition and quality traits of dried jujube fruits in seven producing areas based on metabolomics analysis. Food Chem. 2022, 385, 132627. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Shishir, M.R.I.; Bao, T.; Lu, Y.; Chen, W. Jujube fruit: A potential nutritious fruit for the development of functional food products. J. Funct. Foods 2020, 75, 104205. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Khoshkharam, M.; Zandi, P.; Sun, W.; Cheng, Q. Jujube, a super-fruit in traditional Chinese medicine, heading for modern pharmacological science. J. Med. Plants Stud. 2019, 7, 173–178. [Google Scholar]
- Shams Najafabadi, N.; Sahari, M.A.; Barzegar, M.; Hamidi Esfahani, Z. Quality characteristics, nutraceutical profile, and storage stability of functional beverage prepared from jujube (Ziziphus jujuba var vulgaris) fruit. J. Food Process. Preservat. 2021, 45, e15201. [Google Scholar] [CrossRef]
- Feng, C.J.; Wang, B.N.; Zhao, A.Q.; Wei, L.S.; Shao, Y.Y.; Wang, Y.; Cao, B.Y.; Zhang, F.X. Quality characteristics and antioxidant activities of goat milk yogurt with added jujube pulp. Food Chem. 2019, 277, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Qian, A.P.; Lin, H.; Yu, Y.B.; Yan, S.A.; Lin, X.X.; Yao, X. Amino acid composition and nutritional evaluation of Citrus flesh in Fujian province. Chinese Agric. Sci. Bull. 2008, 6, 86–90. [Google Scholar]
- Gu, S.L.; Gu, X.H.; Geng, J.P. Effects of different soil and altitude on protein and amino acid composition of foxtail millet. Eco-agric. Res. 2000, 8, 34–37. [Google Scholar]
- Chang, X.H.; Zhao, G.C.; Wang, D.M.; Yang, Y.S. Effects of ecological environment on amino acid content in spring wheat grain. Proc. Theacad. Ann. Meet. Crop Soc. China 2014, 848, 012116. [Google Scholar]
- Wang, Y.K.; Xue, X.F.; Ren, H.Y.; Zhao, A.L.; Wu, H.; Li, D.K. Advances of research and utilization of jujube (Ziziphus) germplasm in China. Acta Hortic. 2021, 1350, 63–72. [Google Scholar] [CrossRef]
- You, X.M. Study on HPLC Detection Method of Amino Acids in Feed; Hebei Agricultural University: Baoding, China, 2015. [Google Scholar]
- Heger, J. Essential to non-essential amino acid ratios. In Amino Acids in Animal Nutrition; Biofaktory Praha: Brno, Czech Republic, 2003; pp. 103–124. [Google Scholar]
- Odukoya, J.O.; Odukoya, J.O.; Mmutlane, E.M.; Ndinteh, D.T. Phytochemicals and amino acids profiles of selected sub-Saharan African medicinal plants’ parts used for cardiovascular diseases’ treatment. Pharmaceutics 2021, 13, 1367. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, X.; Li, G.G.; Zheng, Y.; Jiang, D.; Ren, H.; Lei, J.J.; Zhang, H. Comprehensive evaluation and comparison of nutritional values of amino acids of Chinese flowering cabbage and related subspecies vegetables. Food Ferment. Ind. 2019, 45, 102–107. [Google Scholar]
- Report, W. Energy and protein requirements. Tech. Rep. Ser. 1985, 724, 1–129. [Google Scholar]
- Peng, C.; Cai, C.; Tu, J.; Meng, Y.; LI, M.Q.; Yang, M.; Ai, W.S. Difference and Evaluation of Nutritional Contents in Edible Mushrooms Cultured with Main Medium of Bamboo Sawdust. Chin. J. Trop. Crops. 2021, 42, 2052–2058. [Google Scholar]
- Consultation, F.E. Dietary Protein Quality Evaluation in Human Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; Volume 92, pp. 1–66. [Google Scholar]
- Chen, H.; Yang, Y.R. ISSR Analysis of Genetic Diversity and Relationship of Plum Resources in Guizhou. J. Fruit Trees 2014, 31, 6. [Google Scholar]
- De Araujo, Q.R.; de Abreu Loureiro, G.A.H.; Póvoas, C.E.M.; Steinmacher, D.; de Almeida, S.S.; Ahnert, D.; Baligar, V.C. Effect of Different Edaphic Crop Conditions on the Free Amino Acid Profile of PH-16 Dry Cacao Beans. Agronomy 2021, 11, 1637. [Google Scholar] [CrossRef]
- Song, J.; Bi, J.; Chen, Q.; Wu, X.; Lyu, Y.; Meng, X. Assessment of sugar content, fatty acids, free amino acids, and volatile profiles in jujube fruits at different ripening stages. Food Chem. 2019, 270, 344–352. [Google Scholar] [CrossRef]
- Koch, W.; Kukuła-Koch, W.; Czop, M. The role of extracting solvents in the recovery of polyphenols from green tea and its antiradical activity supported by principal component analysis. Molecules 2020, 25, 2173. [Google Scholar] [CrossRef]
Amino Acid (AA) | Average (g/100 g) | Coefficient of Variation (%) | The Highest Content (g/100 g) | The Cultivar of Highest Content | The Lowest Content (g/100 g) | The Cultivar of Lowest Content |
---|---|---|---|---|---|---|
Glycine | 0.079 | 4.189 | 0.125 | ‘Xinzheng dazao’ | 0.007 | ‘Xinzheng changjixinzao’ |
Threonine | 0.077 | 3.680 | 0.148 | ‘Jiaxianbaizao’ | 0.000 | ‘Xingtai0604′ |
Proline | 0.727 | 3.009 | 1.674 | ‘Zaoqiang malianzao’ | 0.112 | ‘Pucheng zhishezao’ |
Alanine | 0.120 | 6.365 | 0.176 | ‘Xinzheng xiaoyuanzao’ | 0.077 | ‘Mopanzao’ |
Valine | 0.043 | 2.596 | 0.083 | ‘Dalipachizao’ | 0.000 | ‘Xingtai0604’ |
Isoleucine | 0.063 | 2.866 | 0.117 | ‘Dalipachizao’ | 0.000 | ‘Xingtai0604’ |
Leucine | 0.121 | 3.507 | 0.215 | ‘Tengzhou changhongzao’ | 0.024 | ‘Xingtai0604’ |
Phenylalanine | 0.049 | 2.449 | 0.124 | ‘Linlilajiaozao’ | 0.010 | ‘Puchengzhishezao’ |
Total AA | 1.280 | 1.589 | 2.356 | ‘Zaoqiang malianzao’ | 0.322 | ‘Xingtai0604’ |
Principal Components | Initial Eigenvalues | The Percentage of Explained Variance% | Cumulative Variance Contribution% |
---|---|---|---|
1 | 5.418 | 67.722 | 67.722 |
2 | 1.132 | 14.145 | 81.867 |
Name | F1 | F2 | Weight (%) |
---|---|---|---|
Glycine | 0.074 | −0.497 | 6.537102 |
Threonine | 0.161 | −0.066 | 14.22261 |
Proline | 0.024 | 0.775 | 2.120141 |
Alanine | 0.17 | 0.141 | 15.01767 |
Valine | 0.179 | 0.001 | 15.81272 |
Isoleucine | 0.172 | −0.072 | 15.19435 |
Leucine | 0.181 | 0.023 | 15.9894 |
Phenylalanine | 0.171 | 0.076 | 15.10601 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhang, B.; Luo, Z.; Yuan, Y.; Zhao, Z.; Liu, M. Composition Analysis and Nutritional Value Evaluation of Amino Acids in the Fruit of 161 Jujube Cultivars. Plants 2023, 12, 1744. https://doi.org/10.3390/plants12091744
Zhao X, Zhang B, Luo Z, Yuan Y, Zhao Z, Liu M. Composition Analysis and Nutritional Value Evaluation of Amino Acids in the Fruit of 161 Jujube Cultivars. Plants. 2023; 12(9):1744. https://doi.org/10.3390/plants12091744
Chicago/Turabian StyleZhao, Xin, Bingbing Zhang, Zhi Luo, Ye Yuan, Zhihui Zhao, and Mengjun Liu. 2023. "Composition Analysis and Nutritional Value Evaluation of Amino Acids in the Fruit of 161 Jujube Cultivars" Plants 12, no. 9: 1744. https://doi.org/10.3390/plants12091744
APA StyleZhao, X., Zhang, B., Luo, Z., Yuan, Y., Zhao, Z., & Liu, M. (2023). Composition Analysis and Nutritional Value Evaluation of Amino Acids in the Fruit of 161 Jujube Cultivars. Plants, 12(9), 1744. https://doi.org/10.3390/plants12091744